Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
|
|
- Τιτάνια Λούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation z y (z + zy (z + ν y(z, ν ( For ν / {,,, } we have that J ν (z is a second solution of the differential equation ( the two solutions J ν (z J ν (z are clearly linearly independent For ν n {,,, } we have since n J n (z This implies that J n (z n ( k k n Γ( n + k + k! kn for k,,,, n Γ( n + k + kn ( n ( k k, Γ( n + k + k! ( k k n Γ( n + k + k! ( n+k (n+k Γ(k + (n + k! n ( k Γ(n + k + k! k ( n J n (z This implies that J n (z J n (z are linearly dependent for n {,,, } A second linearly independent solution can be found as follows Since ( n cos nπ, we see that J ν (z cos νπ J ν (z is a solution of the differential equation ( which vanishes when ν n {,,, } Now we define Y ν (z : J ν(z cos νπ J ν (z, (3 where the case that ν n {,,, } should be regarded as a limit case By l Hopital s rule we have Y n (z lim Y ν (z [ ] [ ] Jν (z ( n J ν (z ν n π ν π ν νn νn This implies that Y n (z ( n Y n (z for n {,,, } The function Y ν (z is called the Bessel function of the second kind of order ν Using the definition ( we find that [ ] Jν (z ν νn n J n (z ln ( k ψ(n + k + (n + k! k! k,
2 where For ν / {,,, } we have Now we use J ν (z ν ψ(z d dz ln Γ(z Γ (z Γ(z ν J ν (z ln + ( k ψ( ν + k + Γ( ν + k + k! k ( n lim (z + nγ(z z n n! Γ(z ( n (z + n n! for z n This implies that Hence lim ν n This implies that ψ(z Γ (z Γ(z ( n (z+n n! ( n (z+n n! z + n for z n ψ(z lim z n Γ(z ( n+ n! for n,,, ( k ψ( ν + k + Γ( ν + k + k! n ( n n ( n [ ] J ν (z ν νn (n k! k! (n k! k! k k + J n (z ln kn k + ( n ( k ψ( n + k + Γ( n + k + k! n k ( k ψ(k + k Γ(k + (n + k! ( + ( n z n n (n k! k k! k ( + ( n z n ( k ψ(k + (n + k! k! Finally we use the fact that J n (z ( n J n (z to conclude that Y n (z π J n(z ln ( n z n (n k! k π k! n π ( k (n + k! k! [ψ(n + k + + ψ(k + ] k for n {,,, } equations Compare with the theory of Frobenius for linear second differential
3 In the theory of second order linear differential equations of the form y + p(zy + q(zy, two solutions y y are linearly independent if only if y (z y (z W (y, y (z : y (z y (z y (zy (z y (zy (z This determinant is called the Wronskian of the solutions y y It can (easily be shown that this determinant of Wronski satisfies the differential equation W (z + p(zw (z This result is called Abel s theorem or the theorem of Abel-Liouville In the case of the Bessel differential equation we have p(z /z, which implies that for some constant c Now we have Theorem W (z + z W (z W (y, y (z c z W (J ν, J ν (z πz W (J ν, Y ν (z πz (4 For ν this implies that J ν (z J ν (z are linearly independent if ν / {,,, } that J ν (z Y ν (z are linearly independent for all ν Proof Note that W (J ν, Y ν (z J ν (zy ν(z J ν(zy ν (z J ν (z J ν(z cos νπ J ν(z J ν(z J ν(z cos νπ J ν (z Now we use the definition ( to obtain J ν (z J ν(zj ν(z J ν(zj ν (z ( k Γ(ν + k + k! zν+k ν+k J ν(z W (J ν, J ν (z ( k (ν + k Γ(ν + k + k! zν+k ν+k J ν (z m ( m Γ( ν + m + m! z ν+m ν+m J ν(z m ( m ( ν + m Γ( ν + m + m! z ν+m ν+m 3
4 z W (J ν, J ν (z z [ J ν (zj ν(z J ν(zj ν (z ] This implies that m m ( k+m ( ν + m Γ(ν + k + Γ( ν + m + k! m! zk+m k+m m ( k+m (ν + k Γ(ν + k + Γ( ν + m + k! m! zk+m k+m ( k+m (ν + k m Γ(ν + k + Γ( ν + m + k! m! zk+m k+m lim z W (J ν ν, J ν (z z Γ(ν + Γ( ν + ν νγ(νγ( ν π Using the definition ( we obtain d dz [zν J ν (z] d dz Similarly we have ( k Γ(ν + k + k! zν+k ν+k ( k Γ(ν + k k! zν+k ν+k zν J ν (z ( k (ν + k Γ(ν + k + k! zν+k ν+k d dz [zν J ν (z] z ν J ν (z zj ν(z + νj ν (z zj ν (z (5 d [ z ν J ν (z ] d dz dz ( k Γ(ν + k + k! z k ν+k ( k+ Γ(ν + k + k! z k+ ν+k+ z ν J ν+ (z ( k k Γ(ν + k + k! zk ν+k d [ z ν J ν (z ] z ν J ν+ (z zj dz ν(z νj ν (z zj ν+ (z (6 Elimination of J ν(z from (5 (6 gives J ν (z + J ν+ (z ν z J ν(z elimination of J ν (z from (5 (6 gives J ν (z J ν+ (z J ν(z 4
