Asset pricing at the Oslo Stock Exchange. A Source Book.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Asset pricing at the Oslo Stock Exchange. A Source Book."

Transcript

1 Asset pricing at the Oslo Stock Exchange. A Source Book. Bernt Arne Ødegaard 14 February 2006

2 Abstract This paper uses data from the Oslo Stock Exchange in the period 1980 to 2004 to calculate descriptive statistics relevant for asset pricing. We show average return calculations for various market indices and portfolios, including portfolios sorted on size, book/market, momentum and beta. Averages are shown for the whole period and for subperiods. We also illustrate how mean variance portfolios would be constructed using the average returns for the various portfolios.

3 Chapter 1 Introduction This paper is a source book for people doing empirical asset pricing at the Oslo Stock Exchange (OSE). The prime purpose of the paper is pedagogical. Using data starting in 1980, we describe properties of returns on the Oslo Stock Exchange during the period, for the whole market and for portfolios sorted according to various criteria. The data ends at the end of The data comes from two sources. All equity returns are from OBI, Oslo BørsInformasjon, the data provider of the Oslo Stock Exchange. Interest date is from Norges Bank. 1

4 Chapter 2 Data and sample selection The basis for the empirical investigations in this paper is daily observations of all equities traded at the Oslo Stock exchange. The data contains end of day bid and oer prices, as well as observations of the last trade price of the day, if there was any trading. Not all stocks traded at the Oslo Stock Exchange should necessarily be used for empirical asset pricing investigations. In particular stocks which are seldom traded are problematic. In the following calculations we therefore require the stocks to have a minimum number of trading days before they enter the sample. Low valued stocks (penny stocks) are also problematic since they will have very exaggerated returns. We therefore limit a stocks to have a price above NOK 10 before considering it in the sample. A similar requirement considers total value outstanding, which has a lower limit of NOK 1 million. 1 Table 2.1 provides some descriptive statistics for this ltering of the sample. 1 It should be noted that ltering such as this is very common for asset pricing investigations of this sort. See for example Fama and French (1992). 2

5 Table 2.1 Describing securities sample year number of average with securites number of more than 20 trading days listed trading and price above 10 days and value above 1 mill average The table provides some descriptive statistics for the sample of equities traded on the Oslo Stock Exchange in the period 1980 to The rst column lists the year. The second column lists the number of stocks listed during the year. The third column the average number of trading days for all listed stocks. The fourth column lists the number of stocks which traded for more than 20 days. The fth column adds the requirement that the stock did not have a price below NOK 10. The nal column additionally requires an equity market value above 1 mill NOK. 3

6 Chapter 3 Market Portfolio The rst issue we consider is the evolution of the whole market. One typically wants to know what one would earn if one invested in the Oslo Stock Exchange. However, there are dierent ways to answer that question. If one picks a random stock, one wants to nd the expected return for the typical stock, in which case an equally weighted average is the relevant measure. Alternatively, one can invest in the whole market, in which case a value weighted average is most relevant. Table 3.1 shows monthly average returns, both raw returns and returns in excess of a risk free rate, 1 for the whole period 1980 till 2004 and for various subperiods. An alternative view of the dierence between equally weighted and value weighted indices is shown in gure 3.1, which illustrates the growth of the two indices in the period from Figure 3.1 The evolution of market indicies vw ew The gures illustrates the growth of two OSE stock indices, one equally weighted and one value weighted, using data starting in Growth is shown by nding how much one NOK invested in January 1980 would have grown to. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 1 See section 8 for some details about the risk free rates. 4

7 Table 3.1 Describing market indices at the Oslo Stock Exchange from 1980 Panel A: Monthly returns Period index Dividend Yield Capital Gains mean (std) min med max mean med mean med VW 2.01 (6.41) EW 1.85 (5.94) VW 2.32 (6.94) EW 3.03 (6.23) VW 2.58 (6.83) EW 1.62 (5.78) VW 1.38 (6.65) EW 1.09 (6.82) VW 2.21 (5.47) EW 1.94 (4.94) VW 1.72 (5.76) EW 1.47 (5.32) Panel B: Monthly excess returns Period index mean (std) min med max VW 1.40 (6.32) EW 1.00 (5.92) VW 2.36 (6.56) EW 2.20 (6.31) VW 1.49 (6.85) EW 0.54 (5.80) VW 0.54 (6.64) EW 0.26 (6.80) VW 1.77 (5.47) EW 1.49 (4.95) VW 1.22 (5.80) EW 0.97 (5.36) The table describes two indices constructed from Norwegian equity market data, one equally weighted and one value weighted, using data starting in The rst panel is the percentage monthly returns, the second the percentage monthly excess returns, returns in excess of the risk free rate. are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 5

8 Chapter 4 Size base portfolios Sorting securities based on the equity value of companies outstanding is a popular investigation, starting with Banz (1981). Internationally, the typical result is that the portfolios of small stocks (ie stocks with a low total equity value) tend to have high returns relative to the portfolio of large stocks. We provide a number of dierent views of size sorted portfolios, starting with a number of tables of averages of raw returns, where we simply split the relevant equities into size based portfolios. We consider ve and ten portfolios. Note that there is no risk adjustment or anything here, we are just listing the raw returns. Also note that these are monthly percentage returns, they are not annualized. The sorting is done on an annual basis. At the beginning of each january, stocks are sorted based on their equity size at the end of last year, and placed in the relevant portfolio. Portfolios are rebalanced every year. Table 4.1 provide descriptive statistics for monthly returns for portfolios of 5 and 10 size sorted portfolios for the whole period. The sample is split into subperiods and shown for the case of ve portfolios in tables 4.2 and 4.3. All the tables show that the smallest portfolio is the one with the highest return, and return is roughly decreasing with size. Oslo Stock Exchange thus has the typical pattern. 6

9 Table 4.1 Size based portfolios, monthly returns, Panel A: 5 EW portfolios Panel B: 5 VW portfolios Panel C: 10 EW portfolios Panel D: 10 VW portfolios 1 (smallest) 3.08 (6.7) (6.7) (6.3) (6.5) (6.9) (smallest) 4.96 (9.0) (7.3) (7.2) (6.6) (6.8) (smallest) 3.41 (7.9) (7.6) (7.3) (7.4) (7.3) (6.6) (7.0) (6.9) (7.5) (7.0) (smallest) 5.57 (11.9) (9.4) (7.9) (8.1) (7.6) (8.3) (7.7) (7.3) (7.8) (6.8) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 7

10 Table equally weighted size portfolios split on subperiods Panel A Panel B Panel C Panel D : Panel E (smallest) 5.52 (8.5) (8.7) (7.5) (6.2) (6.3) (smallest) 2.71 (6.2) (5.6) (5.2) (6.5) (7.6) (smallest) 2.60 (8.2) (7.4) (7.2) (8.2) (7.1) (smallest) 2.82 (4.6) (5.4) (5.1) (5.5) (5.7) (smallest) 1.74 (4.0) (5.7) (5.9) (6.0) (7.6) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 8

11 Table value weighted size portfolios split on subperiods Panel A Panel B Panel C Panel D : Panel E (smallest) 8.27 (11.8) (9.7) (9.7) (6.8) (7.9) (smallest) 4.71 (8.3) (5.8) (5.6) (6.5) (7.5) (smallest) 4.16 (9.5) (8.3) (7.4) (8.1) (6.7) (smallest) 4.47 (6.7) (5.7) (5.9) (5.3) (5.5) (smallest) 3.16 (6.6) (5.9) (6.5) (6.1) (6.0) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 9

12 In table 4.4 we subtract the risk free rate from the returns and calculate excess returns. Table 4.4 Excess return for size based portfolios, Panel A: 5 portfolios, equally weighted returns Excess 1 (smallest) 2.05 (6.4) (6.7) (6.0) (6.6) (7.1) Panel B: 5 portfolios, value weighted returns Excess 1 (smallest) 3.84 (8.4) (7.3) (6.5) (6.6) (6.6) Panel C: 10 portfolios, equally weighted returns Excess 1 (smallest) 2.22 (7.3) (7.5) (7.2) (7.3) (6.8) (6.3) (7.0) (7.0) (7.7) (7.0) Panel D: 10 portfolios, value weighted returns Excess 1 (smallest) 4.10 (9.8) (9.3) (7.9) (7.9) (7.5) (6.9) (7.0) (7.0) (7.9) (6.6) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 10

13 A useful way of getting some understanding of the properties of the dierent size portfolios is by investigating how they are mixed in mean-variance optimal portfolios. We use empirical data on monthly returns from a given subperiod to nd means and covariances, and describe the structure of the resulting mean-variance optimized portfolios. We consider the three subperiods , and and show the results in the following three tables. 11

14 Table 4.5 Mean variance optimal portfolios. 10 portfolios. Using data from 1990 to 1999 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 12 st dev constr

15 Table 4.6 Mean variance optimal portfolios. 10 portfolios. Using data from 1980 to 1989 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 13 st dev constr

16 Table 4.7 Mean variance optimal portfolios. 10 portfolios. Using data from 2000 to 2004 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 14 st dev constr

17 Table 4.8 shows estimated Sharpe Ratios for the size based portfolios. Table 4.8 Sharpe Ratios, 10 EW Size portfolios Panel A: 5 EW portfolios Panel B: 5 VW portfolios Panel C: 10 EW portfolios 1 (small) (large) (small) (large) (small) (large) Panel C: 10 VW portfolios 1 (small) (large) The table shows estimated Sharpe ratios for dierent portfolios and sample periods, using monthly data to do estimation. In each table, the rst column lists the sample period used. Each of the following columns lists the Sharpe Ratio for a given portfolio. The Sharpe Ratio is calculated as average( r p r f )/σ( r p r f ), where r p is the realized portfolio return, and r f the risk free rate. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 15

18 Chapter 5 Book to market based portfolios Another way of sorting securities that has received a lot of attention is a sorting based on the book value vs market value of equity, or the B/M ratio. We show the same analyses as was done for size based portfolios in section 4. The sorting procedure is again performed annually. We sort stocks based on the B/M ratio calculated using the book value and market of the company's equity at the last yearend. Stocks are then placed in the relevant portfolio. Table 5.1 provide descriptive statistics for monthly returns for portfolios of sizes 5 and 10 for the whole period, which is split in subperiod for ve portfolios in tables 5.2 and 5.3. Excess returns are shown in table 5.4 and Sharpe Ratios in

19 Table 5.1 of B/M based portfolios Panel A: 5 EW portfolios Panel B: 5 VW portfolios Panel C: 10 EW portfolios Panel D: 10 VW portfolios 1 (smallest) 1.98 (8.2) (6.4) (6.6) (7.1) (7.2) (smallest) 2.15 (8.1) (7.5) (7.6) (8.4) (8.2) (smallest) 2.27 (9.9) (8.5) (7.2) (7.0) (6.9) (8.0) (7.9) (8.1) (7.5) (8.5) (smallest) 2.65 (9.0) (10.6) (8.6) (7.9) (8.1) (9.2) (8.6) (9.1) (9.9) (9.4) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 17

20 Table equally weighted B/M portfolios, subperiods Panel A Panel B Panel C Panel D : Panel E (smallest) 4.11 (11.0) (7.6) (6.4) (8.2) (7.8) (smallest) 1.72 (6.4) (6.4) (7.9) (6.7) (7.1) (smallest) 0.64 (5.5) (6.5) (7.1) (9.0) (10.1) (smallest) 2.62 (7.4) (5.9) (5.0) (5.1) (4.8) (smallest) 0.82 (9.2) (5.2) (5.9) (5.7) (3.9) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 18

21 Table value weighted B/M portfolios, subperiods Panel A Panel B Panel C Panel D : Panel E (smallest) 2.76 (11.3) (8.6) (7.9) (8.6) (7.9) (smallest) 1.94 (7.5) (8.0) (8.7) (8.7) (8.9) (smallest) 1.29 (6.1) (7.4) (8.3) (10.0) (10.3) (smallest) 2.80 (6.8) (6.9) (6.2) (6.2) (5.8) (smallest) 1.98 (7.7) (6.4) (6.7) (8.1) (7.1) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 19

22 Table 5.4 Excess returns for B/M based portfolios, Panel A: 5 portfolios, equally weighted returns Excess 1 (smallest) 0.88 (7.4) (6.4) (6.5) (7.0) (7.2) Panel B: 5 portfolios, value weighted returns Excess 1 (smallest) 1.46 (7.7) (7.5) (7.6) (8.5) (8.3) Panel C: 10 portfolios, equally weighted returns Excess 1 (smallest) 0.89 (8.1) (8.2) (7.2) (6.9) (6.8) (8.0) (7.3) (8.2) (7.6) (8.4) Panel D: 10 portfolios, value weighted returns Excess 1 (smallest) 2.07 (8.9) (8.2) (8.3) (7.9) (7.6) (9.3) (8.7) (9.2) (9.7) (9.6) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 20

23 Table 5.5 Mean variance optimal portfolios. 10 portfolios. Using data from 1980 to 1989 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 21 st dev constr

24 Table 5.6 Mean variance optimal portfolios. 10 portfolios. Using data from 1990 to 1999 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 22 st dev constr

25 Table 5.7 Mean variance optimal portfolios. 10 portfolios. Using data from 2000 to 2004 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 23 st dev constr

26 Table 5.8 Sharpe Ratios, 10 B/M portfolios, monthly returns 1 (small) (large) The table shows estimated Sharpe ratios for dierent portfolios and sample periods, using monthly data to do estimation. In each table, the rst column lists the sample period used. Each of the following columns lists the Sharpe Ratio for a given portfolio. The Sharpe Ratio is calculated as average( r p r f )/σ( r p r f ), where r p is the realized portfolio return, and r f the risk free rate. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 24

27 Chapter 6 Momentum based portfolios A third popular sorting criterion is momentum. Stocks are at the beginning of each year sorted based on the stock return over the last 12 month period. We show the same results as was shown for the other two cases below. 25

28 Table 6.1 Momemtum portfolios Panel A: 5 EW portfolios Panel B: 5 VW portfolios Panel C: 10 EW portfolios Panel D: 10 VW portfolios 1 (smallest) 1.93 (8.0) (6.1) (6.0) (5.9) (8.1) (smallest) 2.20 (9.1) (7.0) (6.9) (7.8) (8.2) (smallest) 2.31 (9.9) (7.6) (6.8) (6.7) (6.8) (6.3) (6.3) (6.4) (8.5) (9.2) (smallest) 2.95 (11.8) (8.3) (7.8) (7.7) (7.2) (8.0) (7.6) (8.5) (7.3) (9.6) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 26

29 Table equally weighted momentum portfolios, subperiods Panel A Panel B Panel C Panel D : Panel E (smallest) 2.53 (7.9) (6.0) (5.8) (7.3) (11.5) (smallest) 1.14 (6.9) (5.9) (7.0) (5.5) (6.4) (smallest) 2.42 (10.5) (7.5) (7.2) (6.6) (6.6) (smallest) 2.07 (5.6) (4.9) (4.6) (4.7) (6.2) (smallest) 1.38 (7.9) (5.6) (4.0) (3.9) (7.7) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 27

30 Table value weighted momentum portfolios, subperiods Panel A Panel B Panel C Panel D : Panel E (smallest) 1.53 (8.6) (5.6) (5.3) (10.6) (10.8) (smallest) 2.34 (8.2) (7.4) (8.0) (7.6) (7.1) (smallest) 3.03 (11.0) (8.5) (7.4) (7.5) (7.0) (smallest) 2.46 (5.9) (6.0) (6.5) (6.2) (6.4) (smallest) 1.52 (11.3) (7.1) (6.9) (5.2) (8.0) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 28

31 Table 6.4 Excess return of momentum based portfolios, Panel A: 5 portfolios, equally weighted returns Excess 1 (smallest) 1.19 (8.0) (6.2) (6.1) (5.8) (7.1) Panel B: 5 portfolios, value weighted returns Excess 1 (smallest) 1.80 (9.2) (7.2) (7.2) (7.5) (7.3) Panel C: 10 portfolios, equally weighted returns Excess 1 (smallest) 1.65 (10.0) (7.6) (6.8) (6.8) (6.9) (6.3) (6.2) (6.3) (7.3) (8.4) Panel D: 10 portfolios, value weighted returns Excess 1 (smallest) 2.28 (11.9) (8.3) (8.0) (7.9) (7.4) (8.3) (6.9) (8.7) (7.2) (8.7) are percentage monthly returns. The returns are not annualized. Data for stocks listed at the Oslo Stock Exchange during the period Calculations use the stocks satisfying the lter criteria discussed in section 2. 29

32 Table 6.5 Mean variance optimal portfolios. 10 portfolios. Using data from 1980 to 1989 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 30 st dev constr

33 Table 6.6 Mean variance optimal portfolios. 10 portfolios. Using data from 1990 to 1999 Panel A: Expected Panel B: Correlations matrix Asset mean std 1 (small) ρ(i, j) 1 (small) (small) Panel C: Optimal unconstrained portfolios Asset Expected Return (small) Panel D: Optimal short sale restricted portfolios Asset Expected Return (small) Panel E: Illustrating portfolio frontiers portfolios exp return uncons The table describes the construction of mean-variance optimal portfolios using historical data from the Oslo Stock Exchange. 31 st dev constr

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Προσδιορισμός της Τιμής όταν η Ομολογία Αγοράζεται μεταξύ δύο Τοκοφόρων Περιόδων Για να υπολογίσουμε την τιμή της ομολογίας πρέπει: Υπολογίζουμε

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates Αρτίκης Γ. Παναγιώτης Κόστος Κεφαλαίου Estimating Inputs: Discount Rates Critical ingredient in discounted cashflow valuation. Errors in estimating the discount rate or mismatching cashflows and discount

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας Τελική Εξέταση. Logic Operations () In the grid areas provided below, draw the results of the following binary operations a. NOT(NOT() OR ) (4) b. ( OR ) XOR ( ND ) (4) c. (( ND ) XOR ) XOR (NOT()) (4)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξένη Ορολογία Ενότητα 5 : Financial Ratios Ευαγγελία Κουτσογιάννη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates Αρτίκης Γ. Παναγιώτης Κόστος Κεφαλαίου Estimating Inputs: Discount Rates Critical ingredient in discounted cashflow valuation. Errors in estimating the discount rate or mismatching cashflows and discount

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ Πτυχιακή εργασία ΜΕΛΕΤΗ ΠΟΛΥΦΑΙΝΟΛΩΝ ΚΑΙ ΑΝΤΙΟΞΕΙΔΩΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΟΚΟΛΑΤΑΣ Αναστασία Σιάντωνα Λεμεσός

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης Διπλωματική Εργασία Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική Αντωνίου Φάνης Επιβλέπουσες: Θεοδώρα Παπαδοπούλου, Ομότιμη Καθηγήτρια ΕΜΠ Ζάννη-Βλαστού Ρόζα, Καθηγήτρια

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Policy Coherence. JEL Classification : J12, J13, J21 Key words :

Policy Coherence. JEL Classification : J12, J13, J21 Key words : ** 80%1.89 2005 7 35 Policy Coherence JEL Classification : J12, J13, J21 Key words : ** Family Life and Family Policy in France and Germany: Implications for Japan By Tomoko Hayashi and Rieko Tamefuji

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα