Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
|
|
- Τισιφόνη Ανδρέου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j k 9 l 9 7 m n 00 0 o 6 6 p q r 6 a + 8 b c d e + 6 f a + b + c d e f a b 8 + c d + e f ( )( + )
2 C ALGEBRA Answers - Worksheet A page 8 a b c d 7 7 e 6 f 7 7 g 7 7 h i j k 8 0 l b 0 c a + d e 0 + f ( ) a x + x x + b x x x x 6 x ± x x ± c x d x + (x ) 6x x + 0(x ) 6x + x 0 + x ( + ) x + a ( ) b + + ( + ) + a + b c + ( + ) ( + ) ( 6 + ) or 6 + d ( ) + ( ) e +
3 C ALGEBRA Answers - Worksheet A page f g h i + ( + ) ( 7 ) ( 7) + + ( ) or j ( ) ( ) or 6 k 7 + (7 + ) (7 + ) l 6 + 6( + ) + ( + ) x x + x( ) x x (+ ) 9 l l ( + ) + 9 6( + ) 8 9 a b 6 ( 6) ( + )( ) + ( ) ( ) + c ( + 0)( 0 + ) d ( )( ) ( 8) or 9 e + ( )(+ ) f + ( )( + ) (7 + ) g + + ( + )(+ ) ( + ) h ( 7 )( 7 + ) ( + 7)
4 C ALGEBRA Answers - Worksheet B a 6 b 6 c d 6 e f 6 g 8 h i 7 6 ( ) 6 or j ( ) 8 or 6 6 k l a 8 b 7 c 0 d e 9 f a 8p 7 b x 0 c 6n d y e b f p q g x y h 6r s i x y 7 j a b 8 k r s 6 00r s l p q rs a b c 6 9 ( ) 6 d g 6 6 e 6 h 8 7 ( ) ( ) f 9 7 i 9 7 j k l m 8 n o 8 p 9 q or r ( ) a c ( ) 8 b ( 6) 8 d ( 7) 9 ( ) ( ) e ( 9) f ( 8) g ( 6) 6 6 h 8 6 ( ) ( ) i k ( ) ( ) j ( ) ( ) or l ( 6) ( ) ( ) 6 6 m or 0. n ( ) ( ) ( ) o q ( ) ( ) or 0.6 p ( ) ( ) ( ) or r ( ) ( ) ( ) ( ) ( ) ( )
5 C ALGEBRA Answers - Worksheet B page 6 a 7 b 6 + c 6 d 6 ( 9) e 8 f 9 ( ) i 9 ( ) j g ( 8) 9 h 6 6 or k 7 ( ) 9 or l ( ) 6 00 ( ) ( 8) or 8 7 a x b y 6 c p d 8x e y f + 8b 8b g x x h 6 a a i ( ) 9 0 p p j 9x k + 6 y y l t m + 7 b b n + 6 y y o + ( ) 6 x x p 9 + ( ) a a 8 a x 6 6 b x c x d x x ( ) x 8 e x 8 f x ± 6 ± g x ± 8 ± h x 7 x x (± ) ± 6 x (± ) ± 7 x 7 x ( ) 9 9 a e x b x ( x ) x f 6 x x x g c x x x d ( x ) x h x x x 6 x x x 0 a x b x c x d 9 x e x f x a ( ) 6 b ( ) c ( ) d 6 ( ) e 6 ( ) f ( ) a ( ) x x b ( ) x + x + c x x ( ) d ( ) x x e ( ) x x f ( ) x + x 6 a x y b x y c (x ) y d ( ) x x ( x ) y e x 8y f ( ) x x 8 y
6 C ALGEBRA Answers - Worksheet B page a x 6 b x c x + 7 d ( ) x x x 6 x x + x x x x e x f 6 x g ( ) x x h ( ) x + 6x + x x x 6x + x x x 7 x 6 i (7 ) x+ 7 x+ 7 j x ( ) k (6 ) x+ 6 x 6 l ( ) x x x + x x x x x 8 9 x x a x + ( ) x x b x ( ) x+ x+ c ( ) x x x d ( ) x x x x + x x x + x x x x x x x x e ( ) x + ( ) x f ( ) x ( ) x g 6 x (6 ) x + h ( ) x ( ) x x + x 6x 6 x 6 x 6 x + x 8x x + x 6x 6 x x x + x 8x x x x x i ( ) x x j ( ) x x k ( ) x ( ) x l ( ) x + ( ) x x x x x x 6x x x x x x x x 6x x x x x x x 7 6 a x b x + 6x c x d x + 8x e x + x f x g x + x h x x i x 6 + x x j x 9 + 6x + x + x k x + x l x x x + x x 9 + 7x + x x + x x x + x 7 a x + b t t c x x y d 6y y y y e p + p f w w g x ( x+ ) x + h x t ( t t ) t t
7 C ALGEBRA Answers - Worksheet C a 9 + x x x 0 + x b 8 8 x ± ± 9 6 x > 0 x x ( ) x x + a 8 x x + b 8 7 x x x 7 n ( + 7) a 7 b [ k ] 7 a i xy t t t 8 x x + 6 ii y ( t ) 6t 6t + x( ) 6 + b 6t + t 0 x t + t ( ) 6t + t (0 + ) t + (6 + )( + ) a 6 y + 6 x (6 ) x 0 a + 6 y + 6 x + y + x b + ( + ) + y x ( + ) b x y x (x ) x x + + x y ( )
8 C ALGEBRA Answers - Worksheet C page ( ) x + ( ) x + a a + b 0 x + 6x + a and b integers a 0 x + 6x + a x also a + b b 7 a ( ) t a ( ) 6 t t b + 0 t 7 b ( ) y ( ) y + c + + (+ )( + ) + y y + ( + )( + ) y y y 7 + a a ( b ) 9 9 b 6 a area ( )( + ) 9 8 a ( b ) b (6 + ) b b ( a ) a ( + ) or + b ( a ) a b AC ( ) + ( + ) AC 0 c tan ( ACB) ( )( ) + ( )( ) (6 + ) (8 ) 8 7 a i x + x y 8 ( + ) + p( + ) + q ii x ( ) x x ( x ) y p + p + q b y y 0 p, q rational + p y(y ) 0 p y 0 or and p + q x 0 (no solutions) or x q 9 x
9 C ALGEBRA Answers - Worksheet D a x + 8x + b x + x x + c x + 6x x + 7 d x x + 8x x x 8 e x 7x + x x x + 6 f x + x x x x + x x 9x x + 8 x + x x x + x g x 7 9x + x + x x 6 + x x h x + 8x 6 + x + x 8 x 7 x 6 9x + x x + x + 8x i + x x 6x 0 x + x j 6x + 0x 6x + x + x x x x + x + x k 8x + 6x x x x l 7x 6 + x + 7x 8 8x 6 x + x + 8 8x x + 6x 6x 8 x 6 x + x + 7x + x a y y + y + 6 b t t + t + 6 t t + t t + 8 t 6t t + t + c x 6x x x + x x x + 7 x x x + 6 d 6 + m + m 6m + 6 6m + m m m + m 0 + m + m m + m m e u + u + u + u u + u 6 u u + u + u a x x + x + + 8x x b x + 7x x + 9x x + 8x x + x x 6 + 9x x + x x + x c 0x + 8x x + x + 7x d 8x + x + x x x 0x x + x x x + x e x + 9x x x + x 0x f 6x x + x + x 7x + x x 0x + 9x + x x + x + x x x a LHS (x + )(x x + ) x(x x + ) + (x x + ) x 6x + x + x x + x x + 0x + RHS b LHS ( + x x )( x + x ) ( x + x ) + x( x + x ) x ( x + x ) x + x + x x + x x + x x x + x x RHS c LHS ( x) ( x)(9 6x + x ) (9 6x + x ) x(9 6x + x ) 7 8x + x 9x + 6x x 7 7x + 9x x RHS
10 C ALGEBRA Answers - Worksheet D page a x(x + x 6) + (x + x 6) b x(x x + 7) (x x + 7) x + x 6x + x + x 6 x 6x + x x + x x + 6x x 6 x x + 9x c ( + x x ) 7x( + x x ) d (x )(x ) (x )(9x x + ) 8 + 0x x x x + 7x x(9x x + ) (9x x + ) 7x 9x + 6x + 8 7x 6x + x 8x + x 8 7x x + 6x 8 e x (x x + 9) + (x x + 9) f x(x x + x + ) (x x + x + ) x x + 9x + 6x x + 7 x x + 0x + 8x x + x x x x + x x + 7 x x x + x + x g x (x + x + ) + x(x + x + ) + (x + x + ) x + x + x + x + 6x + x + x + x + x + x + x + 7x + h x (x x + ) + x(x x + ) (x x + ) x x + x + x x + x 6x + x x + x x + 7x i x (x x 8) x(x x 8) + (x x 8) 6x x x 0x + 0x + 0x + x 8x 6 6x x + x 6 j x (x + x 6) + x(x + x 6) 6(x + x 6) x + x 6x + x + x x 6x x + 6 x + x 8x x + 6 k x (x + x + ) + x (x + x + ) + (x + x + ) x 7 + x + x + 8x 6 + x + x + x + x + x 7 + 8x 6 + x + 6x + x + x + l 6( + x x + x ) x( + x x + x ) + x ( + x x + x ) 8 + 6x 6x + x 6x x + x x + x + x x 6 + x 7 x 7 x 6 x + x x + 6x 6x a (p )(p + p + ) p (p + p + ) (p + p + ) p + p + p p p p + p + 0p p b t(t + t + ) + (t + t + ) + t(t + t + 7) + (t + t + 7) t + t + t + t + 6t t + t + 7t + t + t + 8 t + 0t + t + 8 c x (x + x ) 6(x + x ) + x(x + x x + 6) (x + x x + 6) x + x 8x 6x 6x + + x + 6x x + 8x x x + x 6 x + x 9x + x + 8 d u(u u ) + (u u ) u (u + u ) u(u + u ) + (u + u ) u u u + u 8u 6 u 0u + 6u u u + u + u + u u 9u + u u + u 9
11 C ALGEBRA Answers - Worksheet E a (x + )(x + ) b (x + )(x + ) c (y )(y ) d (x ) e (y + )(y ) f (a + )(a ) g (x + )(x ) h (p + )(p + 7) i (x + )(x ) j (m )(m 8) k (t + 6)(t ) l (y )(y 8) m (r + )(r ) n (y + 7)(y 9) o (a + ) p (x + )(x 6) q (x )(x ) r (s + 8)(s + ) s (p + 7)(p ) t (m 0)(m + 9) a (x + )(x + ) b (p + )(p + ) c (y )(y ) d ( + m)( m) e (r + )(r ) f ( + y)( y) g (a )(a ) h (x + )(x ) i (x + )(x + ) j (s ) k (m + )(m ) l ( + y)( y) m (u + )(u + ) n (p + )(p ) o (8x + )(x + ) p (6r )(r + ) a (x )(x ) 0 b (x + )(x + ) 0 c (x + )(x ) 0 d x 7x 8 0 x or x or x or (x + )(x 8) 0 x or 8 e (x + )(x ) 0 f x x 0 g x x 0 h (x + 9)(x + ) 0 x or (x + 6)(x 7) 0 x(x ) 0 x 9 or x 6 or 7 x 0 or i x + x 60 0 j x x 0 k (x )(x ) 0 l x x 6x (x + 0)(x 6) 0 (x + )(x 7) 0 x or x 7x + 0 x 0 or 6 x or 7 (x )(x ) 0 x or m x + x 0 n x x 0 o x x 6 0 p 6x 9x (x )(x + ) 0 (x )(x + ) 0 (x + )(x 6) 0 (x )(x ) 0 x or x or x or 6 x or q (x + ) 0 r x x + 0 s x +0x+ x t 6x x x + 6 x (x )(x ) 0 x + x x x 6 0 x or (x + )(x + ) 0 (6x + )(x 6) 0 x or x or 6 6 a (y y + 6) b x(x + x ) c p(p ) d m(m + 7m + 6) (y )(y ) x(x )(x + ) p(p + )(p ) m(m + )(m + 6) e (a + )(a + ) f (t + )(t ) g ( + x x ) h (r r ) ( x)( + x) (r 7)(r + ) i x(x x + ) j y (y + y 8) k (m + )(m ) l p(p p + ) x(x )(x ) y (y + 6)(y ) (m +)(m +)(m ) p(p )
12 C ALGEBRA Answers - Worksheet E page a x x + 0 b x + x c x 9 0 (x )(x ) 0 (x + )(x + ) 0 (x + )(x ) 0 x or x or x or y y y (0, 6) (0, ) (, 0) (, 0) O x O (, 0) (, 0) x (, 0) (, 0) O x (0, 9) d x x 0 e x 0x + 0 f x x x(x ) 0 (x ) 0 (x )(x ) 0 x 0 or x x or y y y (0, ) (0, 0) (0, 0) O (, 0) x O (, 0) x O (, 0) x (, 0) g x + x 0 h + x x 0 i x x + 0 x x + 0 x x 0 (x )(x ) 0 (x )(x ) 0 (x + )(x ) 0 x or x or x or y y y (0, ) O (, 0) (, 0) x (0, ) (, 0) (, 0) (0, ) O x O (, 0) x (, 0) j x + x k 8x + x 0 l + 7x x 0 (x + )(x + 6) 0 (x )(x ) 0 x 7x 0 x 6 or x or (x + )(x ) 0 x or y y y (0, 6) (0, ) (0, ) ( 6, 0) O x O (, 0) x (, 0) O (, 0) x (, 0) (, 0)
13 C ALGEBRA Answers - Worksheet E page m x 7x n 6x + 7x 0 o 6x + x 0 (x )(x ) 0 6x 7x + 0 (6x )(x + ) 0 x or (x )(x ) 0 x or 6 x or y y y (0, 6) (, 0) O (, 0) x (, 0) O ( 6, 0) x O (, 0) x (0, ) (0, ) (, 0) 6 a x x + 0 b x 0 x c x(x x ) 0 d 0x x 9 (x )(x ) 0 x x 0 0 x(x )(x + ) 0 x 0x x or (x + )(x ) 0 x, 0 or (x )(x 9) 0 x or x or 9 x ± or ± e + x x 0 f x 6 x(x ) g (x + )(x + ) h x x x x 0 x 6 x x x + 8x + x x 0 (x + )(x ) 0 x x x + 8x + 0 (x + )(x ) 0 x or (x )(x ) 0 (x + 6)(x + ) 0 x (no sol s) or x or x 6 or x ± i x + 7x 0 j x(x + ) x k x(x + ) (x + ) l 7 x(x + ) (x + ) (x )(x + ) 0 x + x x x + x x x 6x x + x (no sol s) or x + x 0 x x 6 0 x + 8x 0 x ± (x )(x + ) 0 (x + )(x ) 0 (x )(x + ) 0 x or x or x or
14 C ALGEBRA Answers - Worksheet F a (x + ) + b (x ) + c (x ) + d (x + ) 9 (x + ) + (x ) + (x ) e (x + ) + 8 f (x ) 6 g (x + 6) h (x ) + (x + ) + (x ) (x + 6) 6 (x ) i (x + ) 9 9 j (x ) + 8 k (x + ) 9 + l (x + ) (x + ) 8 (x ) + (x + ) + (x + ) m (x 9) n (x ) o (x + 9 ) p (x 7 ) 9 (x 9) + 9 (x ) (x + 9 ) (x 7 ) 7 q (x ) 9 + r (x ) + 7 s (x + ) 9 + t (x ) 6 (x ) + (x ) + 7 (x + ) (x ) 6 a [x + x] + b [x x] 7 c [x x] + d [x + 6x] + [(x + ) ] + [(x ) ] 7 [(x ) ] + [(x + ) 9] + (x + ) + (x ) (x ) (x + ) e [x + x] f [x 0x] + g [x + x] h [x x] + [(x + ) ] [(x ) ] + [(x + ) ] [(x ) 9 ] + (x + ) (x ) + 6 (x + ) (x ) 7 i [x 8x] + 8 j [x x] k [x + 8x] + 70 l [x + x] + [(x ) 6] + 8 [(x ) [(x + ) 6] + 70 [(x + ) 6 (x ) (x ) 7 (x + ) 0 (x + ) 9 8 m [x + x] 7 n [x x] o [x + x] + p [x + x] [(x + ) 9 6 [(x ) ] [(x + ) ] + 9 ) 9 6 (x + ) 7 (x ) + (x + ) + (x + ) 7 6 a (y ) + 0 b (p + ) 0 c (x ) d (r + ) (y ) (p + ) (x ) (r + ) 8 y ± p + ± x ± r + ± 8 ± y ± p ± x ± r ± e (x ) f (a 6) g (m ) h (t 7 ) (x ) (a 6) (m ) (t 7 ) x ± ± a 6 ± ± 6 m ± t 7 ± x ± a 6 ± 6 m ( ± ) t (7 ± )
15 C ALGEBRA Answers - Worksheet F page i (u + 7 ) 9 j y y + 0 k p + 6p l x + 6x 9 (u + 7 ) ) + 0 (p + ) 9 (x + ) 9 9 u + 7 ± (y ) (p + ) (x + ) 7 u 7 ± y ± ± p + ± ± x + ± 7 ± 6 u or y ± p ± x ± 6 m m m n x 8x o t + t p a 7 a + 0 (m ) x 7x (t + 6 ) (a 7 6 ) (m ) (x 7 ) (t + 6 ) (a 7 6 ) 7 6 m ± (x 7 ) 0 t + ± a m ( ± ) x 7 t ( ± ) a (7 ± 7 ) 6 a y (x ) + 7 b y (x + ) c y (x ) 9 + y (x ) + 6 y (x + ) y (x ) 8 y 6 at x, minimum y at x, minimum y 8 at x, minimum d y (x + ) + e y [x x] + f y (x + ) 9 y (x + ) + 0 y [(x ) ] + y (x + ) 7 y 0 at x, minimum y (x ) + 8 y 7 at x, minimum y 8 at x, maximum g y [x + x] + h y [x x] i y [x + x] + 7 y [(x + ) ] + y [(x ) ] y [(x + ) y (x + ) y (x ) + y (x + ) + y at x, minimum y at x, maximum y at x, maximum j y [x x] + 9 k y [x + x] 8 l y [x + x] + 7 y [(x ) 9 ] + 9 y [(x + ) y [(x + ) ] + 7 y (x ) y (x + ) y (x + ) + y 0 at x, minimum y at x, minimum y at x, maximum a y (x ) + b y (x + ) c y (x ) + y (x ) y (x + ) y (x ) + minimum (, ) minimum (, ) minimum (, ) y y y (0, ) O x (0, ) (, ) O x (0, ) O x (, ) (, )
16 C ALGEBRA Answers - Worksheet F page d y (x + ) e y (x + ) + f y [x x] + 8 y (x + ) + y (x + ) y [(x ) ] + 8 minimum (, ) minimum (, 0) y (x ) + 9 maximum (, 9) y y y (0, 0) (0, 8) (, ) (0, ) O x (, 0) O x O x g y [x 8x] 7 h y [x + x] 7 i y (x ) y [(x ) 6] 7 y [(x + ) ] 7 y (x ) 9 y (x ) + 9 y (x + ) minimum (, 9 ) maximum (, 9) maximum (, ) y y y (, 9) (, ) O x (0, ) O x (0, 7) (0, 7) O x (, 9 ) j y (x + ) 9 + k y [x + x] + l y [x x] y (x + ) + y [(x + ) ] + y [(x ) ] minimum (, ) y (x + ) y (x ) 7 minimum (, ) maximum (, 7) y y y (0, ) (0, ) O (, 7) x (, ) (0, ) O x O x (, ) m y [x + x] + n y [x x] + o y [x x] + y [(x + ) 6 y [(x ) y [(x ) ] + 9 y (x + ) y (x ) y (x ) + maximum (, 9 ) 8 minimum (, 0) minimum (, ) (, 9 8 ) y y y (0, ) (0, ) (0, ) (, 9) (, ) O x O (, 0) x O x 6 a (x ) x + kx 0 (x ) (x + k) k 0 b x (x + k) k + x + k ± x k ± k + k +
17 C ALGEBRA Answers - Worksheet G ax + bx + c 0 x + b x + c 0 a a (x + ba ) (x + ba ) b a b a b x + ± b a x b + c 0 a c b a ac a ± b ac a a ± ac a b ac a b± b ac a a x x ± 6 ± b t t 8± ± c y 0 ± 00 6 y 0 ± 6 d r r ± + 8 ± x ± t ± y 7 or r ± e a a 8 ± 8 ± 0 f m m 0 g x m ± + 0 ± 08 h u 6± 6 x ( ± ) u 6± ( ± ) a 9 ± m ( ± ) u i y ± + 0 j x x 0 k p y ( ± ) x ± x ± p 6 7± 9 6 l t t 0 ( 7 ± 7 ) ± t t ± 6 7 x or t 7 ± 7 m r + r 9 0 n 6u + u 0 o y 8y 0 p x 8x 0 r r ± ± 8 u u ± 6+ ± 0 y y 8 ± ± 9 6 x 8± x 8 ± 8 r 7 ± 8 u 6 ( ± 0 ) y ± 9 x ± x 8x + 0 x 8± 6 8 ± 0 ± 0 ( 0, 0) and ( + 0, 0)
18 C ALGEBRA Answers - Worksheet G page a b ac > 0 b b ac 0 c b ac < 0 a b c d x x x x 6 a b ac b b ac c b ac d b ac real and distinct not real not real real and distinct e b ac 0 f b ac g b ac h b ac 7 real and equal real and distinct real and distinct not real i b ac j b ac k b ac 0 l b ac real and distinct not real real and equal not real m b ac 7 n b ac o 9 b ac p 6 b ac 7 not real real and distinct real and distinct not real 7 equal roots b ac 0 p 0 p 8 repeated root b ac 0 q + q 0 q(q + ) 0 q 0 q 9 x + rx x + 0 has equal roots b ac 0 (r ) 6 0 r r 0 (r + )(r 6) 0 r or 6
19 C ALGEBRA Answers - Worksheet H a x(0 x x ) a AB (6 + ) + (k ) 6 + k k + x( + x)( x) k k + 6 b x( + x)( x) 0 b k k x, 0 or k k 0 (k + )(k 7) 0 k or 7 a x x a y [x + x] + x x 0 [(x + ) 6 (x + )(x ) 0 (x + ) x or turning point is (, 9 8 b 9 ( x) x( x) b x x 0 x 9x + 0 x + x 0 (x )(x ) 0 (x )(x + ) 0, x or x or y y x x (0, ) (, 0) O (, 0) x x ± 0+ 8 ± 98 ± 7 6 a y [x x] + k [(x ) 9 ] + k (x ) 7 + k x-coordinate of P or b y-coord of P k 7 7 k curve is y x 9x + coordinates of Q are (0, ) 7 y 0y equal roots b ac 0 (y )(y 8) 0 k( k) 0 y x or 8 k k + 0 x or (k )(k ) 0 k or 9 a f(x) [x x] + 0 a x ± 6 [(x ) ] + ( ± ) 6 (x ) + 7 b x(x ) (x + ) b turning point is (, 7) x x 6 0 c (x ) + 7 x ± 6+ (x ) ± 0 x ± ± 0
20 C ALGEBRA Answers - Worksheet H page a (x k) k a x 6x 0 (x k) k 6± 6+ 6 x x k ± k 6 ± x k ± k 6 b y(y + y ) 0 b k y(y )(y + ) 0 x 6 ± 6 6 y, 0 or 6 ± 0 6 ± a x 0 y p a f(x) [x x] + y 0 x or p [(x ) 9 ] + y (x ) + y (x + )(x p) A, B, C b minimum value of f(x) (, 0) O (p, 0) x (0, p) b x 0 y q y 0 x q [ q > 0] y (0, q ) y (x + q) O ( q, 0) x a x ( x ) t 6 a (k ) b let t x t + t 6 0 (k ) + (t )(t + ) 0 b x kx + k 0 t or discriminant b ac but x t x 8 or 7 8 k (k ) k 8k + 0 using a (k ) + for all real k, (k ) 0 discriminant > 0 real and distinct roots for all real k 7 a (x + x )(x x ) x (x x ) + x(x x ) (x x ) x x x + x 6x 8x x + 9x + x x x + x + b (x + x )(x x ) 0 (x + )(x )(x + )(x ) 0 x,, or
21 C ALGEBRA Answers - Worksheet I a x x + b x 6 x c x + 6 x x x x x, y x, y x, y d subtracting e x + y + 0 f 6x + 6y y + 0 x y + 0 x 6y 0 y subtracting adding x 7, y 7y + 0 x 7 0 y x x, y x, y a x + x b x + x + x c x x + x 7 x x 6 0 x x 0 x + x 6 0 (x + )(x ) 0 (x + )(x ) 0 (x )(x + ) 0 x or x or x or (, 0) and (, ) (, ) and (, 7) (, ) and (, ) a subtracting b adding c y x x x 0 x 7x + 0 sub (x + )(x ) 0 (x )(x ) 0 x + (x ) x or x or x x 0 x, y x, y 7 x(x ) 0 or x, y 7 or x, y 6 x 0 or x 0, y or x, y d y x + 0 e y x f y x sub. sub. sub. x + x(x + 0) + 0 x x( x) ( x) 7 x x ( x) 0 x + x + 0 x x + x 0 (x + )(x + ) 0 x ± (x )(x + ) 0 x or x, y x or x, y or x, y x, y or x, y 8 or x, y g y x h x y i y x sub. sub. sub. x + x( x) + ( x) (y) y y 0 x + x( x) x x 0 y y 0 x 6x (x + )(x ) 0 y(y ) 0 (x )(x ) 0 x or y 0 or x or x, y x 0, y 0 x, y 0 or x, y or x 8, y or x, y
22 C ALGEBRA Answers - Worksheet I page j y x k y x 7 l y x sub. sub. sub. x + (x ) (x ) 8 x x(x 7) + (x 7) x x + ( x) 0 x 7x x 7x + 0 x 7x + 0 (x )(x ) 0 (x )(x ) 0 (x )(x ) 0 x or x or x or x, y x, y x, y or x, y 7 or x, y or x, y m x y + 0 n y x o x y 7 sub. sub. sub. (y+0) y(y+0)+y 6 x + x ( x ) 6 (y 7) +(y 7)+y 0 y + 0y + 0 x x + 0 y 9y (y + 6)(y + ) 0 (x )(x ) 0 (y )(y ) 0 y 6 or x or y or x, y 6 x, y x, y or x, y or x, y or x, y a subtracting b y x c y 7 x + y + 0 sub. sub. y + y + y 0 x(x ) 6 x (7 x) + 0 y + y 0 x x 6 0 x(7 x) + x 0 (y )(y + ) 0 (x + )(x 6) 0 8x 0x + 0 y or x or 6 (x )(x ) 0 x, y x, y 6 x or or x, y or x 6, y x, y or x, y x x x + 6 x ( ) y x y x x 0 ( ) x ( ) + y x 6 + y (x + )(x ) 0 6x 6 y x or 6x 6 x P and Q are the points (, 6) and (, ) x PQ ( + ) + ( 6) x, y PQ 7 AB A + B 6 9 A and B integers AB 6 () and A + B 9 () () A B 9 sub. () B(B 9) 6 B 9B 0 (B + )(B ) 0 B or B integer B A, B
23 C ALGEBRA Answers - Worksheet J a x < 6 b x c x > 8 d x 6 x < x 7 x > x e x f x < g 9x h x < x x < x 6 x < i x < j x 0 k < x l x x x > x 0 a y > 7 b p c 6 < x p x > d a e < u f b 9 a u > b 9 g x < 8 h y i 0 p x < 6 p j r > 6 k 6t t l 6 + x x r > 8 7 7t 6x 8 t x m 7y + 6y + < 0 n 0 8x > 6x o u u + < 9 y < > x 7u < x < u < 7 a (x )(x ) < 0 b (x + )(x ) 0 c (x + )(x + ) < 0 d x + x 8 0 (x + )(x ) 0 < x < x < x < x e (x )(x ) > 0 f x + x > 0 g (x + 7)(x + ) 0 h x 9x < 0 (x + 6)(x ) > 0 (x + )(x ) < x < or x > x < 6 or x > x 7 or x < x < i x + x 6 0 j (x + 6)(x + ) > 0 k x 7x 0 < 0 l x 0x (x + 9)(x 7) 0 (x + )(x 0) < 0 (x 7)(x ) x 9 or x 7 x < 6 or x > < x < 0 x 7 or x
24 C ALGEBRA Answers - Worksheet J page a (x )(x ) 0 b (r + )(r ) < 0 c p + p 0 (p )(p + ) 0 x < r < p d (y )(y + ) > 0 e (m + )(m + ) < 0 f x 9x (x )(x ) 0 y < or y > < m < x or x g a 8a + < 0 h x + x 7 x i y + 9y > y 0 (a )(a ) < 0 x + 6x 7 0 y + 7y + 0 > 0 (x + 7)(x ) 0 (y + )(y + ) > 0 7 < a < 7 x y < or y > j x + x > x + 6 k u 6u < u l t + t 6t x + x 6 > 0 u u + > 0 t 8t 0 (x + )(x ) < 0 (u )(u ) > 0 (t + )(t ) 0 < x < u < or u > t m y y + y n p + p o 6 + x < 6 x x y 6y + 0 p + p 0 x + 9x + 0 < 0 (y )(y ) 0 (p + 7)(p ) 0 (x + )(x + ) < 0 7 y p 7 or p < x <
25 C ALGEBRA Answers - Worksheet J page a for critical values b for critical values c for critical values d for critical values ± + 6± 6 6 6± 6+ ± 6 x x x x ± x x 6 ± x 6 ± ± x x ± x ± x ± x ± < x < + x < or x > + < x < + x or x + 6 a equal roots b real and distinct roots b ac 0 b ac > 0 6 k 0 k > 0 k 9 > k k < c no real roots d real roots b ac < 0 b ac 0 9 k < 0 k < k (k + )(k ) 0 k > 9 k or k e equal roots f no real roots b ac 0 b ac < 0 + k 0 k + k < 0 k k(k + ) < 0 0 < k < 0 g real and distinct roots h equal roots b ac > 0 b ac 0 (k ) > 0 k 8k 0 > k k(k 8) 0 k < k 0 or 8 i no real roots j real roots b ac < 0 b ac 0 k (k ) < 0 (k ) 6 0 k 8k + < 0 k k 0 (k )(k 6) < 0 6 (k + )(k 7) 0 7 < k < 6 k or k 7
26 C ALGEBRA Answers - Worksheet K a > y n n < 0 y < 8 (n + )(n ) < 0 b (x )(x 6) 0 6 < n < x or x 6 n integer n, 0,,, a (x + 8). x 9x 6x + < x 8 0.x 9x x + < 0 x 6 (9x )(x ) < 0 b x(x + 8) 80 9 x + 8x (x + 8)(x 0) x 8 or x 0 but x > 0 (width > 0) and x 6 0 x 6 x y t t t t sub. y(y + 8) 0 t + t 0 y + 8y 0 0 (t + )(t ) 0 (y + 0)(y ) 0 0 t or t 0 y x + y y y y + 8 max value of (x + y) () a x + x kx let height be h h (r ) r real and distinct roots but h b ac > 0 h ( k) 6 > 0 (r ) r 76 k + k 6 > 0 r r 70 0 k k 60 > 0 (r + 7)(r 0) 0 b (k + 6)(k 0) > r 0 k < 6 or k > 0 maximum value of r 0
27 C ALGEBRA Answers - Worksheet L a x a (x ) 9 + x (x ) + x b y b y 0 7 y 7 y (, ) O x 9 a ( ) 9 7 x + 9 x b x 6 9 x 9 x x 7 6 a x 0 ± 00 0 ± 8 0 ± 6 a x 9 9x 9x x (x 7) 0 ± x 7 b b + (y + ) y(y + ) y + y 0 + (y + )(y ) 0 x < or x > + y or 7 y x + 8 a x 6 sub. x 6 x x(x + ) + (x + ) 7 0 b ( + )( + ) 9 x ( ) x ± + x, y or x, y a, b 9 a let A be (, ) 0 a x 7 AP (k ) + (k ) x 7 AP < (k ) + (k ) < 9 b x + x < k 6k + < 0 x + x < 0 b (k )(k ) < 0 (x )(x + ) < 0 < k < < x <
28 C ALGEBRA Answers - Worksheet L page a f(x) [x x] + a [(x ) ] + (x ) b (, ) b 6 x 6x c (x ) 0 x x ± x ± x ± 6 x no real roots a AM AC + b ac < 0 BM AB AM k (k + 6) < 0 ( + ) ( + ) k k 6 < ( ) (k + )(k ) < 0 BM < k < b AC BM ( + ) ( + ) 6 + ( ) y + 7 ( ) y + 6 LHS x (x x 9) x(x x 9) y + y (x x 9) y x x 9x x + x + 9x + 6x 9x 7 x x 7 A, B and C 7 7 a x + x + k 0 (x + ) + k 0 x + ± k x ± k b real roots only if k 0 k c k x ± 8 x ±
29 C ALGEBRA Answers - Worksheet M x + x + a 8 6 x + x 0 0 b x + x x x + 9 (x + )(x ) 0 x + x a (, 0) 0 8 p + q () x 98 x (, 0) p + q () x + 98 () () p p x sub. q x + b x-coord x y (, ) a real and distinct roots 6 ( ) x y b ac > 0 x y () 6k k > 0 k k > 0 ( ) x y + k(k ) > 0 8x y + () b () and () y x + 8x x 0 x, y k < 0 or k > 7 a LHS (x 7 ) a (y + )(y ) < 0 (x 7 ) 7 a, b b x 7 < y < b x( x) (x ) x + x 0 x ± + 8 x ± ± 9 x + ( ) x 0 a t t t x + x t + t 0 x x + 0 t ± + 0 ± (x )(x ) 0 t ( ± ) x or b (x + )(x ) 0 x [no solutions] or x ± ±
30 C ALGEBRA Answers - Worksheet M page x + x 0 a x + ( x ) 9y (x + 7)(x ) 0 b 9y 0y (9y )(y ) 0 x 7 or x y x, 9 x, 0 a 7 y x + 7 b 6 < 7 < 8 sub. x ( x + 7 ) < < 9 8x (x + 7) 6 0 n 8 x x 8 0 (x + )(x ) 0 x or x, y or x, y 8 a a x + ( ) y 0 x + y 6 y + b ( ) 6 8 x + 7 b ( ) x z ( 6) x z x y 7 z (y 7) z y 6 7 a (x k) k k 0 8 a x k ± k y y + k y y x k ± k + k y + y 0 b real roots k + k 0 b (y )(y + ) 0 k(k + ) 0 y, x y, 0 k or k 0
31 C ALGEBRA Answers - Worksheet N a ( ) 9 or x 6 y b x 7 sub. (6 y) y(6 y) + y 6 x 7 y 8y + 0 x 9 (y )(y ) 0 y or x, y or x 7, y a 8 + a f(x) (x ) (x ) + b a, b and c + b turning point is (, ) y (0, ) O y f(x) (, ) x a S.A πr + πrh πr + πr 6 8x x x S.A 8π πr + πr 8π x( x ) 0 r + r 6 x 0 x b (r + 6)(r ) 0 r + r 6 0 x ( ) 6 r 6 maximum value of r 7 a x 8 a t t b ( ) y + ( ) y b t t y + y (t )(t ) 0 y t, x t, 9 9 x + kx + + k 0 0 a ( ) x (x + k) k + + k 0 6x x + k ± k x x k ± k b ( ) y real k k 0 y + k < 0 y no real roots
32 C ALGEBRA Answers - Worksheet N page x 7x < x x + x x < 0 + ( + ) ( )( ) (x + )(x ) < 0 ( )( ) + < x < + ( ) + 9 a (y )(y + 9) 0 a i x ( ) x x ( x ) y 9 y or ii x x y b equal roots b let y x y 9( y) + 0 b ac 0 y 9y + 0 k 6 0 (y )(y ) 0 k ± 8 y x or x or x y + 6 a (x + a) a + b 0 sub. (x + a) a b (y + ) + y(y + ) + y 9 x + a ± a b a b a± a b y + y 0 x a ± (y )(y + ) 0 x ± a b a b y or b for repeated root, a b 0 (, ) and (, ) b a 7 a f(x) [x 6x] a + [(x ) 9] (x ) + b y (6 ) ( ) real x (x ) 0 y ± ( ) (x ) + y ± ( ) f(x) y ± ( 0 ) b x x + 9 < 9 y 0 or + 0 x 6x + < 0 (x )(x ) < 0 < x <
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Core Mathematics C12
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin
UNIT-1 SQUARE ROOT EXERCISE 1.1.1
UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Λογικές εκφράσεις και μεταβλητές
Προηγούμενο Σημειώσεις Επόμενο Λογικές εκφράσεις και μεταβλητές Μπορούμε να γράψουμε μία λογική έκφραση η οποία θα είναι είτε αληθής είτε ψευδής. Μία συνηθισμένη λογική έκφραση είναι αυτή που ελέγχει αν
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 }
A ΜΕΡΟΣ 1 program Puppy_Dog; begin 4 end. 5 6 { Result of execution 7 (There is no output from this program ) 10 } (* Κεφάλαιο - Πρόγραµµα EX0_.pas *) 1 program Kitty_Cat; begin 4 Writeln('This program');
SENIOR GRAAD 11 MARKS: PUNTE:
Province of the EASTERN CAPE EDUCATION NATIONAL SENIOR CERTIFICATE GRADE GRAAD NOVEMBER 2022 MATHEMATICS P2/WISKUNDE V2 MEMORANDUM MARKS: PUNTE: 50 This memorandum consists of 8 pages. p Hierdie memorandum
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1
20/01/2014 1 of 8 TOW SSD v3 Location Project a =IF(Design_Storm>0,VL b =IF(Design_Storm>0,VL c =IF(Design_Storm>0,VL Designed By Checked By Date Date Comment Min Tc 15 LOCATION From To MH or CBMH STA.
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα
IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Core Mathematics C34
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Friday 12 June 2015 Morning Time: 2 hours 30 minutes You
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
TRIGONOMETRIC FUNCTIONS
Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of
EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ
EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Εργαστήριο 5. Εντολή if και παραλλαγές: if-else, πολλαπλές if, πολλαπλές if-else. Απλές και σύνθετες εντολές. Εντολή switch.
Εργαστήριο 5 Εντολή if και παραλλαγές: if-else, πολλαπλές if, πολλαπλές if-else. Απλές και σύνθετες εντολές. Εντολή switch. Προτεραιότητα τελεστών (συνέχεια): () παρενθέσεις +, - (πρόσημα), ++, -- *, /,
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS
PROBABILITY AND STATISTICS. (a) Let X be a r.v number of games won. X~B(6, ) (i) Expectation, E(X) = np 6x = 4 (ii) P(X ) = P(X < ) = (P(X = ) + P(= 0)) 5 0 6 6 = C x x C0x x 0. 98 (b) Let X be a r.v number
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ
Page 1 of 67 Page 2 of 67 Page 3 of 67 Page 4 of 67 1. Page 5 of 67 Page 6 of 67 Page 7 of 67 2. Page 8 of 67 Page 9 of 67 Page 10 of 67 Page 11 of 67 Page 12 of 67 Page 13 of 67 Page 14 of 67 Page 15
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with