Introduction to Information Retrieval

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Introduction to Information Retrieval"

Transcript

1 Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5: Κατασκευή και Συμπίεση Ευρετηρίου 1 Η βασική δομή: Το αντεστραμμένο ευρετήριο (inverted index) Λεξικό: οι όροι (term) και η συχνότητα εγγράφων (#εγγράφων της συλλογής που εμφανίζονται) Λίστες καταχωρήσεων(posting lists) Kάθε καταχώρηση (posting) για ένα όρο περιέχει μια διατεταγμένη λίστα με τα έγγραφα (DocID) στα οποία εμφανίζεται ο όρος συχνά επιπρόσθετα στοιχεία, όπως position, term frequency, κλπ 2 1

2 Κεφ. 4&5 Τι θα δούμε σήμερα (1 ο μέρος); Κατασκευή του Ευρετηρίουσε Μεγάλη Κλίμακα Συμπίεση Ευρετηρίου 3 Υπενθύμιση: κατασκευή ευρετηρίου Επεξεργαζόμαστε τα έγγραφα για να βρούμε τις λέξεις -αυτές αποθηκεύονται μαζί με το Document ID. Doc 1 I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. Doc 2 So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious Κεφ. 4.2 Term Doc # I 1 did 1 enact 1 julius 1 caesar 1 I 1 was 1 killed 1 i' 1 the 1 capitol 1 brutus 1 killed 1 me 1 so 2 let 2 it 2 be 2 with 2 caesar 2 the 2 noble 2 brutus 2 hath 2 told 2 you 2 caesar 2 was 2 ambitious 2 4 2

3 Κεφ. 4.2 Βασικό βήμα: sort Αφού έχουμε επεξεργαστεί όλα τα έγγραφα, το αντεστραμμένο ευρετήριο διατάσσεται (sort) με βάση τους όρους Θα επικεντρωθούμε στο βήμα διάταξης Πρέπει να διατάξουμε 100M όρους. Term Doc # I 1 did 1 enact 1 julius 1 caesar 1 I 1 was 1 killed 1 i' 1 the 1 capitol 1 brutus 1 killed 1 me 1 so 2 let 2 it 2 be 2 with 2 caesar 2 the 2 noble 2 brutus 2 hath 2 told 2 you 2 caesar 2 was 2 ambitious 2 Term Doc # ambitious 2 be 2 brutus 1 brutus 2 capitol 1 caesar 1 caesar 2 caesar 2 did 1 enact 1 hath 1 I 1 I 1 i' 1 it 2 julius 1 killed 1 killed 1 let 2 me 1 noble 2 so 2 the 1 the 2 told 2 you 2 was 1 was 2 with 2 5 Κεφ. 4 Κατασκευή ευρετηρίου Πως κατασκευάζουμε το ευρετήριο; Ποιες στρατηγικές χρησιμοποιούμε όταν έχουμε περιορισμένη κυρίως μνήμη? Εξωτερική διάταξη 6 3

4 Κεφ. 4.2 Κλιμάκωση της κατασκευής του ευρετηρίου Δεν είναι δυνατή η πλήρης κατασκευή του στη μνήμη (in-memory) Δεν μπορούμε να φορτώσουμε όλη τη συλλογή στη μνήμη, να την ταξινομήσουμε και να τη γράψουμε πίσω στο δίσκο Πως μπορούμε να κατασκευάσουμε ένα ευρετήριο για μια πολύ μεγάλη συλλογή; Λαμβάνοντας υπ όψιν τα περιορισμούς και τα χαρακτηριστικά του υλικού... 7 BSBI: Αλγόριθμος κατασκευής κατά block (Blocked sort-based Indexing) Βασική ιδέα: Διάβαζε τα έγγραφα, συγκέντρωσε <term, docid> καταχωρήσεις έως να γεμίσει ένα block, διάταξε τις καταχωρήσεις σε κάθε block, γράψε το στο δίσκο. Μετά συγχώνευσε τα blocks σε ένα μεγάλο διατεταγμένο block. Δυαδική συγχώνευση, μια δεντρική δομή μεlog 2 Β επίπεδα, όπου Β ο αριθμός των blocks. Κεφ. 4.2 Παρατήρηση: μπορούμε να εργαστούμε με termidαντί για term αν κρατάμε το λεξικό (την απεικόνιση term, termid) στη μνήμη 8 4

5 SPIMI: Single-pass in-memory indexing (ευρετηρίαση ενός περάσματος) Κεφ. 4.3 Αν δε διατηρούμε term-termid απεικονίσεις μεταξύ blocks. Εναλλακτικός αλγόριθμος: Αποφυγή της διάταξης των όρων. Συγκεντρώσετε τις καταχωρήσεις σε λίστες καταχωρήσεων όπως αυτές εμφανίζονται. Κατασκευή ενός πλήρους αντεστραμμένου ευρετηρίου για κάθεblock.χρησιμοποίησε κατακερματισμό (hash) ώστε οι καταχωρήσεις του ίδιου όρου στον ίδιο κάδο Μετά συγχωνεύουμε τα ξεχωριστά ευρετήρια σε ένα μεγάλο. 9 Κεφ. 4.4 Web search engine data centers Οι μηχανές αναζήτησης χρησιμοποιούν data centers (Google, Bing, Baidu) κυρίως από commodity μηχανές. Γιατί; (fault tolerance) Τα κέντρα είναι διάσπαρτα σε όλο τον κόσμο. Εκτίμηση: Google ~1 million servers, 3 million processors/cores (Gartner 2007) Θα το δούμε αναλυτικά σε επόμενα μαθήματα Λίγα «εγκυκλοπαιδικά» για το MapReduceκαι τη χρήση του στην κατασκευή του ευρετηρίου 10 5

6 Κεφ. 4.4 Μια ματιά στα πολύ μεγάλης κλίμακας ευρετήρια 11 Κεφ 4.4 Παράλληλη κατασκευή Maintain a mastermachine directing the indexing job considered safe. Break up indexing into sets of (parallel) tasks. Master machine assigns each task to an idle machine from a pool. 12 6

7 Sec. 4.4 Parallel tasks We will use two sets of parallel tasks Parsers Inverters Break the input document collection into splits Each split is a subset of documents (corresponding to blocks in BSBI/SPIMI) 13 Sec. 4.4 Parsers Master assigns a split to an idle parser machine Parser reads a document at a time and emits (term, doc) pairs Parser writes pairs into j partitions Each partition is for a range of terms first letters (e.g., a-f, g-p, q-z) here j = 3. Now to complete the index inversion 14 7

8 Sec. 4.4 Inverters An inverter collects all (term,doc) pairs (= postings) for one term-partition. Sorts and writes to postings lists 15 Sec. 4.4 Data flow assign Master assign Postings Parser a-f g-p q-z Inverter a-f Parser a-f g-p q-z Inverter g-p splits Parser a-f g-p q-z Inverter q-z Map phase Segment files Reduce phase 16 8

9 Sec. 4.4 MapReduce The index construction algorithm we just described is an instance of MapReduce. MapReduce(Dean and Ghemawat2004) is a robust and conceptually simple framework for distributed computing without having to write code for the distribution part. They describe the Google indexing system (ca. 2002) as consisting of a number of phases, each implemented in MapReduce. open source implementation as part of Hadoop* * 17 Example for index construction Map: d1 : C came, C c ed. d2 : C died. <C,d1>, <came,d1>, <C,d1>, <c ed, d1>, <C, d2>, <died,d2> Reduce: (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c ed,(d1)>) (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, <c ed,(d1:1)>) 18 9

10 Schema for index construction in MapReduce Sec. 4.4 Schema of map and reduce functions map: input list(k, v) reduce: (k, list(v)) output Instantiation of the schema for index construction map: collec on list(termid, docid) reduce: (<termid1, list(docid)>, <termid2, list(docid)>, ) (postings list1, postings list2, ) 19 Sec. 4.4 MapReduce Index construction was just one phase. Another phase: transforming a term-partitioned index into a document-partitioned index. Term-partitioned: one machine handles a subrangeof terms Document-partitioned: one machine handles a subrangeof documents As we ll discuss in the web part of the course, most search engines use a document-partitioned index better load balancing, etc

11 Introduction to Information Retrieval Μερικά θέματα σχετικά με τη συμπίεση 21 Κεφ. 5 Τι θα δούμε σχετικά με συμπίεση Πιο λεπτομερή στατιστικά για τη συλλογή RCV1 Πόσο μεγάλο είναι το λεξικό και οι καταχωρήσεις; Συμπίεση του λεξικού Συμπίεση των καταχωρήσεων 22 11

12 Κεφ. 5 Γιατί συμπίεση; Λιγότερος χώρος στη μνήμη Λίγο πιο οικονομικό Κρατάμε περισσότερα πράγματα στη μνήμη Αύξηση της ταχύτητας Αύξηση της ταχύτητας μεταφοράς δεδομένων από το δίσκο στη μνήμη [διάβασε τασυμπιεσμένα δεδομένα αποσυμπίεσε] γρηγορότερο από [διάβασε μη συμπιεσμένα δεδομένα] Προϋπόθεση: Γρήγοροι αλγόριθμοι αποσυμπίεσης 23 Γιατί συμπίεση των αντεστραμμένων ευρετηρίων; Λεξικό Αρκετά μικρό για να το έχουμε στην κύρια μνήμη Ακόμα μικρότερο ώστε να έχουμε επίσης και κάποιες καταχωρήσεις στην κύρια μνήμη Αρχείο (α) Καταχωρήσεων Κεφ. 5 Μείωση του χώρου στο δίσκο Μείωση του χρόνου που χρειάζεται για να διαβάσουμε τις λίστες καταχωρήσεων από το δίσκο Οι μεγάλες μηχανές αναζήτησης διατηρούν ένα μεγάλο τμήμα των καταχωρήσεων στη μνήμη 24 12

13 Κεφ. 4.2 Στατιστικά για τη συλλογή Reuters RCV1 N L M T documents tokens per document terms (= word types) bytes per token (incl. spaces/punct.) bytes per token (without spaces/punct.) bytes per term (= word type) non-positional postings 800, , ,000, Κεφ. 5.1 Μέγεθος ευρετηρίου size of word types (terms) non-positional postings positional postings dictionary non-positional index positional index Size (K) % cumul % Size (K) % cumul % Size (K) Unfiltered , ,879 % cumul % No numbers , , Case folding , , stopwords , , stopwords , , stemming , ,

14 Κεφ. 5.1 Lossless vs. lossy συμπίεση Lossless compression: (μη απωλεστικήσυμπίεση) Διατηρείτε όλη η πληροφορία Αυτή που κυρίως χρησιμοποιείται σε ΑΠ Lossycompression: (απωλεστικήσυμπίεση) Κάποια πληροφορία χάνεται Πολλά από τα βήματα προ-επεξεργασίας (μετατροπή σε μικρά, stop words, stemming, number elimination) μπορεί να θεωρηθούν ως lossy compression Μπορεί να είναι αποδεκτή στην περίπτωση π.χ., που μας ενδιαφέρουν μόνο τα κορυφαία από τα σχετικά έγγραφα 27 Κεφ. 5.1 Λεξιλόγιο και μέγεθος συλλογής Πόσο μεγάλο είναι το λεξιλόγιο όρων; Δηλαδή, πόσες είναι οι διαφορετικές λέξεις; Υπάρχει κάποιοάνω όριο; Π.χ., το Oxford English Dictionary 600,000 λέξεις, αλλά στις πραγματικές μεγάλες συλλογές ονόματα προσώπων, προϊόντων, κλπ Στην πραγματικότητα, το λεξιλόγιο συνεχίζει να μεγαλώνει με το μέγεθος της συλλογής 28 14

15 Κεφ. 5.1 Λεξιλόγιο και μέγεθος συλλογής Ο νόμος του Heaps: M= kt b Mείναι το μέγεθος του λεξιλογίου (αριθμός όρων), Tο αριθμός των tokens στη συλλογή περιγράφει πως μεγαλώνει το λεξιλόγιο όσο μεγαλώνει η συλλογή Συνήθης τιμές: 30 k 100 (εξαρτάται από το είδος της συλλογής) καιb 0.5 Σεlog-log plot του μεγέθους Μ του λεξιλογίου με το Τ, ο νόμος προβλέπει γραμμή κλίση περίπου ½ 29 Κεφ. 5.1 Για τοrcv1, η διακεκομμένη γραμμή log 10 M= 0.49 log 10 T (το καλύτερο best least squares fit) Οπότε, M= T 0.49, άρα k= and b= Heaps Law Καλή προσέγγιση για το Reuters RCV1! Για το πρώτα 1,000,020 tokens,ο νόμος προβλέπει 38,323 όρους, στην πραγματικότητα 38,

16 Κεφ. 5.1 Ο νόμος του Zipf Ο νόμος του Heaps μας δίνει το μέγεθος του λεξιλογίου μιας συλλογής Θα εξετάσουμε τη σχετική συχνότητα των όρων Στις φυσικές γλώσσες, υπάρχουν λίγοι πολύ συχνοί όροι και πάρα πολύ σπάνιοι 31 Κεφ. 5.1 Ο νόμος του Zipf Ο νόμος του Zipf: Ο i-οστόςπιο συχνός όρος έχει συχνότητα ανάλογη του 1/i. cf i 1/i= K/iόπουKμια normalizing constant Όπου cf i collection frequency: ο αριθμός εμφανίσεων του όρουt i στη συλλογή. o Αν ο πιο συχνός όρος (ο όρος the) εμφανίζεται cf 1 φορές o Τότε ο δεύτερος πιο συχνός(of) εμφανίζεταιcf 1 /2 φορές o Ο τρίτος (and) cf 1 /3 φορές log cf i = log K-log i Γραμμική σχέση μεταξύ log cf i καιlog i power law σχέση (εκθετικός νόμος) 32 16

17 κεφ. 5.1 Zipf s law for Reuters RCV1 33 Κεφ. 5 Συμπίεση Θα δούμε μερικά θέματα για τη συμπίεση το λεξιλογίου και των καταχωρήσεων Βασικό Boolean ευρετήριο, χωρίς πληροφορία θέσης κλπ 34 17

18 Κεφ. 5.2 ΣΥΜΠΙΕΣΗ ΛΕΞΙΚΟΥ 35 Κεφ. 5.2 Γιατί συμπίεση του λεξικού; Η αναζήτηση αρχίζει από το λεξικό -> Θα θέλαμε να το κρατάμε στη μνήμη Συνυπάρχει (memory footprint competition) με άλλες εφαρμογές Κινητές/ενσωματωμένες συσκευές μικρή μνήμη Ακόμα και αν όχι στη μνήμη, θα θέλαμε να είναι μικρό για γρήγορη αρχή της αναζήτησης 36 18

19 Κεφ. 5.2 Αποθήκευση λεξικού Το πιο απλό, ως πίνακα εγγραφών σταθερού μεγέθους (array of fixed-width entries) ~400,000 όροι; 28 bytes/term = 11.2 MB. Terms Freq. Postings ptr. a 656,265 aachen 65.. zulu 221 οµή Αναζήτησης Λεξικού 20 bytes 4 bytes each 37 Κεφ. 5.2 Αποθήκευση λεξικού Σπατάλη χώρου Πολλά από τα bytes στη στήλη Term δε χρησιμοποιούνται δίνουμε 20 bytes για όρους με 1 γράμμα Και δε μπορούμε να χειριστούμε το supercalifragilisticexpialidocious ή hydrochlorofluorocarbons. Μέσος όρος στο γραπτό λόγο για τα Αγγλικά είναι ~4.5 χαρακτήρες/λέξη. Μέσος όρος των λέξεων στο λεξικό για τα Αγγλικά: ~8 χαρακτήρες Οι μικρές λέξεις κυριαρχούν στα tokens αλλά όχι στους όρους

20 Συμπίεση της λίστας όρων: Λεξικό-ως-Σειρά-Χαρακτήρων Κεφ. 5.2 Αποθήκευσε το λεξικό ως ένα (μεγάλο) string χαρακτήρων: Ένας δείκτης δείχνει στο τέλος της τρέχουσας λέξης (αρχή επόμενης) Εξοικονόμηση 60% του χώρου..systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo. Freq Postings ptr. Term ptr. Συνολικό µήκος της σειράς (string) = 400K x 8B = 3.2MB είκτες για 3.2M θέσεις: log 2 3.2M = 22bits = 3bytes 39 Κεφ. 5.2 Χώρος για το λεξικό ως string 4 bytes per term for Freq. 4 bytes per term for pointer to Postings. 3 bytes per term pointer Avg. 8 bytes per term in term string Now avg. 11 bytes/term, not K terms x MB (against 11.2MB for fixed width) 40 20

21 Κεφ. 5.2 Blocking(Δείκτες σε ομάδες) Διαίρεσε το string σε ομάδες (blocks) των k όρων Διατήρησε ένα δείκτη σε κάθε ομάδα Παράδειγμα: k=4. Χρειαζόμαστε και το μήκος του όρου(1 extra byte).7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo. Freq. Postings ptr. Term ptr Save 9 bytes on 3 pointers. Lose 4 bytes on term lengths. 41 Κεφ. 5.2 Blocking Συνολικό όφελος για block size k= 4 Χωρίς blocking 3 bytes/pointer 3 x 4 = 12 bytes, (ανά block) Τώρα e = 7 bytes. Εξοικονόμηση ακόμα ~0.5MB. Ελάττωση του μεγέθους του ευρετηρίου από 7.6 MB σε7.1 MB. Γιατί όχι ακόμα μικρότερο k; Σε τι χάνουμε; 42 21

22 Κεφ. 5.2 Αναζήτηση στο λεξικό χωρίς Βlocking Ας υποθέσουμε δυαδική αναζήτηση και ότι κάθε όρος ισοπίθανονα εμφανιστεί στην ερώτηση (όχι και τόσο ρεαλιστικό στη πράξη) μέσος αριθμός συγκρίσεων = ( )/8 ~2.6 Άσκηση: σκεφτείτε ένα καλύτερο τρόπο αναζήτησης αν δεν έχουμε ομοιόμορφη κατανομή των όρων στις 43 Κεφ. 5.2 Αναζήτηση στο λεξικό με Βlocking Δυαδική αναζήτηση μας οδηγεί σε ομάδες (block) από k = 4 όρους Μετά γραμμική αναζήτηση στους k = 4 αυτούς όρους. Μέσος όρος(δυαδικό δέντρο)= ( )/8 =

23 Κεφ. 5.2 Εμπρόσθια κωδικοποίηση (Front coding) Οι λέξεις συχνά έχουν μεγάλα κοινά προθέματα αποθήκευση μόνο των διαφορών 8automata8automate9automatic10automation 8automat*a1 e2 ic3 ion Encodes automat Extra length beyond automat. 45 Κεφ. 5.2 Περίληψη συμπίεσης για το λεξικό του RCV1 Τεχνική Μέγεθος σε MB Fixed width 11.2 Dictionary-as-String with pointers to every term 7.6 Also, blocking k = Also, Blocking + front coding

24 Κεφ. 5.3 ΣΥΜΠΙΕΣΗ ΤΩΝ ΚΑΤΑΧΩΡΗΣΕΩΝ 47 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Το αρχείο των καταχωρήσεων είναι πολύ μεγαλύτερο αυτού του λεξικού -τουλάχιστον 10 φορές. Βασική επιδίωξη: αποθήκευση κάθε καταχώρησης συνοπτικά Στην περίπτωση μας, μια καταχώρηση είναι το αναγνωριστικό ενός εγγράφου (docid). Για τη συλλογή τουreuters (800,000 έγγραφα), μπορούμε να χρησιμοποιήσουμε 32 bits ανά docid αν έχουμε ακεραίους 4-bytes. Εναλλακτικά, log 2 800, bits ανάdocid. Μπορούμε λιγότερο από 20 bits ανά docid; 48 24

25 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Αποθηκεύουμε τη λίστα των εγγράφων σε αύξουσα διάταξη των docid. computer: 33,47,154,159,202 Συνέπεια: αρκεί να αποθηκεύουμε τα κενά (gaps). 33,14,107,5,43 Γιατί;Τα περισσότερα κενά μπορεί να κωδικοποιηθούν/αποθηκευτούν με πολύ λιγότερα από 20 bits. 49 Κεφ. 5.3 Παράδειγμα 50 25

26 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Ένας όρος όπωςarachnocentricεμφανίζεται ίσως σε ένα έγγραφο στο εκατομμύριο. Ένας όρος όπως theεμφανίζεται σχεδόν σε κάθε έγγραφο, άρα 20 bits/εγγραφή πολύ ακριβό 51 Κωδικοποίηση μεταβλητού μεγέθους (Variable length encoding) Στόχος: Κεφ. 5.3 Για το arachnocentric, θα χρησιμοποιήσουμε εγγραφές ~20 bits/gap. Για το the, θα χρησιμοποιήσουμε εγγραφές ~1 bit/gap entry. Αν το μέσο κενόγια έναν όρο είναι G, θέλουμε να χρησιμοποιήσουμε εγγραφές ~log 2 Gbits/gap. Βασική πρόκληση: κωδικοποίηση κάθε ακεραίου (gap) με όσα λιγότερα bits είναι απαραίτητα για αυτόν τον ακέραιο. Αυτό απαιτεί κωδικοποίηση μεταβλητού μεγέθους --variable length encoding Αυτό το πετυχαίνουν χρησιμοποιώντας σύντομους κώδικες για μικρούς αριθμούς 52 26

27 Κωδικοί μεταβλητών Byte (Variable Byte (VB) codes) Κεφ. 5.3 Κωδικοποιούμε κάθε διάκενο με ακέραιο αριθμό από bytes Το πρώτο bit κάθε byte χρησιμοποιείται ως bit συνέχισης (continuation bit) Είναι 0 σε όλα τα bytes εκτός από το τελευταίο, όπου είναι 1 Χρησιμοποιείται για να σηματοδοτήσει το τελευταίο byte της κωδικοποίησης 53 Κωδικοί μεταβλητών Byte (Variable Byte (VB) codes) Ξεκίνα με ένα byte για την αποθήκευση του G Κεφ. 5.3 Αν G 127, υπολόγισε τη δυαδική αναπαράσταση με τα 7 διαθέσιμα bits and θέσεc =1 Αλλιώς, κωδικοποίησε τα 7 lower-order bits του G και χρησιμοποίησε επιπρόσθετα bytes για να κωδικοποιήσεις τα higher order bits με τον ίδιο αλγόριθμο Στο τέλος, θέσε το bit συνέχισης του τελευταίου byte σε 1 c=1 και στα άλλα c=

28 Κεφ. 5.3 Παράδειγμα docids gaps VB code Postings stored as the byte concatenation Key property: VB-encoded postings are uniquely prefix-decodable. For a small gap (5), VB uses a whole byte. 55 Κεφ. 5.3 Άλλες κωδικοποιήσεις Αντί για bytes, άλλες μονάδες πχ 32 bits (words), 16 bits, 4 bits (nibbles). Με byte χάνουμε κάποιο χώρο αν πολύ μικρά διάκενα nibbles καλύτερα σε αυτές τις περιπτώσεις do better in such cases. Οι κωδικοί VΒ χρησιμοποιούνται σε πολλά εμπορικά/ερευνητικά συστήματα 56 28

29 Κεφ. 5.3 Συμπίεση του RCV1 Data structure Size in MB dictionary, fixed-width 11.2 dictionary, term pointers into string 7.6 with blocking, k = with blocking & front coding 5.9 collection (text, xml markup etc) 3,600.0 collection (text) Term-doc incidence matrix 40,000.0 postings, uncompressed (32-bit words) postings, uncompressed (20 bits) postings, variable byte encoded postings, γ encoded Sec. 5.3 Περίληψη Μπορούμε να κατασκευάσουμε ένα ευρετήριο για Boolean ανάκτηση πολύ αποδοτικό από άποψη χώρου Μόνο 4% του συνολικού μεγέθους της συλλογής Μόνο το 10-15% του συνολικού κειμένουτης συλλογής Βέβαια, έχουμε αγνοήσει την πληροφορία θέσης Η εξοικονόμηση χώρου είναι μικρότερη στην πράξη Αλλά, οι τεχνικές είναι παρόμοιες 58 29

30 ΤΕΛΟΣ 1 ου μέρους 5 ου Μαθήματος Ερωτήσεις? Χρησιμοποιήθηκε κάποιο υλικό των: Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search(Stanford) 59 30

ΜΥΕ003: Ανάκτηση Πληροφορίας. Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 5: Στατιστικά Συλλογής. Συμπίεση.

ΜΥΕ003: Ανάκτηση Πληροφορίας. Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 5: Στατιστικά Συλλογής. Συμπίεση. ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 5: Στατιστικά Συλλογής. Συμπίεση. 1 Κεφ. 4-5 Τι θα δούμε σήμερα Κατασκευή ευρετηρίου Στατιστικά για τη συλλογή Συμπίεση 2 ΣΤΑΤΙΣΤΙΚΑ

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6: Συμπίεση Ευρετηρίου 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Κατασκευή ευρετηρίου Στατιστικά

Διαβάστε περισσότερα

ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαια 4, 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση

ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαια 4, 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαια 4, 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση 1 Κεφ. 4-5 Τι θα δούμε σήμερα Κατασκευή ευρετηρίου Στατιστικά για τη συλλογή

Διαβάστε περισσότερα

ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαια 4, 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση

ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαια 4, 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαια 4, 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση 1 Κεφ. 4-5 Τι θα δούμε σήμερα Κατασκευή ευρετηρίου Στατιστικά για τη συλλογή

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΜΥΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 4-5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. Συμπίεση 1 Κεφ. 4-5 Τι θα δούμε σήμερα Κατασκευή

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Ανάκτηση

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 4: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Ανάκτηση

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 8η: 22/03/2016 1 Ch. 5 Το οφέλη της συμπίεσης (γενικώς) Χρησιμοποιεί λιγότερο χώρο στον δίσκο Σώζει και κάποια χρήματα Διατηρούμε

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 7η: 21/03/2016 1 Ch. 4 Κατασκευή του ευρετηρίου Πώς κατασκευάζουμε το ευρετήριο; Ποιες στρατηγικές μπορούμε ν ακολουθήσουμε

Διαβάστε περισσότερα

4. Κατασκευή Ευρετηρίου

4. Κατασκευή Ευρετηρίου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 4. Κατασκευή Ευρετηρίου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων Πλάνο Προηγούμενο

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5(α): Συμπίεση Ευρετηρίου 1 ΣΤΑΤΙΣΤΙΚΑ ΣΥΛΛΟΓΗΣ 2 Κεφ. 5 Στατιστικά στοιχεία Πόσο μεγάλο είναι το

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Ανάκτηση Πληροφορίας. Φροντιστήριο 3 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα 3 Ανεστραμμένα Αρχεία 4 Εισαγωγή Με ποιους τρόπους μπορούμε

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 4η: 04/03/2017 1 Phrase queries 2 Ερωτήματα φράσεως Έστω ότι επιθυμούμε ν απαντήσουμε ερωτήματα της μορφής stanford university

Διαβάστε περισσότερα

Ανάκληση Πληπουοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληπουοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληπουοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Γιάλεξη 2η: 23/02/2016 1 Μεγάλες συλλογές (corpora) Έστωσαν N = 1M έγγραφα, το κάθε ένα με περίπου 1K όρους Avg 6 bytes/term, συμπεριλαμβανόμενων

Διαβάστε περισσότερα

Φροντιστήριο 4. Άσκηση 1. Λύση. Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών Εαρινό Εξάµηνο

Φροντιστήριο 4. Άσκηση 1. Λύση. Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών Εαρινό Εξάµηνο Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2007-2008 Εαρινό Εξάµηνο Άσκηση 1 Φροντιστήριο 4 Θεωρείστε ένα έγγραφο με περιεχόμενο «αυτό είναι ένα κείμενο και

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 3η: 28/02/2007 1 Συµπίεση Ευρετηρίου & Term

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude

Διαβάστε περισσότερα

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Τεχνικές Συµπίεσης Βίντεο Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Entropy Coding Δρ. Μαρία Κοζύρη Τεχνικές Συµπίεσης Βίντεο Ενότητα 3 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 3: Δομές για Λεξικά. Ανάκτηση Ανεκτική στα Σφάλματα (υποστήριξη *) 1 Ch. 2 Επανάληψη προηγούμενης

Διαβάστε περισσότερα

EPL 660: Lab 4 Introduction to Hadoop

EPL 660: Lab 4 Introduction to Hadoop EPL 660: Lab 4 Introduction to Hadoop Andreas Kamilaris Department of Computer Science MapReduce Πρόβλημα: Ανάγκη για επεξεργασία μεγάλου όγκου δεδομένων στα συστήματα ανάκτησης πληροφορίας. Λύση: κατανομή

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης Βάση

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #10 εικτοδότηση και Αναζήτηση Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Συµπίεση Ευρετηρίου. Term weighting. ιδάσκων ηµήτριος Κατσαρός, Ph.D.

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Συµπίεση Ευρετηρίου. Term weighting. ιδάσκων ηµήτριος Κατσαρός, Ph.D. Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 3η: 28/02/2007 1 Συµπίεση Ευρετηρίου & Term

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Ευρετηρίαση ΜΕΡΟΣ ΙIΙ. Επεξεργασία Κειμένου

Ευρετηρίαση ΜΕΡΟΣ ΙIΙ. Επεξεργασία Κειμένου Ευρετηρίαση ΜΕΡΟΣ ΙIΙ Επεξεργασία Κειμένου Ανάκτηση Πληροφορίας 2009-2010 1 Content Recap: Faster posting lists with skip pointers, Phrase and Proximity Queries, Dictionary Wild-Card Queries Permutex k-gram

Διαβάστε περισσότερα

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Κεφάλαιο 8 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 Ανάκτηση Πληροφορίας 2009-2010 1 Δομές

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική

Διαβάστε περισσότερα

EPL660: Information Retrieval and Search Engines Lab 5

EPL660: Information Retrieval and Search Engines Lab 5 EPL660: Information Retrieval and Search Engines Lab 5 Παύλος Αντωνίου Γραφείο: B109, ΘΕΕ01 University of Cyprus Department of Computer Science Classes in Hadoop: InputFormat Fundamental class in Hadoop

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Επεξεργασία & Οργάνωση Δεδομένων Κειμένου

Επεξεργασία & Οργάνωση Δεδομένων Κειμένου Επεξεργασία & Οργάνωση Δεδομένων Εφαρμογές Γλωσσικής Τεχνολογίας Σοφία Στάμου Γλώσσα και Επικοινωνία Κάθε γλωσσικό σύστημα διέπεται από κανόνες για τη χρήση, τη σύνταξη και την ερμηνεία των λέξεων Γιατί

Διαβάστε περισσότερα

Μεταπτυχιακή Διπλωματική Εργασία. «Τεχνικές Δεικτοδότησης Συστημάτων Ανάκτησης Πληροφορίας με τη χρήση Wavelet Trees» Κατσίπη Δήμητρα ΑΜ: 741

Μεταπτυχιακή Διπλωματική Εργασία. «Τεχνικές Δεικτοδότησης Συστημάτων Ανάκτησης Πληροφορίας με τη χρήση Wavelet Trees» Κατσίπη Δήμητρα ΑΜ: 741 Μεταπτυχιακό Πρόγραμμα: «Επιστήμη και Τεχνολογία Υπολογιστών» Μεταπτυχιακή Διπλωματική Εργασία «Τεχνικές Δεικτοδότησης Συστημάτων Ανάκτησης Πληροφορίας με τη χρήση Wavelet Trees» Κατσίπη Δήμητρα ΑΜ: 741

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός

Δυναμικός Κατακερματισμός Δυναμικός Κατακερματισμός Καλό για βάση δεδομένων που μεγαλώνει και συρρικνώνεται σε μέγεθος Επιτρέπει τη δυναμική τροποποίηση της συνάρτησης κατακερματισμού Επεκτάσιμος κατακερματισμός μια μορφή δυναμικού

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)

Διαβάστε περισσότερα

Επανάληψη προηγούμενης διάλεξης

Επανάληψη προηγούμενης διάλεξης Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 4: Κατασκευή Ευρετηρίου 1 Επανάληψη προηγούμενης διάλεξης 1. Δομές Δεδομένων για το Λεξικό 2. Ανάκτηση

Διαβάστε περισσότερα

Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463

Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF CRETE Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 4 η Σειρά Ασκήσεων Ψαράκη Μαρία-Γεωργία ΜΕΤ 556 psaraki@csd.uoc.gr Εαρινό Εξάμηνο 2008-2009

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη Ευρετήρια 1 Αρχεία Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη µνήµη. Η µεταφορά δεδοµένων από το δίσκο στη µνήµη και από τη

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Κεφ.11: Ευρετήρια και Κατακερματισμός

Κεφ.11: Ευρετήρια και Κατακερματισμός Κεφ.11: Ευρετήρια και Κατακερματισμός Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Κεφ. 11: Ευρετήρια-Βασική θεωρία Μηχανισμοί ευρετηρίου χρησιμοποιούνται για την επιτάχυνση

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval MYE003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole

MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η Ανάκτηση Πληροφορίας (Information Retrieval); Ανάγκη πληροφόρησης Συλλογή Εγγράφων Eρώτημα

Διαβάστε περισσότερα

MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole

MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η Ανάκτηση Πληροφορίας (Information Retrieval); Ανάγκη πληροφόρησης Συλλογή Εγγράφων Eρώτημα

Διαβάστε περισσότερα

MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole

MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά. Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole MYE003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η Ανάκτηση Πληροφορίας (Information Retrieval); Ανάγκη πληροφόρησης Συλλογή Εγγράφων Eρώτημα

Διαβάστε περισσότερα

(C) 2010 Pearson Education, Inc. All rights reserved.

(C) 2010 Pearson Education, Inc. All rights reserved. Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

HY150a Φροντιστήριο 3 24/11/2017

HY150a Φροντιστήριο 3 24/11/2017 HY150a Φροντιστήριο 3 24/11/2017 1 Assignment 3 Overview Το πρόγραμμα ζητείται να διαβάζει μια λίστα δεδομένων που περιγράφει τα διαθέσιμα τμήματα μνήμης (blocks) ενός ΗΥ. Το πρόγραμμα ζητείται να μεταφορτώνει

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 1η: 20/02/2017 1 Ειζαγωγή ζηο μάθημα & Ειζαγωγή ζηην Ανάκηηζη Πληροθορίας 2 Διδακτικό βοήθημα 1 Καλύπηει ηο ανηικείμενο ηοσ

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες

Διαβάστε περισσότερα

Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση:

Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση: Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 2009-2010 Φθινοπωρινό Εξάμηνο Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση: Σκοπός αυτής της

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Διδάσκοντες: Δημήτρης

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Ανάκτηση Πληροφοριών

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Ανάκτηση Πληροφοριών Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 1. Ανάκτηση Boole Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων Γνωριμία ιδάσκων: Χρήστος

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές

Διαβάστε περισσότερα

SMPcache. Ένα εργαλείο για προσομοίωση-οπτικοποίηση κρυφής μνήμης (Cache)

SMPcache. Ένα εργαλείο για προσομοίωση-οπτικοποίηση κρυφής μνήμης (Cache) SMPcache Ένα εργαλείο για προσομοίωση-οπτικοποίηση κρυφής μνήμης (Cache) 1. Βασικές ρυθμίσεις του συστήματος: δημιουργία μια δικής μας σύνθεσης συστήματος. Το SMPcache είναι ένα εργαλείο με το οποίο μπορούμε

Διαβάστε περισσότερα

Web Data Mining ΕΡΓΑΣΤΗΡΙΟ 2 & 3. Prepared by Costantinos Costa Edited by George Nikolaides. EPL 451 - Data Mining on the Web

Web Data Mining ΕΡΓΑΣΤΗΡΙΟ 2 & 3. Prepared by Costantinos Costa Edited by George Nikolaides. EPL 451 - Data Mining on the Web EPL 451 - Data Mining on the Web Web Data Mining ΕΡΓΑΣΤΗΡΙΟ 2 & 3 Prepared by Costantinos Costa Edited by George Nikolaides Semester Project Microsoft Malware Classification Challenge (BIG 2015) More info:

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ - UNIX. Συστήματα Αρχείων. Διδάσκoντες: Καθ. Κ. Λαμπρινουδάκης Δρ. Α. Γαλάνη

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ - UNIX. Συστήματα Αρχείων. Διδάσκoντες: Καθ. Κ. Λαμπρινουδάκης Δρ. Α. Γαλάνη ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ - UNIX Μάθημα: Λειτουργικά Συστήματα Συστήματα Αρχείων Διδάσκoντες: Καθ. Κ. Λαμπρινουδάκης (clam@unipi.gr) Δρ. Α. Γαλάνη (agalani@unipi.gr) Λειτουργικά Συστήματα 1 Αρχεία με Χαρτογράφηση

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΑ 3 και 9 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΕΣ Δεδομένα αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της δηλαδή.

Διαβάστε περισσότερα

Τελική Εξέταση, Απαντήσεις/Λύσεις

Τελική Εξέταση, Απαντήσεις/Λύσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) HMΜY 212 Οργάνωση Η/Υ και Μικροεπεξεργαστές Εαρινό Εξάμηνο, 2007 Τελική Εξέταση, Απαντήσεις/Λύσεις Άσκηση 1: Assembly για

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2017-2018 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ Κείμενα Ν. Μ. Σγούρος (sgouros@unipi.gr) Επεξεργασία Κειμένων Αναζήτηση Ακολουθιακή Αναζήτηση, Δομές Trie Συμπίεση Huffmann Coding, Run-Length Encoding, Burrows- Wheeler Κρυπτογράφηση

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες ως εξής P 1 K 1 P

Διαβάστε περισσότερα

0 The quick brown fox leaped over the lazy lazy dog 1 Quick brown foxes leaped over lazy dogs for fun

0 The quick brown fox leaped over the lazy lazy dog 1 Quick brown foxes leaped over lazy dogs for fun Κ24: Προγραμματισμός Συστήματος - 1η Εργασία, Εαρινό Εξάμηνο 2018 Προθεσμία Υποβολής: Κυριακή 18 Μαρτίου, 23:59 Εισαγωγή Στην εργασία αυτή θα υλοποιήσετε μία μίνι μηχανή αναζήτησης (search engine). Οι

Διαβάστε περισσότερα

Λύση (από: Τσιαλιαμάνης Αναγνωστόπουλος Πέτρος) (α) Το trie του λεξιλογίου είναι

Λύση (από: Τσιαλιαμάνης Αναγνωστόπουλος Πέτρος) (α) Το trie του λεξιλογίου είναι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών 2006-2007 Εαρινό Εξάμηνο 3 η Σειρά ασκήσεων (Ευρετηρίαση, Αναζήτηση σε Κείμενα και Άλλα Θέματα) (βαθμοί 12: όποιος

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort

Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση

Διαβάστε περισσότερα

CS 150 Assignment 2. Assignment 2 Overview Opening Files Arrays ( and a little bit of pointers ) Strings and Comparison Q/A

CS 150 Assignment 2. Assignment 2 Overview Opening Files Arrays ( and a little bit of pointers ) Strings and Comparison Q/A CS 150 Assignment 2 Assignment 2 Overview Opening Files Arrays ( and a little bit of pointers ) Strings and Comparison Q/A CS 150 Assignment 2 Overview Ζητείται ένα πρόγραμμα το διαβάζει από ένα αρχείο

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Τεχνικές NLP Σχεδιαστικά Θέματα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Τεχνικές NLP Σχεδιαστικά Θέματα ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Τεχνικές NLP Σχεδιαστικά Θέματα Natural Language Processing Επεξεργασία δεδομένων σε φυσική γλώσσα Κατανόηση φυσικής γλώσσας από τη μηχανή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ. Δημιουργία Ευρετηρίων Συλλογής Κειμένων

ΑΣΚΗΣΗ. Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος ΑΣΚΗΣΗ Δημιουργία Ευρετηρίων Συλλογής Κειμένων Σκοπός της άσκησης είναι η υλοποίηση ενός συστήματος επεξεργασίας

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

Μαζικός Παραλληλισμός λ με Map - Reduce. Μοντέλο Θέματα υλοποίησης Παραδείγματα διαχείρισης δεδομένων

Μαζικός Παραλληλισμός λ με Map - Reduce. Μοντέλο Θέματα υλοποίησης Παραδείγματα διαχείρισης δεδομένων Μαζικός Παραλληλισμός λ με Map - Reduce Μοντέλο Θέματα υλοποίησης Παραδείγματα διαχείρισης δεδομένων Ευχαριστίες Οι διαφάνειες στηρίζονται σε μεγάλο βαθμό στο υλικό που είναι διαθέσιμο από το εργαστήριο

Διαβάστε περισσότερα