5 Special cases For ν / we have from the definition ( by using Legendre s duplication formula for the gamma function x ( k ( x k x ( k J / (x Γ(k + 3/ k! π (k +! xk sin x, x > πx for ν / we have ( k ( x k J / (x x Γ(k + / k! πx Note that the definition (3 implies that ( k (k! xk πx cos x, x > Y / (x J / (x πx cos x Y /(x J / (x πx sin x, x > First we will prove Theorem J ν (z Proof We start with Integral representations ( z ν Γ(ν + / e π izt ( t ν / dt, Re ν > / (7 e izt ( t ν / dt (iz n n n! t n ( t ν / dt Note that the latter integral vanishes when n is odd For n k we obtain using t u t k ( t ν / dt u k ( u ν / B(k + /, ν + / du u Now we use Legendre s duplication formula to find that π Γ(k π Γ(k + / k Γ(k Γ(k + k Γ(k + This proves the theorem e izt ( t ν / dt (iz k (k! Γ(ν + / π u k / ( u ν / du Γ(k + /Γ(ν + / Γ(ν + k + π (k! k k! Γ(k + /Γ(ν + / Γ(ν + k + ( k k Γ(ν + k + k! 5
6 We also have Poisson s integral representations Theorem 3 J ν (z ( z ν π Γ(ν + / e π iz cos θ (sin θ ν dθ ( z ν π Γ(ν + / cos(z cos θ (sin θ π ν dθ, Proof Use the substitution t cos θ to obtain e izt ( t ν / dt Further we have π e iz cos θ ( cos θ ν / ( sin θ dθ e iz cos θ cos(z cos θ + i sin(z cos θ sin(z cos θ(sin θ ν dθ Re ν > / e iz cos θ (sin θ ν dθ This shows that Poisson s integral representations follow from the integral representation (7 Remarks: The Fourier transform is defined by with inversion formula F (z : π f(t π e izt f(t dt e izt F (z dz This implies that the Fourier transform of the function is f(t F (z { ( t ν /, t, t > Γ(ν + / ν Jν (z Instead of the substitution t cos θ in (7 one can also use the substitution t sin θ, which leads to slightly different forms of Poisson s integral representations In fact we have ( z ν π/ J ν (z Γ(ν + / e π iz sin θ (cos θ ν dθ π/ ( z ν π/ Γ(ν + / cos(z sin θ (cos θ π ν dθ Γ(ν + / π π/ ( z ν π/ cos(z sin θ (cos θ ν dθ, Re ν > / 6
7 Integrals of Bessel functions The Hankel transform of a function f is defined by F (s tf(tj ν (st dt for functions f for which the integral converges The inversion formula is given by f(t sf (sj ν (st ds This pair of integrals is called a Hankel pair of order ν An example of such an integral is t µ e ρ t J ν (st dt Γ ( µ+ν ν+ Γ(ν + s ν ( (µ + ν/ ρ µ+ν F ; s ν + 4ρ, Re(µ + ν > It can be shown that the integral converges for Re(µ + ν > Now we use the definition ( to obtain t µ e ρ t ( k J ν (st dt Γ(ν + k + k! sν+k ν+k t µ+ν+k e ρ t dt Using the substitution ρ t u we find that t µ+ν+k e ρ t dt ρ µ ν k+ u (µ+ν+k / e u du ρ u ρ µ ν k u (µ+ν+k / e u du ( µ + ν + k ρ µ ν k Γ t µ e ρ t J ν (st dt ( k Γ ( µ+ν ρ µ ν + k s ν+k Γ(ν + k + k! ν+k ρ k Γ ( µ+ν ρ µ+ν Γ(ν + sν ν ( k ((µ + ν/ k (ν + k k! Γ ( µ+ν ν+ Γ(ν + s ν ρ µ+ν F ( (µ + ν/ ν + ; s 4ρ s k k ρ k The special case µ ν + is of special interest: in that case we have (µ + ν/ ν + This implies that the F reduces to a F which is an exponential function The result is t ν+ e ρ t J ν (st dt s ν (ρ ν+ e s /4ρ, Re ν > 7
8 Hankel functions The functions H ν ( (z H ν ( (z are defined by H ( ν (z : J ν (z + iy ν (z H ν ( (z : J ν (z iy ν (z These functions are called Hankel functions or Bessel functions of the third kind Note that these definitions imply that J ν (z H( ν (z + H ν ( (z Further we have H ( / (x J /(x + iy / (x Y ν (z H( ν (z H ν ( (z i (cos x + i sin x πx πx eix, x > H ( / (x J /(x iy / (x (cos x i sin x πx πx e ix, x > Similarly we have H ( / (x J /(x + iy / (x (sin x i cos x i πx πx eix, x > H ( / (x J /(x iy / (x (sin x + i cos x i πx πx e ix, x > Modified Bessel functions The modified Bessel function I ν (z of the first kind of order ν is defined by ( I ν (z : (z/ν Γ(ν + F ν + ; z ν 4 k Γ(ν + k + k! For ν this is a solution of the modified Bessel differential equation z y (z + zy (z + ν y(z, ν For ν / {,,, } we have that I ν (z is a second solution of this differential equation the two solutions I ν (z I ν (z are linearly independent For ν n {,,, } we have I n (z I n (z The modified Bessel function K ν (z of the second kind of order ν is defined by π K ν (z : [I ν(z I ν (z] for ν / {,,, } Now we have for x > I / (x πx sinh x, I /(x K n (z lim ν n K ν (z for n {,,, } π πx cosh x K /(x K / (x x e x 8
9 A generating function The Bessel function J n (z of the first kind of integer order n Z can also be defined by means of the generating function ( exp z ( t t J n (zt n (8 n In fact, the series on the right-h side is a so-called Laurent series at t for the function at the left-h side Using the Taylor series for the exponential function we obtain ( exp z ( t t ( zt ( exp exp z ( zt j ( k k t j! k! t a n t n j n For n {,,, } we have n+k ( k k n a n (n + k! k! ( k k Jn (z (n + k! k! This proves (8 a n If t e iθ, then we have j j ( j+n n+j ( n J n (z J n (z j! (n + j! ( t t eiθ e iθ i sin θ ( exp x ( t t cos(x sin θ + i sin(x sin θ e ix sin θ n n e ix sin θ cos(x sin θ + i sin(x sin θ J n (xe inθ n J n (x [cos(nθ + i sin(nθ] Since J n (x ( n J n (x this implies that cos(x sin θ J n (x cos(nθ J (x + J k (x cos(kθ sin(x sin θ n k J n (x sin(nθ k J k+ (x sin(k + θ For θ π/ this implies that cos x J (x + ( k J k (x sin x ( k J k+ (x For θ we also have J (x + J k (x k 9
10 The generating function (8 can be used to prove that The proof is as follows: n J n (x + y k J k (xj n k (y ( J n (x + yt n exp (x + y ( t t ( exp x ( t t ( exp y ( t t ( J k (xt k J m (yt m k m n k J k (xj n k (y t n We can also find an integral representation for the Bessel function J n (x of the first kind of integral order n starting from the generating function e ix sin θ n J n (xe inθ We use the orthogonality property of the exponential function, id est {, k Z, k e ikθ dθ π π, k π This implies that e ix sin θ e inθ dθ J n (x π The special case n reads π J (x π k e i(x sin θ nθ dθ π J k (x e ikθ e inθ dθ π J n (x π cos (x sin θ dθ π cos (x sin θ nθ dθ cos(xt t dt
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραSPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραCHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραDiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραD Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραA Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραF19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραIntegrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραArithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραDifferentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραOn the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότεραDifferential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραLecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότεραParametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραAnswer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Διαβάστε περισσότεραThe k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Διαβάστε περισσότεραECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραΤίτλος Μαθήματος: Ειδικές Συναρτήσεις
Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Συναρτήσεις Bessel ρώτου και δευτέρου είδους Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται σε
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότεραNotations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Διαβάστε περισσότεραLogsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,
Logsine integrals Notes by G.J.O. Jameson The basic logsine integrals are: log sin θ dθ = log( sin θ) dθ = log cos θ dθ = π log, () log( cos θ) dθ =. () The equivalence of () and () is obvious. To prove
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Διαβάστε περισσότεραEvaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότερα( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραOrbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
Διαβάστε περισσότερα1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραNotes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Διαβάστε περισσότεραAppendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότερα1. [Carrier, Krook and Pearson, Section 3-1 problem 1] Using the contour
. [Carrier, Krook and Pearson, Section 3- problem ] Using the contour Γ R Γ show that if a, b and c are real with b < 4ac, then dx ax + bx + c π 4ac b. Let r and r be the roots of ax + bx + c. By hypothesis
Διαβάστε περισσότεραSection 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραMock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Διαβάστε περισσότεραPg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραDERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Διαβάστε περισσότεραMATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότερα