Not for reproduction

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Not for reproduction"

Transcript

1 COMPLEX NUMBERS Thomson Brooks-Cole copyright 7 _+i _-i FIGURE Complex numbers as points in the Argand plane i _i FIGURE i _i +i z=a+bi z=a-bi -i A complex number can be represented by an expression of the form a bi, where a and b are real numbers and i is a symbol with the property that i. The complex number a bi can also be represented by the ordered pair a, b and plotted as a point in a plane (called the Argand plane) as in Figure. Thus, the complex number i i is identified with the point,. The real part of the complex number a bi is the real number a and the imaginary part is the real number b. Thus, the real part of i is and the imaginary part is. Two complex numbers a bi and c di are equal if a c and b d, that is, their real parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis is called the real axis and the vertical axis is called the imaginary axis. The sum and difference of two complex numbers are defined by adding or subtracting their real parts and their imaginary parts: For instance, The product of complex numbers is defined so that the usual commutative and distributive laws hold: a bic di ac di bic di Since i, this becomes EXAMPLE i EXAMPLE Express the number in the form a bi. 5i SOLUTION We multiply numerator and denominator by the complex conjugate of 5i, namely 5i, and we take advantage of the result of Example : i 5i The geometric interpretation of the complex conjugate is shown in Figure : z is the reflection of z in the real axis. We list some of the properties of the complex conjugate in the following box. The proofs follow from the definition and are requested in Exercise 8. Properties of Conjugates a bi c di a c b di a bi c di a c b di i 7i 7i 5 i a bic di ac bd ad bci i 5i 5i i 5i 5i i 5 i i 5i z w z w ac adi bci bdi Division of complex numbers is much like rationalizing the denominator of a rational expression. For the complex number z a bi, we define its complex conjugate to be z a bi. To find the quotient of two complex numbers we multiply numerator and denominator by the complex conjugate of the denominator. 5i i 5i i zw z w z n z n

2 COMPLEX NUMBERS bi œ z = a@+b@ z=a+bi b z The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure we see that if z a bi, then z sa b a Notice that FIGURE zz a bia bi a abi abi b i a b and so This explains why the division procedure in Example works in general: Since i, we can think of i as a square root of. But notice that we also have i i and so i is also a square root of. We say that i is the principal square root of and write s i. In general, if c is any positive number, we write sc sc i With this convention, the usual derivation and formula for the roots of the quadratic equation ax bx c are valid even when b ac : EXAMPLE Find the roots of the equation x x. SOLUTION zz z z zw w ww x b sb ac a Using the quadratic formula, we have x s s s i We observe that the solutions of the equation in Example are complex conjugates of each other. In general, the solutions of any quadratic equation ax bx c with real coefficients a, b, and c are always complex conjugates. (If z is real, z z, so z is its own conjugate.) We have seen that if we allow complex numbers as solutions, then every quadratic equation has a solution. More generally, it is true that every polynomial equation a nx n a nx n a x a of degree at least one has a solution among the complex numbers. This fact is known as the Fundamental Theorem of Algebra and was proved by Gauss. zw w POLAR FORM Thomson Brooks-Cole copyright 7 FIGURE r a a+bi b We know that any complex number z a bi can be considered as a point a, b and that any such point can be represented by polar coordinates r, with r. In fact, a r cos b r sin as in Figure. Therefore, we have z a bi r cos r sin i

3 COMPLEX NUMBERS Thus, we can write any complex number z in the form z rcos i sin where r z sa b and tan b a œ FIGURE 5 z z FIGURE z + _ r +i œ -i z The angle is called the argument of z and we write. Note that argz is not unique; any two arguments of z differ by an integer multiple of. EXAMPLE Write the following numbers in polar form. (a) z i (b) w s i SOLUTION (a) We have r z s s and tan, so we can take. Therefore, the polar form is (b) Here we have s and tan s. Since w lies in the fourth quadrant, we take and w cos i sin The numbers z and w are shown in Figure 5. The polar form of complex numbers gives insight into multiplication and division. Let be two complex numbers written in polar form. Then Therefore, using the addition formulas for cosine and sine, we have r w z r cos i sin z z r r cos i sin cos i sin r r cos cos sin sin isin cos cos sin This formula says that to multiply two complex numbers we multiply the moduli and add the arguments. (See Figure.) A similar argument using the subtraction formulas for sine and cosine shows that to divide two complex numbers we divide the moduli and subtract the arguments. z z z z r r cos i sin r cos i sin r z s cos i sin argz z r cos i sin z z Thomson Brooks-Cole copyright 7 FIGURE 7 _ r z In particular, taking z and z z, (and therefore and ), we have the following, which is illustrated in Figure 7. If z rcos i sin, then z r cos i sin.

4 COMPLEX NUMBERS œ FIGURE 8 z=+i œ zw w=œ -i EXAMPLE 5 Find the product of the complex numbers i and s i in polar form. SOLUTION and From Example we have So, by Equation, This is illustrated in Figure 8. then and peated use of Formula shows how to compute powers of a complex number. If In general, we obtain the following result, which is named after the French mathematician Abraham De Moivre (7 75). i(s i) s cos De Moivre s Theorem If z rcos i sin and n is a positive integer, then This says that to take the nth power of a complex number we take the nth power of the modulus and multiply the argument by n. EXAMPLE Find. SOLUTION Since, it follows from Example (a) that i i i has the polar form So by De Moivre s Theorem, i s cos i sin s i cos i sin z n rcos i sin n r n cos n i sin n ( i) i s cos i sin z rcos i sin z r cos i sin z zz r cos i sin i sin s i cos i sin s cos i sin 5 cos 5 5 i sin i Thomson Brooks-Cole copyright 7 De Moivre s Theorem can also be used to find the nth roots of complex numbers. An n th root of the complex number z is a complex number w such that w n z

5 COMPLEX NUMBERS 5 Writing these two numbers in trigonometric form as w scos i sin and using De Moivre s Theorem, we get and z rcos i sin s n cos n i sin n rcos i sin The equality of these two complex numbers shows that Thomson Brooks-Cole copyright 7 and From the fact that sine and cosine have period it follows that ncos k k Thus w r i sin n n Since this expression gives a different value of w for k,,,..., n,we have the following. Roots of a Complex Number Let z rcos i sin and let n be a positive integer. Then z has the n distinct nth roots where k,,,..., n. s n r cos n cos n k ncos k k w k r i sin n n Notice that each of the nth roots of z has modulus. Thus, all the nth roots of z lie on the circle of radius r n in the complex plane. Also, since the argument of each successive nth root exceeds the argument of the previous root by n, we see that the n th roots of z are equally spaced on this circle. EXAMPLE 7 Find the six sixth roots of z 8 and graph these roots in the complex plane. SOLUTION In trigonometric form, z 8cos i sin. Applying Equation with n, we get w k 8 cos i sin We get the six sixth roots of 8 by taking k,,,,, 5 in this formula: w 8 cos i sin i w 8 cos i sin 5 w 8cos or and k s s s i or s r n sin n sin k wk r n k i sin 5 s s i n

6 COMPLEX NUMBERS œ i w 7 w 8 cos i sin 7 s s i w w FIGURE 9 The six sixth roots of z=_8 w _œ œ w _œ i w All these points lie on the circle of radius s as shown in Figure 9. COMPLEX EXPONENTIALS We also need to give a meaning to the expression e z when z x iy is a complex number. The theory of infinite series as developed in Chapter 8 can be extended to the case where the terms are complex numbers. Using the Taylor series for e x (8.7.) as our guide, we define and it turns out that this complex exponential function has the same properties as the real exponential function. In particular, it is true that 5 If we put z iy, where y is a real number, in Equation, and use the facts that we get w 8 cos w 5 8 cos e z i, e iy iy iy iy iy iy5!!! 5! iy y y! y! y cos y i sin y n z n i sin s i i sin s s i z z n!! e zz i i i i, e z e z i,! i y! y! i y 5 z! 5! i 5 i, Here we have used the Taylor series for cos y and sin y (Equations and 8.7.). The result is a famous formula called Euler s formula:...! iy y! y 5 5! e iy cos y i sin y Combining Euler s formula with Equation 5, we get Thomson Brooks-Cole copyright 7 7 e xiy e x e iy e x cos y i sin y

7 COMPLEX NUMBERS 7 e i EXAMPLE 8 Evaluate: (a) (b) e i We could write the result of Example 8(a) as e i This equation relates the five most famous numbers in all of mathematics:,, e, i, and. SOLUTION (a) From Euler s equation () we have (b) Using Equation 7 we get e i cos i sin i Thomson Brooks-Cole copyright 7 A EXERCISES Evaluate the expression and write your answer in the form a bi.. 5 i i.. 5i i. i8 i 5. 7i. i( i) i i i i 9.. i i... s5. ss 5 7 Find the complex conjugate and the modulus of the number. 5. 5i. s i 7. i Click here for answers. 8. Prove the following properties of complex numbers. (a) z w z w (b) zw z w (c) z n z n, where n is a positive integer [Hint: Write z a bi, w c di.] 9 Find all solutions of the equation. 9. x 9. x. x x 5. x x. z z. z z S i e i e cos i sin e i i e Finally, we note that Euler s equation provides us with an easier method of proving De Moivre s Theorem: Click here for solutions. ( i) (9 5 i) i rcos i sin n re i n r n e in r n cos n i sin n 5 8 Write the number in polar form with argument between and. 5. i. si 7. i 8. 8i 9 Find polar forms for zw, zw, and z by first putting z and w into polar form. 9. z s i,. z s i,. z s i, z (s i)., Find the indicated power using De Moivre s Theorem.. i. ( si) 5 5. (s i) 5. i 8 7 Find the indicated roots. Sketch the roots in the complex plane. 7. The eighth roots of 8. The fifth roots of 9. The cube roots of i. The cube roots of i Write the number in the form a bi. e i.. e i.. e i w si w 8i w i w i 5.. e i e i i e 7. Use De Moivre s Theorem with n to express cos and sin in terms of cos and sin.

8 8 COMPLEX NUMBERS 8. Use Euler s formula to prove the following formulas for cos x and sin x: sin x eix e ix cos x eix e ix i 5. (a) If u is a complex-valued function of a real variable, its indefinite integral x ux dx is an antiderivative of u. Evaluate y e i x dx 9. If ux f x itx is a complex-valued function of a real variable x and the real and imaginary parts f x and tx are differentiable functions of x, then the derivative of u is defined to be ux f x itx. Use this together with Equation 7 to prove that if Fx e rx, then Fx re rx when r a bi is a complex number. (b) By considering the real and imaginary parts of the integral in part (a), evaluate the real integrals y e x cos x dx and y e x sin x dx (c) Compare with the method used in Example in Section.. Thomson Brooks-Cole copyright 7

9 COMPLEX NUMBERS 9 S ANSWERS Click here for solutions.. 8 i. 8i 5. 7i 7. i 9. i. i. 5i 5. 5i; 7. i, 9. i. i. (s7)i s cos i sin 5{cos[tan ( )] i sin[tan ( )]} 9. cos i sin, cos i sin, cos i sin. s cos7 i sin7, (s)cos i sin, cos i sin. 5. 5s 5i 7., i, (s) i 9. (s) i, i i. i. 5. e (s)i 7. cos cos cos sin, sin cos sin sin _i Thomson Brooks-Cole copyright 7

10 COMPLEX NUMBERS SOLUTIONS. (5 i)+(+i) =(5+)+( +)i =8+( )i =8 i. i 9+ 5 i =( 9) + 5 i = 5+( )i = 5 i. ( + 5i)( i) =()+( i)+(5i)() + (5i)( i) =8 i +i 5i =8+8i 5( ) = 8 + 8i +5=+8i. ( i)(8 i) =8 i i +( ) = 9i i = 7i. i i = i ( ) = + i i i = +i = i i +i = +i +i i i +i 8( ) + i = = = i + + i +i i = +i i +i +i +i +8( ) = = 5+i = 5 +i i +i = +i i i = i ( ) = i = i i = i +i + 9i = +i 9( ) = i. i = i i =( )i = i. i = i 5 =( ) 5 =. 5 = 5 i =5i. = i i = i = ( ) = 5. 5i =+5i and 5i = +( 5) = + 5 = 9 =. + i = i and + i = ( ) + = +8= 9= 7. i = i =+i =iand i = +( ) = = 8. Let z = a + bi, w = c + di. (a) z + w = (a + bi)+(c + di) =(a + c)+(b + d)i =(a + c) (b + d)i =(a bi)+(c di) =z + w (b) zw = (a + bi)(c + di) =(ac bd)+(ad + bc)i =(ac bd) (ad + bc)i. On the other hand, z w =(a bi)(c di) =(ac bd) (ad + bc)i = zw. (c) Use mathematical induction and part (b): Let S n be the statement that z n = z n. S is true because z = z = z. Assume S k is true, that is z k = z k.then z k+ = z +k = zz k = zz k [part (b) with w = z k ] = z z k = z +k = z k+, which shows that S k+ is true. Thomson Brooks-Cole copyright 7 Therefore, by mathematical induction, z n = z n for every positive integer n. Another proof: Use part (b) with w = z, and mathematical induction. 9. x +9= x = 9 x = 9 x = ± 9 = ± 9 i = ± i.

11 COMPLEX NUMBERS. x = x = x x + = x =or x += x = ± or x = ±i.. By the quadratic formula, x +x +5= x = ± ()(5) () = ± = ± i. x x += x = ( ) ± ( ) ()() () = ± i. = ± = ± i = ± i. By the quadratic formula, z + z += z = ± ()() = ± 7 (). z + z + = z +z += z = ± ()() = ± = ± i = () 8 8 ± i = ± 7 i. 5. For z = +i, r = ( ) + = and tan θ = = θ = (since z lies in the second quadrant). Therefore, +i = cos.. For z = i, r = + =and tan θ = = θ = 5 (since z lies in the fourth quadrant). Therefore, i = cos For z =+i, r = + =5and tan θ = θ =tan (since z lies in the first quadrant). Therefore, +i =5 cos tan tan. 8. For z =8i, r = +8 =8and tan θ = 8 is undefined, so θ = (since z lies on the positive imaginary axis). Therefore, 8i =8 cos. 9. For z = +i, r = + =and tan θ = θ = z = cos. For w =+ i, r =and tan θ = θ = w = cos. Therefore, zw = cos + + =cos, z/w = cos =cos,and=+i =(cos+isin ) /z = cos = cos.for/z, we could also use the formula that precedes Example 5 to obtain /z = cos i sin.. For z = i, r = +( ) = = 8 and tan θ = = θ = Thomson Brooks-Cole copyright 7 z =8 cos w =8 cos cos.forw =8i, r = +8 =8and tan θ = 8 is undefined, so θ =. Therefore, zw =8 8 cos + =cos + = cos, z/w = 8,and 8 =+i =(cos+isin ) /z = 8 cos = 8 cos. For /z, we could also use the formula that precedes Example 5 to obtain /z = 8 cos i sin.

12 COMPLEX NUMBERS. For z = i, r = +( ) =and tan θ = = θ = z = cos.forw = +i, r =, tan θ = = θ = w = cos. Therefore, zw = cos + z/w = cos /z = = cos cos + = cos 7 = i sin,and = cos. cos 7,. For z = +i = +i, r = + = = 8 and tan θ = = θ = z =8 cos.forw = i, r = ( ) +( ) = 8 = and tan θ = = θ = 5 w = cos 5 5. Therefore, zw =8 cos = cos 7 7, z/w = 8 cos 5 5 = cos,and /z = 8 cos i sin.. For z =+i, r = and tan θ = = θ = z = cos.soby De Moivre s Theorem, ( + i) = cos = / cos = (cos 5 5) = [ +i()] = =. For z = i, r = + =and tan θ = = θ = 5 z = cos 5 5. So by De Moivre s Theorem, 5. For z = +i, r = 5 i = cos = 5 cos = 5 cos = + i =+ i + = = and tan θ = = θ = z = cos. So by De Moivre s Theorem, 5 +i = cos 5 = 5 cos 5 5 = + i = 5 + 5i. For z = i, r = and tan θ = = θ = 7 z = cos 7 7 ( i) 8 = cos = cos Thomson Brooks-Cole copyright 7 =(cos ) =(+i) =

13 COMPLEX NUMBERS 7. =+i =(cos+isin ). Using Equation with r =, n =8,andθ =,wehave +k +k w k = cos /8 =cos k 8 8 k,wherek =,,,...,7. w =(cos+isin ) =, w = cos = + i, w = cos = i, w = cos = + i, w =(cos ) =, w 5 = cos 5 5 = i, w = cos = i, w7 = cos 7 7 = i 8. = + i =(cos+isin ). Using Equation with r =, n =5,andθ =,wehave +k +k w k = cos /5 = cos k k,wherek =,,,,. 5 w =(cos+isin ) = w = cos 5 5 w = cos 5 5 w = cos 5 5 w = cos i =+i = cos. Using Equation with r =, n =,andθ =,wehave w k = cos / +k +k,wherek =,,. w = cos = + i w = cos 5 5 = + i w = cos 9 9 = i. +i = cos. Using Equation with r =, n =,andθ =,wehave w k = / cos +k +k,wherek =,,. w = / cos w = / cos = / + i = / + / i w = / cos 7 7. Using Euler s formula () with y =,wehaveei/ =cos =+i = i.. Using Euler s formula () with y =,wehavee i =cos =.. Using Euler s formula () with y =,wehaveei/ =cos = + i.. Using Euler s formula () with y =,wehavee i =cos( )+i sin( ) =. Thomson Brooks-Cole copyright 7 5. UsingEquation7withx =and y =,wehavee +i = e e i = e (cos ) =e ( +)= e.. UsingEquation7withx = and y =,wehavee +i = e e i = e (cos ) = e cos + (e sin )i.

14 COMPLEX NUMBERS 7. Take r =and n =in De Moivre s Theorem to get [(cos θ θ)] = (cos θ θ) (cos θ θ) =cosθ θ cos θ + cos θ (i sin θ)+(cosθ)(i sin θ) +(isin θ) =cosθ θ cos θ + cos θ sin θ i cosθ sin θ sin θ i =cosθ θ cos θ sin θ cos θ + sinθ cos θ sin θ i =cosθ θ Equating real and imaginary parts gives cos θ =cos θ sin θ cos θ and sin θ =sinθ cos θ sin θ 8. Using Formula, Thus, cos x = eix + e ix. Similarly, e ix + e ix =(cosx x)+[cos( x)+i sin( x)] =cosx x +cosx i sin x =cosx e ix e ix =(cosx x) [cos( x)+i sin( x)] =cosx x cos x ( i sin x) =i sin x Therefore, sin x = eix e ix. i 9. F (x) =e rx = e (a+bi)x = e ax+bxi = e ax (cos bx bx) =e ax cos bx + i(e ax sin bx) F (x) =(e ax cos bx) + i(e ax sin bx) =(ae ax cos bx be ax sin bx)+i(ae ax sin bx + be ax cos bx) = a [e ax (cos bx bx)] + b [e ax ( sin bx + i cos bx)] = ae rx + b e ax i sin bx + i cos bx = ae rx + bi [e ax (cos bx bx)] = ae rx + bie rx =(a + bi)e rx = re rx 5. (a) From Exercise 9, F (x) =e (+i)x F (x) =(+i)e (+i)x.so e (+i)x dx = F (x) dx = +i +i F (x)+c = i F (x)+c = i e (+i)x + C (b) e (+i)x dx = e x e ix dx = e x (cos x x) dx = e x cos xdx+ i e x sin xdx (). Also, i e(+i)x = e(+i)x ie(+i)x = ex+ix iex+ix = ex (cos x x) iex (cos x x) = ex cos x + ex sin x + iex sin x iex cos x = ex (cos x +sinx)+i ex (sin x cos x) () Equating the real and imaginary parts in ()and(), we see that e x cos xdx= ex (cos x +sinx)+c and e x sin xdx= ex (sin x cos x)+c. Thomson Brooks-Cole copyright 7

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Chapter 1 Complex numbers

Chapter 1 Complex numbers Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i)

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

EQUATIONS OF DEGREE 3 AND 4.

EQUATIONS OF DEGREE 3 AND 4. EQUATIONS OF DEGREE AND 4. IAN KIMING Consider the equation. Equations of degree. x + ax 2 + bx + c = 0, with a, b, c R. Substituting y := x + a, we find for y an equation of the form: ( ) y + py + 2q

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα