Ταξινόμηση. Ταξινόμηση ευθείας ανταλλαγής (Φυσαλίδα) 1) Να ταξινομηθεί ο πίνακας Α[Ν] σε αύξουσα σειρά με τη μέθοδο της φυσαλίδας.
|
|
- Λάχεσις Αρβανίτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Ταξινόμηση Ταξινόμηση ευθείας ανταλλαγής (Φυσαλίδα) 1) Να ταξινομηθεί ο πίνακας Α[Ν] σε αύξουσα σειρά με τη μέθοδο της φυσαλίδας. Για j από N µέχρι i µε_βήµα -1 Αν (Α[j] < Α[j-1]) τότε tmp <-- Α[j] Α[j] <-- Α[j-1] Α[j-1] <-- tmp 2) Να ταξινομηθεί ο πίνακας Β[Ν] σε φθίνουσα σειρά διατηρώντας την αντιστοιχία με τον πίνακα ΟΝ[Ν]. Σε περίπτωση ισοβαθμίας δύο ή περισσότερων στοιχείων στον πίνακα Β[Ν], τότε να εμφανίζονται τα αντίστοιχα στοιχεία του ΟΝ[Ν] με αλφαβητική σειρά. Για j από N µέχρι i µε_βήµα -1 Αν (Β[j] > Β[j-1]) τότε tmp1 <-- Β[j] Β[j] <-- Β[j-1] Β[j-1] <-- tmp1 tmp2 <-- ΟΝ[j] ΟΝ[j] <-- ΟΝ[j-1] ΟΝ[j-1] <-- tmp2 _αν (Β[j] = Β[j-1]) τότε Αν (ΟΝ[j] < ΟΝ[j-1]) τότε tmp2 <-- ΟΝ[j] ΟΝ[j] <-- ΟΝ[j-1] ΟΝ[j-1] <-- tmp2! Διαφορετικό tmp για κάθε! πίνακα διαφορετικού τύπου! δεδοµένων.! Οι βαθµοί δεν χρειάζονται! αντιµετάθεση, καθώς είναι! ίσοι. 3) Να ταξινομηθεί ο πίνακας Β[Ν] σε αύξουσα σειρά. Σε περίπτωση που η ταξινόμηση έχει ολοκληρωθεί σε λιγότερες (από Ν-1) σαρώσεις, τότε η φυσαλίδα να σταματάει (έξυπνη φυσαλίδα). Αρχή_Επανάληψης πλ <-- 0! πλ = πλήθος αντιµεταθέσεων κάθε i < 2! σάρωσης. Εάν παραµείνει 0 µετά Για j από N µέχρι i µε_βήµα -1! από κάποια σάρωση, τότε ο Αν (Α[j] < Α[j-1]) τότε! πίνακας είναι πλέον πλ <-- πλ + 1! ταξινοµηµένος. tmp <-- Α[j] Α[j] <-- Α[j-1] Α[j-1] <-- tmp i <-- i + 1 Μέχρις_Ότου (i > N Ή πλ = 0)! Η φυσαλίδα τελειώνει, είτε όταν! τελειώσουν οι σαρώσεις, είτε! στην πρώτη σάρωση που θα κάνει! µηδέν (0) αντιµεταθέσεις. 1 of 9
2 4) Να ταξινομηθεί ο δισδιάστατος πίνακας Α[Μ, Ν] σε αύξουσα σειρά. a. Μεταφορά όλων των στοιχείων του δισδιάστατου πίνακα Α[Μ,Ν] σε μονοδιάστατο πίνακα Β, μεγέθους Μ*Ν κ <-- 1 Για i από 1 µέχρι Μ Για j από 1 µέχρι N Β[κ] <-- Α[i,j] κ <-- κ + 1 b. Ταξινόμηση του μονοδιάστατου πίνακα Β (με μέγεθος Μ*Ν) Για i από 2 µέχρι Μ*Ν Για j από Μ*N µέχρι i µε_βήµα -1 Αν (Β[j] < Β[j-1]) τότε tmp <-- Β[j] Β[j] <-- Β[j-1] Β[j-1] <-- tmp c. Μεταφορά όλων των στοιχείων του μονοδιάστατου πίνακα Β ξανά πίσω στο δισδιάστατο πίνακα Α[Μ,Ν] κ <-- 1 Για i από 1 µέχρι Μ Για j από 1 µέχρι N Α[i,j] <-- Β[κ] κ <-- κ of 9
3 5) Να ταξινομηθεί η γραμμή i του δισδιάστατου πίνακα Α[Μ, Ν] σε αύξουσα σειρά. Για κ από 2 µέχρι Ν Για j από N µέχρι i µε_βήµα -1 Αν (Α[i, j] < A[i, j-1]) τότε tmp <-- Α[i, j] Α[i, j] <-- Α[i, j-1] Α[i, j-1] <-- tmp 6) Να ταξινομηθεί κάθε γραμμή του δισδιάστατου πίνακα Α[Μ, Ν] σε αύξουσα σειρά. Για i από 1 µέχρι M Για κ από 2 µέχρι Ν Για j από N µέχρι i µε_βήµα -1 Αν (Α[i, j] < A[i, j-1]) τότε tmp <-- Α[i, j] Α[i, j] <-- Α[i, j-1] Α[i, j-1] <-- tmp 3 of 9
4 Ταξινόμηση με επιλογή 1) Να ταξινομηθεί ο πίνακας Β[Ν] σε αύξουσα σειρά με τη μέθοδο της επιλογής. Για i από 1 µέχρι Ν - 1 min < Β[i] θmin < i Για j από i+1 µέχρι Ν Αν (Β[j] < min) τότε min < Β[j] θmin < j Τέλος_ΑΝ tmp <-- Β[θmin] Β[θmin] <-- Β[i] Β[i] <-- tmp 2) Παραλλαγή χωρίς τη χρήση της μεταβλητής min. Για i από 1 µέχρι Ν - 1 θmin < i Για j από i+1 µέχρι Ν Αν (Β[j] < Β[θ]) τότε θmin < j Τέλος_ΑΝ tmp1 <-- Β[θmin] Β[θmin] <-- Β[i] Β[i] <-- tmp1 3) Να ταξινομηθεί ο πίνακας Β[Ν] σε φθίνουσα σειρά διατηρώντας την αντιστοιχία με τον πίνακα ΟΝ[Ν]. Η μέθοδος είναι ακριβώς ίδια με τις προηγούμενες. Απλά κάθε φορά που αντιμεταθέτουμε κάποιο στοιχείο του Β, πρέπει να κάνουμε την ίδια αντιμετάθεση (χωρίς να ρωτήσουμε) και στον παράλληλο πίνακα ΟΝ. tmp2 <-- ΟΝ[θmin] ΟΝ[θmin] <-- ΟΝ[i] ΟΝ[i] <-- tmp2 4 of 9
5 4) Να ταξινομηθεί ο πίνακας Β[Ν] σε φθίνουσα σειρά διατηρώντας την αντιστοιχία με τον πίνακα ΟΝ[Ν]. Σε περίπτωση ισοβαθμίας δύο ή περισσότερων στοιχείων στον πίνακα Β[Ν], τότε να εμφανίζονται τα αντίστοιχα στοιχεία του ΟΝ[Ν] με αλφαβητική σειρά. Για i από 1 µέχρι Ν - 1 min < Β[i] θmin < i Για j από i+1 µέχρι Ν Αν (Β[j] < min) τότε min < Β[j] θmin < j _αν (Β[j] = min) τότε Αν (ΟΝ[j] < ΟΝ[θmin] τότε θmin < j Τέλος_αν Τέλος_ΑΝ! Α ν ξ α ν α β ρ ο ύ µ ε σ τ ο ι χ ε ί ο ί σ ο! µε το min, τότε κρατάµε! τη δική του θέση, εφόσον! το όνοµα σε αυτήν την θέση! είναι µικρότερο από το! όνοµα στην τρέχουσα θmin. tmp1 <-- Β[θmin] Β[θmin] <-- Β[i] Β[i] <-- tmp1 tmp2 <-- ΟΝ[θmin] ΟΝ[θmin] <-- ΟΝ[i] ΟΝ[i] <-- tmp2 5 of 9
6 Ταξινόμηση με παρεμβολή 1) Να ταξινομηθεί ο πίνακας Β[Ν] σε αύξουσα σειρά με τη μέθοδο της παρεμβολής. Σημείωση: Η μέθοδος είναι πιο εύκολα κατανοητή όταν φανταστούμε ότι πρέπει να παρεμβάλλουμε το στοιχείο i του πίνακα Β, στον ήδη ταξινομημένο (από τις προηγούμενες σαρώσεις) υπό-πίνακα Β[1 έως i-1]. key < Β[i]! key = το στοιχείο που θέλουµε να παρεµβάλουµε! στον ήδη ταξινοµηµένο πίνακα Β[1 έως i-1] stop < Ψευδής j < i - 1 Όσο (j >= 1) και (stop = Ψευδής) επανάλαβε Αν (key < Β[j]) τότε Β[j+1] < Β[j] j < j - 1 stop < Αληθής Β[j+1] < key 2) Να ταξινομηθεί ο πίνακας Β[Ν] σε φθίνουσα σειρά διατηρώντας την αντιστοιχία με τον πίνακα ΟΝ[Ν]. Η μέθοδος είναι ακριβώς ίδια με την παραπάνω. Απλά κάθε φορά που ένα στοιχείο του Β μετακινείται κατά μία θέση προς τα δεξιά, πρέπει να κάνουμε την ίδια μετακίνηση (χωρίς να ρωτήσουμε) και στον παράλληλο πίνακα ΟΝ. key1 < Β[i] key2 < ΟΝ[i]! key1 = το στοιχείο του Β που θα παρεµβάλουµε! key2 = το στοιχείο του ΟΝ που θα παρεµβάλουµε stop < Ψευδής j < i - 1 Όσο (j >= 1) και (stop = Ψευδής) επανάλαβε Αν (key1 < Β[j]) τότε Β[j+1] < Β[j] ΟΝ[j+1] < ΟΝ[j] j < j - 1 stop < Αληθής Β[j+1] < key1 ΟΝ[j+1] < key2 6 of 9
7 3) Να ταξινομηθεί ο πίνακας Β[Ν] σε φθίνουσα σειρά διατηρώντας την αντιστοιχία με τον πίνακα ΟΝ[Ν]. Σε περίπτωση ισοβαθμίας δύο ή περισσότερων στοιχείων στον πίνακα Β[Ν], τότε να εμφανίζονται τα αντίστοιχα στοιχεία του ΟΝ[Ν] με αλφαβητική σειρά. key1 < Β[i] key2 < ΟΝ[i]! key1 = το στοιχείο του Β που θα παρεµβάλουµε! key2 = το στοιχείο του ΟΝ που θα παρεµβάλουµε stop < Ψευδής j < i - 1 Όσο (j >= 1) και (stop = Ψευδής) επανάλαβε Αν (key1 < Β[j]) τότε Β[j+1] < Β[j] ΟΝ[j+1] < ΟΝ[j] j < j - 1 _αν (key1 = Β[j]) τότε Αν (key2 < ΟΝ[j]) τότε Β[j+1] < Β[j] ΟΝ[j+1] < ΟΝ[j] j < j - 1 stop < Αληθής Β[j+1] < key1 ΟΝ[j+1] < key2 7 of 9
8 Αναζήτηση 1) Να γραφεί αλγόριθμος ο οποίος σε έναν μονοδιάστατο μη ταξινομημένο πίνακα Α με μέγεθος Ν, θα αναζητά την πρώτη εμφάνιση του στοιχείου key. Σε περίπτωση που βρεθεί το στοιχείο key, η αναζήτηση πρέπει να τερματίζεται. tobrika < Ψευδής i < 1 Όσο (i <= Ν) και (tobrika = Ψευδής) επανέλαβε Αν (Α[i] = key) τότε tobrika < Αληθής θ < i i < i + 1 Αν (tobrika = Αληθής) τότε Γράψε Το στοιχείο, key, βρέθηκε στη θέση, θ Γράψε Το στοιχείο, key, δεν υπάρχει στον πίνακα Παραλλαγή: 2) Αν ζητηθεί η τελευταία εμφάνιση του στοιχείου key και όχι η πρώτη, τότε απλά ξεκινάμε τη σειριακή αναζήτηση από το τέλος προς την αρχή. tobrika < Ψευδής i < Ν Όσο (i >= 1) και (tobrika = Ψευδής) επανέλαβε Αν (Α[i] = key) τότε tobrika < Αληθής θ < i i < i - 1 Αν (tobrika = Αληθής) τότε Γράψε Το στοιχείο, key, βρέθηκε στη θέση, θ Γράψε Το στοιχείο, key, δεν υπάρχει στον πίνακα 8 of 9
9 3) Να γραφεί αλγόριθμος ο οποίος σε έναν μονοδιάστατο ταξινομημένο (με αύξουσα ταξινόμηση) πίνακα Α με μέγεθος Ν, θα αναζητά την πρώτη εμφάνιση του στοιχείου key. Σε περίπτωση που βρεθεί το στοιχείο key, η αναζήτηση πρέπει να τερματίζεται. Σημείωση: Αυτό που αλλάζει είναι ότι, λόγω της ταξινόμησης, μπορούμε να σταματήσουμε την αναζήτηση, μόλις βρεθεί ένα στοιχείο μεγαλύτερο από αυτό που ψάχνουμε. tobrika < Ψευδής i < 1 Όσο (i <= Ν) και (tobrika = Ψευδής) επανέλαβε Αν (Α[i] = key) τότε tobrika < Αληθής θ < i _αν (Α[i] > key) τότε i < Ν + 1! Κάνοντας το i = N + 1! τερµατίζουµε πρόωρα την i < i + 1! επανάληψη Αν (tobrika = Αληθής) τότε Γράψε Το στοιχείο, key, βρέθηκε στη θέση, θ Γράψε Το στοιχείο, key, δεν υπάρχει στον πίνακα Παραλλαγή: Αν ζητηθεί η τελευταία εμφάνιση του στοιχείου key και όχι η πρώτη, τότε πρέπει να αφαιρέσουμε από τη συνθήκη το τμήμα (tobrika = Ψευδής) ώστε να συνεχιστεί η αναζήτηση ακόμη και αν βρεθεί το πρώτο στοιχείο. Δηλαδή: tobrika < Ψευδής i < 1 Όσο (i <= Ν) επανέλαβε Αν (Α[i] = key) τότε tobrika < Αληθής! Όταν βρεθεί το στοιχείο! δεν σταµατάµε θ < i i < i + 1 _αν (Α[i] > key) τότε i < Ν + 1! Κάνοντας το i = N + 1 i < i + 1! τερµατίζουµε πρόωρα την! επανάληψη Αν (tobrika = Αληθής) τότε Γράψε Το τελευταίο στοιχείο, key, βρέθηκε στη θέση, θ Γράψε Το στοιχείο, key, δεν υπάρχει στον πίνακα Ερώτηση: Αν ο πίνακας είναι ταξινομημένος με φθίνουσα σειρά, τότε τι πρέπει να αλλάξουμε; 9 of 9
Ταξινόμηση. Ταξινόμηση ευθείας ανταλλαγής (Φυσαλίδα) 1) Να ταξινομηθεί ο πίνακας Α[Ν] σε αύξουσα σειρά με τη μέθοδο της φυσαλίδας.
ευθείας ανταλλαγής (Φυσαλίδα) 1) Να ταξινομηθεί ο πίνακας Α[Ν] σε αύξουσα σειρά με τη μέθοδο της φυσαλίδας. Για i από 2 µέχρι Ν Για j από N µέχρι i µε_βήµα -1 Αν (Α[j] < Α[j-1]) τότε tmp
Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η
Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε
Προτεινόμενα Θέματα ΑΕΠΠ
Προτεινόμενα Θέματα ΑΕΠΠ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε αν κάθε μία από τις παρακάτω προτάσεις είναι σωστή (Σ) ή λανθασμένη (Λ). Αιτιολογήσετε κάθε σας απάντηση 1. Η μερικώς περιορισμένη εμβέλεια προσφέρει
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Θέμα 1 ο ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις ως
Πίνακες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο
Πίνακες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Πίνακες Η ποιο γνωστή και διαδεδομένη στατική δομή είναι ο πίνακας. Οι πίνακες αποτελούνται από στοιχεία
ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr
ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξεταζόμενη ύλη : 7o Κεφάλαιο ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές η λανθασμένες. 1. Τα στοιχεία
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΝΕΑ ΠΑΙΔΕΙΑ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις ως
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ο ΚΕΦΑΛΑΙΟ 1) Τι είναι πρόβλημα (σελ. 3) 2) Τι είναι δεδομένο, πληροφορία, επεξεργασία δεδομένων (σελ. 8) 3) Τι είναι δομή ενός προβλήματος (σελ. 8)
Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ
ΘΕΜΑ 1 ο ο Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΙIΙ
ΘΕΜΑ 1o ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α. 1. ΛΑΘΟΣ 6.ΛΑΘΟΣ 2. ΣΩΣΤΟ 7.ΣΩΣΤΟ 3. ΣΩΣΤΟ 8.ΛΑΘΟΣ 4. ΛΑΘΟΣ 9.ΛΑΘΟΣ 5. ΣΩΣΤΟ 10.ΛΑΘΟΣ B. Σχολικό βιβλίο σελ.139 Γ. Σχολικό βιβλίο σελ.191 Δ.
Ημερομηνία: 1/03/15 Διάρκεια διαγωνίσματος: 180 Εξεταζόμενο μάθημα: Προγραμματισμός (Δομή Επανάληψης) Υπεύθυνος καθηγητής: Παπαδόπουλος Πέτρος
Ημερομηνία: 1/03/15 Διάρκεια διαγωνίσματος: 180 Εξεταζόμενο μάθημα: Προγραμματισμός (Δομή Επανάληψης) Υπεύθυνος καθηγητής: Παπαδόπουλος Πέτρος ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές
Μεθοδολογίες Πινάκων 3 ο 9 ο ΕΙΣΑΓΩΓΗ ΣΤΟΙΧΕΙΩΝ ΣΕ ΠΙΝΑΚΕΣ
Μεθοδολογίες Πινάκων 3 ο 9 ο ΕΙΣΑΓΩΓΗ ΣΤΟΙΧΕΙΩΝ ΣΕ ΠΙΝΑΚΕΣ 1. Εισαγωγή σε µονοδιάστατο Α Ν (αντίστοιχα σε δισδιάστατο) και πιθανός έλεγχος εγκυρότητας των τιµών ή Αρχή_Επανάληψης ιάβασε Α[Ι] Μέχρις_ότου
) :
ΜΟΝΟ ΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Οι µεθοδολογίες που ακολουθούν αφορούν µονοδιάστατο πίνακα Α[N] (διάστασης Ν). Άθροισµα Γινόµενο Μέσος όρος sum sum + A[i] Εµφάνισε sum g g g * Α[i] Εµφάνισε g sum sum + A[i] ΜΟ sum/n
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Προτεινόμενα θέματα 2013 - Λύσεις
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Προτεινόμενα θέματα 2013 - Λύσεις ΘΕΜΑ 1 ο Α1. Να γράψετε την λέξη Σωστό αν είναι σωστή, ή την λέξη Λάθος αν είναι λανθασμένη η πρόταση : 1. Μια συνάρτηση
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Ποιες οι διαφορές μεταξύ των στατικών και των δυναμικών δομών; (Μονάδες 7) II. Να γράψετε στο τετράδιό
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα
Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2008
Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2008 ΣΤΑΤΙΣΤΙΚΑ Αποτελέσματα γραπτής εξέτασης στο μάθημα ΑΕΠΠ (Ιούλιος 2008) 18-20 15-17,9 12-14,9 10-11,9 5-9,9 0-4,9 12,75% 18,39% 13,90% 8,15% 22,70% 24,09% ΘΕΜΑ 1
Ενδεικτικές απαντήσεις των Ερωτήσεων - Θεµάτων προς συζήτηση - ραστηριοτήτων. Κεφάλαιο 2.2. Έκδοση 3.0
Ενδεικτικές απαντήσεις των Ερωτήσεων - Θεµάτων προς συζήτηση - ραστηριοτήτων Κεφάλαιο 2.2. Έκδοση 3.0 15. Α. i, B. i, ii, iv, Γ. i, iii 16. Α. α 2 * β, Β. ΜΟ (α + β + γ) / 3, Γ. β β + 2,. i i - (α + β),
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Θέμα Α Α1. α. Να γράψετε στο τετράδιό σας τον
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. www.lazarinis.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ www.lazarinis.gr Σε συνεργασία με τις εκδόσεις ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ κυκλοφορούν
i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης
ΘΕΜΑ Α A1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις α-δ και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. a. Σε μία εντολή εκχώρησης του αποτελέσματος
ΦΥΛΛΑΔΙΟ ΚΑΤΑΝΟΗΣΗΣ 6 ΕΠΙΔΟΣΗ ΑΛΓΟΡΙΘΜΩΝ. 3. Να υπολογιστεί για τον παρακάτω αλγόριθμο η επίδοση του με βάση τον αριθμό των πράξεων που θα
ΦΥΛΛΑΔΙΟ ΚΑΤΑΝΟΗΣΗΣ 6 ΕΠΙΔΟΣΗ ΑΛΓΟΡΙΘΜΩΝ 1. Να εξηγηθεί για τον παρακάτω αλγόριθμο ποια είναι η χειρότερη περίπτωση. Αλγόριθμος Παράδειγμα n 10 Αρχή_επανάληψης Διάβασε m n n - 1 Μέχρις_ότου (m=0) ή (n=0)
Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ
Κεφάλαιο 2.2 Δραστηριότητες
15. Α. i, B. i, ii, iv, Γ. i, iii 16. Α. α 2 * β, Β. ΜΟ (α + β + γ) / 3, Γ. β β + 2,. Δ. i i - (α + β), Ε. i (α + β) / 2 17. i. A, ii. B, iii. A, iv. A 18. i. A, ii. B, iii. A, iv. A, v. Α, vi. Α 19. Αρ.
Β[(ι-7)*15+j] ON[ι,j] temp B[j-1] B[j-1] B[j] B[j] temp. j j+1
Τετάρτη 18 Μαρτίου 2015 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Θέµα Α Α1. Να γράψετε τα πλεονεκτήµατα του δοµηµένου προγραµµατισµού. Α2. Ποιος είναι ο ρόλος της στοίβας στην κλήση
ΑΠΑΝΤΗΣΕΙΣ Α1. 1-ΛΑΘΟΣ 2-ΣΩΣΤ0 3-ΣΩΣΤΟ 4-ΣΩΣΤ0 5-ΛΑΘΟΣ. Στήλη Β (κώδικας)
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 17/02/2013 ΑΠΑΝΤΗΣΕΙΣ Α1. 1-ΛΑΘΟΣ 2-ΣΩΣΤ0 3-ΣΩΣΤΟ 4-ΣΩΣΤ0 5-ΛΑΘΟΣ Α2. Στήλη Α (αρχικός πίνακας) Α: 15 6-3 14-6 Β: ; ; ; ; Γ: ; ; ; ; Στήλη Β (κώδικας)
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΕΣ
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΕΣ Άρτιοι - Περιττοί ΔΙΑΒΑΣΕ Χ ΑΝ Χ MOD 2 = 0 ΤΟΤΕ ΓΡΑΨΕ 'ο Χ είναι άρτιος' ΑΛΛΙΩΣ ΓΡΑΨΕ 'ο Χ είναι περιττός' Πολλαπλάσια του Ν ΔΙΑΒΑΣΕ Χ ΑΝ Χ MOD Ν = 0 ΤΟΤΕ ΓΡΑΨΕ 'ο Χ είναι πολλαπλάσιο
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Γ Τάξη ΓΕ.Λ.
ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Κωτσάκης Σ., Ταταράκη Α. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ Τάξη ΓΕ.Λ. ΠΑΡΑΡΤΗΜΑ Α ΟΔΗΓΙΕΣ ΜΕΛΕΤΗΣ ΜΑΘΗΤΗ
ΘΕΜΑ 1 Ο Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος:
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Ύλη:3-6-9 Τεχν. Κατ. 09-03-14 ΘΕΜΑ 1 Ο Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος: ΔΙΑΒΑΣΕ α, β x α > β Να χαρακτηρίσετε αν κάθε μία από
Στήλη Β Προτάσεις. 1. Όσο συνθήκη επανάλαβε εντολές Τέλος_επανάληψης 2. Αρχή_επανάληψης εντολές Μέχρις_ότου συνθήκη
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΟΙΚ & ΠΛΗΡ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: I. ΜΙΧΑΛΕΑΚΟΣ- Π. ΣΙΟΤΡΟΠΟΣ- Α.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΟΙΚ & ΠΛΗΡ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 12-02-2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: I. ΜΙΧΑΛΕΑΚΟΣ- Π. ΣΙΟΤΡΟΠΟΣ- Α. ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. 1- ΣΩΣΤΟ 2- ΛΑΘΟΣ 3- ΛΑΘΟΣ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ
Γκύζη 14-Αθήνα Τηλ :
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ ΙΟΥΝΙΟΥ 202 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΑΑΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΑΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΑΑΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΑΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΘΕΜΑ 1 o Α. Να γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5
ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ 21 & ΠΕΡΙΚΛΕΟΥΣ, Π. ΦΑΛΗΡΟ
ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ 21 & ΠΕΡΙΚΛΕΟΥΣ, Π ΦΑΛΗΡΟ ΤΗΛ-FAX: 210 9851164,, Ε-mail: info@neapaideiaedugr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ
ΘΕΜΑ 1 ο. Στήλη Β Προτάσεις. β. Ο βρόχος επανάληψης τερµατίζεται, όταν η συνθήκη είναι αληθής. όταν η συνθήκη είναι ψευδής.
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ)
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) Δημιουργία - Συγγραφή Costas Chatzinikolas www.costaschatzinikolas.gr info@costaschatzinikolas.gr
Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον. τελική επανάληψη /4/2015 1
Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον τελική επανάληψη 2015 7/4/2015 1 Α -Β θέμα 40Μ+20Μ Ορθά συντακτικώς γραμμένες προτάσεις, λέξεις κλειδιά, ολοκληρωμένες φράσεις Χρήση κριτικής σκέψης σε
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. 1 ΣΩΣΤΟ 2 ΛΑΘΟΣ 3 ΛΑΘΟΣ 4 ΛΑΘΟΣ 5 ΣΩΣΤΟ
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. 1 ΣΩΣΤΟ 2 ΛΑΘΟΣ 3 ΛΑΘΟΣ 4 ΛΑΘΟΣ 5 ΣΩΣΤΟ Α2. α. Δομή Δεδομένων είναι ένα σύνολο αποθηκευμένων δεδομένων που υφίστανται επεξεργασία από ένα σύνολο λειτουργιών. Προσπέλαση,
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Α1. α. Να γράψετε στο τετράδιό σας τον
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,
2. Μια (1) μονάδες για την ορθή παρουσίαση της ουράς Μια (1) μονάδα για τις ορθές τιμές των δεικτών ( για κάθε δείκτη).
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ ΘΕΜΑ Α Α1. Δύο (2) μονάδες για κάθε ορθή απάντηση.
Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ ΑΣΚΗΣΗ
Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ ΑΣΚΗΣΗ Ένα μαιευτήριο παρέχει τον παρακάτω τιμοκατάλογο στις μητέρες που θα το επιλέξουν για την νοσηλεία
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα να ικανοποιεί ένας αλγόριθµος. Μονάδες 5 2. Ποιο κριτήριο
Γ ΤΑΞΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ÑÏÌÂÏÓ
Γ ΤΑΞΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό,αν είναι σωστή,
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 MAΪΟΥ ΑΕΠΠ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 MAΪΟΥ 2008 - ΑΕΠΠ ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν
Αλγόριθµοι Αναζήτησης και Ταξινόµησης
Αλγόριθµοι Αναζήτησης και Ταξινόµησης Αναζήτηση 1. Σε πίνακα table[n] µε µοναδικά στοιχεία, αναζητούµε το στοιχείο key, Σειριακή ή Γραµµική Αναζήτηση. Αλγόριθµος Sequential_Search1 position 0 Όσο (done=ψευδής)
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν
I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι:
ΑΕσΠΠ 1 / 8 I. ΑΛΓΟΡΙΘΜΟΣ 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: i. Είσοδος : χρήση μιας μεταβλητής που δεν έχει πάρει προηγουμένως τιμή. ii. Έξοδος : ο αλγόριθμος δεν εμφανίζει
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. ΘΕΜΑ Α Α1. 1. Λάθος 2 Λάθος 3. Σωστό 4. Λάθος 5. Σωστό Α2. ΧΑΡΑΚΤΗΡΕΣ ΑΛΗΘΗΣ ΠΡΑΓΜΑΤΙΚΕΣ - 2.0 ΑΚΕΡΑΙΕΣ 4
ΘΕΜΑ Α Α1. 1. Λάθος 2 Λάθος 3. Σωστό 4. Λάθος 5. Σωστό ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα Α A1. 1 Σ, 2 Σ, 3 Λ, 4 Σ, 5 Λ A2. 1. Βλ. σελ.
Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ Πίνακες και βασικές επεξεργασίες αυτών Σκοπιές από τις οποίες μελετά η πληροφορική τα δεδομένα Γλωσσών προγραμματισμού Υλικού Δομών δεδομένων Ανάλυσης δεδομένων 22/11/08 Παρουσιάσεις
σας φύλλο τον αριθμό της ερώτησης ακολουθούμενη από το γράμμα Σ (Σωστή) ή το γράμμα Λ (Λάθος).
Μάθημα: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Τάξη Γ ΛΥΚΕΙΟΥ, Πληροφορικής οικονομικών Καθηγητής : Σιαφάκας Γιώργος Ημερομηνία : 8/5/2016 Διάρκεια: 3 ώρες ΘΕΜΑ Α /40 (Α1) (α)να απαντήσετε αν
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Σάββατο, 4 Ιουνίου 2005 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1o Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα να ικανοποιεί ένας αλγόριθµος.
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Σάββατο 5 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Σάββατο 5 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Δίνεται το παρακάτω τμήμα αλγορίθμου. Να εξετάσετε αν ικανοποιεί τα αλγοριθμικά κριτήρια. Γράψε 'Δώσε
Ενδεικτικές Ερωτήσεις Θεωρίας
Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο
8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΑ 1-6 ΟΝΟΜΑ: ΗΜΕΡΟΜΗΝΙΑ: ΒΑΘΜΟΣ: ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό,
Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΕΔΟΜΕΝΑ // Ν // Σ 0 π 0 ΓΙΑ ι ΑΠΟ -10 ΜΕΧΡΙ Ν ΔΙΑΒΑΣΕ α, β Σ Σ + α+ β π
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΤΙΣ 01/03/2015 ΘΕΜΑ Α
ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΤΙΣ 01/03/2015 ΘΕΜΑ Α Α1. 1. ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΠΑΡΑΓΡΑΦΟΣ 3.2 2. ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΠΑΡΑΓΡΑΦΟΣ 3.3 3. ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΠΑΡΑΓΡΑΦΟΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΘΕΜΑ 1 Ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό, αν είναι
Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 10/04/2017 ΕΩΣ 22//04/2017 3η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε
φροντιστήρια Θέματα Ανάπτυξης Εφαρμογών σε Προγραμματιστικό Περιβάλλον Γ λυκείου Προσανατολισμός Σπουδών Οικονομίας και Πληροφορικής
Θέματα Ανάπτυξης Εφαρμογών σε Προγραμματιστικό Περιβάλλον Γ λυκείου Προσανατολισμός Σπουδών Οικονομίας και Πληροφορικής Θέμα Α Α1. Να γράψετε στο τετράδιο σας το γράμμα της κάθε πρότασης και δίπλα τη λέξη
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
Επαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
Δομές Δεδομένων. Τι είναι η δομή δεδομένων; Έστω η ακολουθία αριθμών: 8, 10,17,19,22,5,12 Λογικό Επίπεδο. Φυσικό Επίπεδο RAM. Ταξινομημένος.
Δομές Δεδομένων Τι είναι η δομή δεδομένων; Έστω η ακολουθία αριθμών: 8, 10,17,19,22,5,12 Λογικό Επίπεδο Φυσικό Επίπεδο RAM Πίνακας 8 10 17 19 22 Ταξινομημένος Πίνακας 5 8 10 12 17 Δένδρο 8 5 10 12 19 17
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A Α.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις -5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ,
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
2 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Σ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Σάββατο 4 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό
Στήλη Β Προτάσεις α. Ο βρόχος επανάληψης τερµατίζεται, όταν η συνθήκη είναι αληθής β. Ο βρόχος επανάληψης
ΤΡΙΤΗ 1 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό
ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013
ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ ΕΩΣ 02/04/2018 ΕΩΣ 14/04/2018 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ)
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) Δημιουργία - Συγγραφή Costas Chatzinikolas www.costaschatzinikolas.gr info@costaschatzinikolas.gr
Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ ΓΕ.Λ. Ιανουάριος Ανάπτυξη Εφαρμογών ΘΕΜΑ Α
Ανάπτυξη Εφαρμογών ΘΕΜΑ Α προσανατολισμού Α1. Τι γνωρίζετε για τις δυναμικές δομές δεδομένων; Α2. Να αναφέρεται ονομαστικά ποιες είναι οι βασικές λειτουργίες επί των δομών δεδομένων. Μονάδες 8 Α3. Τι ονομάζεται
ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες)
ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 ο (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) (Β) Να σημειώσετε με κατάλληλο τρόπο ανάλογα
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο
Κεφάλαιο ο Σπύρος Ζυγούρης Καθηγητής Πληροφορικής Να δοθεί ο ορισμός της ταξινόμησης Ν στοιχείων Η τακτοποίηση των κόμβων μιας δομής με μια ιδιαίτερη σειρά ονομάζεται ταξινόμηση (sorting) ή διάταξη (ordering).
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 13 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ 20-03-2012 Α. ίνεται το παρακάτω τμήμα αλγόριθμου: Ψευδής Αν Ε mod 4 = 0 τότε Αληθής Αν Ε mod 100 = 0 τότε Ψευδής Αν Ε
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή,
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) 2004
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) 2004 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις
ΘΕΜΑ Α: Μονάδες 12. Δ. Δίνεται ο πίνακας δύο διαστάσεων
1 ΘΕΜΑ Α: Α. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες ( πράξεις ) επί των δομών δεδομένων. Β. Μια ουρά 10 θέσεων έχει την αρχική μορφή Α Ζ Τ Ε Λ Γνωρίζουμε τα εξής στοιχεία: 1. Μετά από μια σειρά
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ,
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Ανάπτυξη Εφαρμογών Οικονομικών Σπουδών, Ημ/νία: 12 Ιουνίου 2017
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Ανάπτυξη Εφαρμογών Οικονομικών Σπουδών, Ημ/νία: 12 Ιουνίου 2017 Απαντήσεις Θεμάτων ΘΕΜΑ Α Α1. Α2. 1. Σωστό 2. Λάθος 3. Λάθος 4. Σωστό
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o Α. Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό,
Να γράψετε τα αποτελέσματα αυτού του αλγόριθμου για Χ=13, Χ=9 και Χ=22. Και στις 3 περιπτώσεις το αποτέλεσμα του αλγορίθμου είναι 1
Άσκηση 1. Δίνεται ο παρακάτω αλγόριθμος: ΑΛΓΟΡΙΘΜΟΣ ΕΛΕΓΧΟΣ_ΑΝΑΘΕΣΗΣ ΔΙΑΒΑΣΕ X ΌΣΟ Χ > 1 ΕΠΑΝΑΛΑΒΕ ΑΝ Χ MOD 2 = 0 ΤΟΤΕ Χ Χ / 2 Χ 3 * Χ + 1 ΑΠΟΤΕΛΕΣΜΑΤΑ // Χ // ΤΕΛΟΣ ΕΛΕΓΧΟΣ_ΑΝΑΘΕΣΗΣ Να γράψετε τα αποτελέσματα
ΠΑΡΑΣΚΕΥΗ 28 ΜΑΙΟΥ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΡΑΣΚΕΥΗ 28 ΜΑΙΟΥ 200 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Θέµα A A. Αν ΒΑΘΜΟΣ > ΜΟ τότε ΓΡΑΨΕ Πολύ καλά Αλλιώς _ αν (ΜΟ ΒΑΘΜΟΣ )
Α1. 1. Λ 2. Λ 3. Σ 4. Λ 5. Λ. Α2. Ο 1 ος αλγόριθµος: i) Αντί για: Αν Σ<1000 τότε θέλει:
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 17 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ
www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ
Σελίδα 1 από 12 www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σε συνεργασία µε τις εκδόσεις ΕΛΛΗΝΟΕΚ ΟΤΙΚΗ κυκλοφορούν τα βοηθήµατα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον:
ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ
ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗ ΜΕΓΑΛΥΤΕΡΟΥ/ΜΙΚΡΟΤΕΡΟΥ ΣΤΟΙΧΕΙΟΥ ΜΟΝΟΔΙΑΣΤΑΤΟΥ -1 Ολα τα στοιχεία του πίνακα είναι διαφορετικά μεταξύ τους.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΘΕΜΑ Α ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α1. Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: 1. Στον εκ των υστέρων τρόπο μέτρησης της
k 1 j 1 A[k] i A[...]... A[...]... k A4.
ΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Κυριακή 15 Ιανουαρίου 2017 Θέµα Α A1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη
Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Θέμα Α Α1 1 Λ 2 Λ 3 Σ 4 Λ 5 Σ Α2. Χαρακτήρας ΑΛΗΘΗΣ Πραγματική -2.0 Λογική ΑΛΗΘΗΣ Λογική ΨΕΥΔΗΣ Ακέραια 4 Α3. α Α[6]
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 4 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ
Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1
Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.