Pipelined Datapath, Hazards and Forwarding
|
|
- ÍÊ Αγγελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Αρχιτεκτονική Υπολογιστών Νεκτάριος Κοζύρης Pipelined Datapath, Hazards and Forwarding
2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
3 Pipeline: Ένα παράδειγμα από.τη καθημερινή ζωή 1. Πλυντήριο 2. Στεγνωτήριο 3. Δίπλωμα 4. αποθήκευση Time Task order A B C D 6 PM AM Σειριακή προσέγγιση για 4 φορτία = 8h 30 min κάθε «φάση» Time 6 PM AM Task order A B Pipelined προσέγγιση για 4 φορτία = 3.5h C D Το κάθε «φορτίο» συνεχίζει να θέλει 2h, όμως περισσότερα «φορτία» ολοκληρώνονται ανά ώρα cslab@ntua ( ) 1
4 Εντολές MIPS Πέντε στάδια : 1. Φέρε την εντολή από τη μνήμη (-Instruction Fetch) 2. Διάβασε τους καταχωρητές, ενώ αποκωδικοποιείς την εντολή (+RegisterFile Read) (στο εξής θα λέμε: ) 3. Εκτέλεση της εντολής ή υπολογισμός διεύθυνσης (μέσω ALU) (EX-execute) 4. Προσπέλαση μνήμης (MEM) 5. Εγγραφή αποτελέσματος στο RegisterFile (-write back) cslab@ntua ( ) 2
5 Single-cycle vs pipelined performance: Single cycle: όλες οι εντολές διαρκούν ένα κύκλο ρολογιού, ίσο με το μήκος της πιο χρονοβόρου εντολής Έστω: 2 ns για ALU, MEM ανάγνωση ή εγγραφή και 1 ns για register file ανάγνωση ή εγγραφή Instruction class Instruct. fetch Register read ALU operation Data access Register Write Total Time Load word (lw) 2ns 1ns 2ns 2ns 1ns 8ns Store word (sw) 2ns 1ns 2ns 2ns 7ns R-Type (add,,and, or, slt) 2ns 1ns 2ns 1ns 6ns Branch(beq) 2ns 1ns 2ns 5ns cslab@ntua ( ) 3
6 Έστω οι παρακάτω εντολές lw: lw $1, 100($0) lw $2, 200($0) lw $3, 300($0) 3x8=24ns Κάθε 2ns τελειώνει και μια εντολή! Εδώ οι βαθμίδες δεν είναι απόλυτα ίσες. Στην ιδανική περίπτωση: time pipelined =time non_pipelined / number of pipe stages cslab@ntua ( ) 4
7 Στη single cycle υλοποίηση, η εντολή διαρκεί ένα κύκλο ίσο με την πιο χρονοβόρα (εδω: 8 ns) Στη pipeline υλοποίηση, το ρολόι κάθε φάσης (στάδιο-pipeline stage) διαρκεί (2 ns), ακόμα και αν υπάρχουν στάδια του 1ns Στο προηγούμενο παράδειγμα 14 ns για pipeline, 24ns για single cycle, άρα 1,71 επιτάχυνση. Άν είχαμε 1000 εντολές ακόμα: pipeline 1000x2ns + 14 ns = 2014 ns Single cycle 1000x8ns + 24 ns = 8024 ns Άρα επιτάχυνση: 8024/2014=3,98 ~4 (8ns/2ns ratio μεταξύ εντολών) cslab@ntua ( ) 5
8 Στάδια διόδου δεδομένων ενός κύκλου (single cycle datapath): ( result EX (ALU MEM (DM result) Ροή εκτέλεσης εντολών-δεδομένων: από αριστερά προς τα δεξιά Εξαίρεση? Write-back και επιλογή νέου PC ( hazard κίνδυνος δεδομένων (data ( hazard κίνδυνος ελέγχου (control cslab@ntua ( ) 6
9 Εκτέλεση αγωγού (pipelined execution) Τι θα γίνει αν χρησιμοποιούμε την ίδια λειτουργική μονάδα (Functional Unit), π.χ. IM, RegFile, ALU, DM σε διαφορετικούς κύκλους για διαφορετικές εντολές? ( ) 7
10 Mόνο για RegFile: Μπορούμε να διαβάσουμε και να γράψουμε το RegFile στον ίδιο κύκλο: (θα μας βοηθήσει σε αποφυγή κινδύνων» hazards) Στο πρώτο μισό του κύκλου γράφουμε (σκιασμένο αριστερά) και στο δεύτερο μισό διαβάζουμε (σκιασμένο δεξιά) κύκλος: γράφουμε-διαβάζουμε Γενικά για Functional Units: Όταν ένα functional unit ήέναςpipeline register είναι σκιασμένο σημαίνει ότι χρησιμοποιείται για ανάγνωση (σκιασμένο δεξιά) ήεγγραφή(σκιασμένο αριστερά) ( ) 8
11 Στην υλοποίηση του multicycle datapath, είχαμε την ίδια μονάδα να χρησιμοποιείται από την ίδια εντολή σε διαφορετικούς κύκλους, π.χ. ALU ήμεμ Στην pipelined υλοποίηση του datapath, έχουμε την ίδια μονάδα να χρησιμοποιείται από διαφορετικές (διαδοχικές) εντολές σε διαφορετικούς (διαδοχικούς) κύκλους Πώς διασφαλίζεται ορθότητα εκτέλεσης κάθε εντολής; Καταχωρητές κατάλληλου;;; μεγέθους ανάμεσα σε διαδοχικά στάδια (pipeline stages) ( ) 9
12 Pipelined εκδοχή του single cycle datapath (προσθέσαμε τους καταχωρητές-pipeline registers ανάμεσα σε διαδοχικά στάδια) ( ) 10
13 Read_Register_1 Read_Register_2 Ι-Type: op 6 bits rs 5 bits rt 5 bits address_offset 16 bits ( address_offset($rs lw $rt, R-Type: ( type (register op 6 bits rs 5bits rt 5bits rd 5bits shamt 5bits funct 6bits add $rd, $rs, $rt Write_Register Op: opcode rs,rt: register source operands Rd: register destination operand Shamt: shift amount Funct: op specific (function code) cslab@ntua ( ) 11
14 ( ) 12
15 ( ) 13
16 ( ) 14
17 ( ) 15
18 ( ) 16
19 To διορθωμένο pipeline για την lw: O αριθμός του write register έρχεται και αυτός μέσα από το pipeline τη σωστή στιγμή cslab@ntua ( ) 17
20 Τα τμήματα του datapath που χρησιμοποιήθηκαν κατά την εκτέλεση της lw: ( ) 18
21 ( ) 19
22 ( ) 20
23 ( ) 21
24 ( ) 22
25 Κίνδυνοι Σωλήνωσης (Pipeline Hazards) Δομικοί Κίνδυνοι (structural hazards) Το υλικό δεν μπορεί να υποστηρίξει το συνδυασμό των εντολών που θέλουμε να εκτελέσουμε στον ίδιο κύκλο μηχανής. (π.χ. ενιαία L1 $ για I & D) Κίνδυνοι Ελέγχου (control hazards) Το υλικό δεν μπορεί να προχωρήσει την εκτέλεση επόμ,ενων εντολών καθώς αναμένεται η ολοκλήρωση της εκτέλεσης μιας εντολής (π.χ. Branches) Κίνδυνοι Δεδομένων (data hazards) cslab@ntua ( ) 23
26 Κίνδυνοι Δεδομένων (Data Hazards) / Το σχήμα προώθησης (forwarding) $2, $1, $3 # καταχωρητής $2 γράφεται από τη and $12, $2, $5 # 1 ος τελεστέος ($2) εξαρτάται από or $13, $6, $2 # 2 ος τελεστέος ($2) εξαρτάται από add $14, $2, $2 # 1 ος &2 ος τελεστέος $2) -//- από sw $15, 100($2) # offset ($2) -//- από cslab@ntua ( ) 24
27 RAW WAR X Y+K Y X+S Y Z+K WAW Εξαρτήσεις Δεδομένων RAW (Read-After-Write) (true-dependence) Η ανάγνωση ενός καταχωρητή πρέπει να ακολουθεί την εγγραφή στον ίδιο καταχωρητή από προηγούμενη εντολή WAR: (Write-After-Read) (anti-dependence) Η εγγραφή σε ένα καταχωρητή πρέπει να ακολουθεί την ανάγνωσή του από προηγούμενη εντολή WAW: (Write-After-Write) (output-dependence) Η εγγραφή σε ένα καταχωρητή πρέπει να ακολουθεί όλες τις εγγραφές στον ίδιο καταχωρητή από προηγούμενες εντολές cslab@ntua ( ) 25
28 RAW - add $t0, $s0, $s1 $t2, $t0, $s3 or $s3, $t7, $s2 mult $t2, $t7, $s0 True dependence cslab@ntua ( ) 26
29 WAR - add $t0, $s0, $s1 $t2, $t0, $s3 or $s3, $t7, $s2 mult $t2, $t7, $s0 Name dependence - antidependence cslab@ntua ( ) 27
30 WAW - add $t0, $s0, $s1 $t2, $t0, $s3 or $s3, $t7, $s2 mult $t2, $t7, $s0 name dependence - output dependence cslab@ntua ( ) 28
31 Identify all of the dependencies RAW WAR WAW add $t0, $s0, $s1 MEM $t2, $t0, $s3 MEM or $s3, $t7, $s2 MEM mul $t2, $t7, $s0 MEM cslab@ntua ( ) 29
32 Which dependencies cause hazards? (stalls) RAW WAR WAW add $t0, $s0, $s1 MEM $t2, $t0, $s3 MEM or $s3, $t7, $s2 MEM mul $t2, $t7, $s0 MEM cslab@ntua ( ) 30
33 Let s reorder the or RAW WAR WAW add $t0, $s0, $s1 MEM $t2, $t0, $s3 MEM or $s3, $t7, $s2 MEM mul $t2, $t7, $s0 MEM cslab@ntua ( ) 31
34 Let s reorder the or RAW WAR WAW add $t0, $s0, $s1 MEM or $s3, $t7, $s2 RAW $t2, $t0, $s3 MEM MEM mul $t2, $t7, $s0 MEM cslab@ntua ( ) 32
35 Let s reorder the mul RAW WAR WAW add $t0, $s0, $s1 MEM $t2, $t0, $s3 MEM or $s3, $t7, $s2 MEM mul $t2, $t7, $s0 MEM cslab@ntua ( ) 33
36 Let s reorder the mul RAW WAR WAW add $t0, $s0, $s1 MEM mul $t2, $t7, $s0 MEM $t2, $t0, $s3 MEM or $s3, $t7, $s2 MEM cslab@ntua ( ) 34
37 How to alleviate name dependencies? add $t0, $s0, $s1 MEM $t2, $t0, $s3 MEM or $s3, $t7, $s2 MEM mul $t2, $t7, $s0 MEM cslab@ntua ( ) 35
38 Data Hazards: Οι εντολές ανταλλάσσουν μεταξύ τους δεδομένα μέσω του Register File και της μνήμης. Όταν η επόμενη εντολή-ες χρειάζεται για όρισμα (ανάγνωση) κάτι που δεν έχει προλάβει να γράψει η προηγούμενη $2,$1,$3 EX MEM and $12,$2,$5 EX MEM or $13,$6, $2 EX MEM add $14, $2,$2 EX MEM sw $15, 100($2) EX MEM cslab@ntua ( ) 36
39 Μία λύση είναι η καθυστέρηση(stall) του αγωγού (pipeline): Προσθέτω δύο εντολές NOP: $2, $1, $3 nop nop and $12, $2, $5 or $13, $6, $2 add $14, $2, $2 ( 100($2 sw $15, STALL (κύκλοι αναμονής) $2,$1,$3 EX MEM nop nop and $12,$2,$5 EX MEM or $13,$6, $2 EX MEM add $14, $2,$2 EX MEM sw $15, 100($2) EX MEM cslab@ntua ( ) 37
40 Πιο κομψή λύση είναι η προώθηση (forwarding): Έχουμε εξάρτηση δεδομένων RAW. Τα αποτελέσματα γράφονται είτε στην μνήμη είτε στο register file. Στην περίπτωση R-TYPE: Αποθηκεύονται στο RegFile, παράγονται όμως μετά την ALU, άρα είναι διαθέσιμα στον EX/MEM Πώς θα βρούν η επόμενη και η μεθεπόμενη εντολή στη φάση EX τα σωστά ορίσματα: 1. Προωθούμε το EX/MEM αποτέλεσμα ως είσοδο για την ALU πράξη της επόμενης εντολής 2. Το ίδιο κάνουμε για τη μέθεπόμενη εντολή, προωθούμε το MEM/ αποτέλεσμα, ως είσοδο για την ALU πράξη της μεθεπόμενης εντολή Είσοδο στην ALU όχι μόνο από /EX καταχωρητή!! ( ) 38
41 1a. EX/MEM.RegisterRd = /EX.RegisterRs 1b. EX/MEM.RegisterRd = /EX.RegisterRt 2a. MEM/.RegisterRd = /EX.RegisterRs 2b. MEM/.RegisterRd = /EX.RegisterRt Δύο περιπτώσεις (αιτίες) για hazard: Από φάση ΕΧ και από φάση ΜΕΜ -and hazard: EX/MEM.RegisterRd = /EX.RegisterRs = $2 -or hazard: MEM/.RegisterRd = /EX.RegisterRt = $2 cslab@ntua ( ) 39
42 Forwarding: Πρώτα ανιχνεύουμε την πιθανή αιτία κινδύνου Μετά κάνουμε προώθηση της κατάλληλης τιμής Forwarding για αποφυγή EX hazard Forwarding για αποφυγή MEM hazard NO hazard!! ( ) 40
43 Συνθήκες ελέγχου των κινδύνων: 1. EX hazard: if (EX/MEM.RegWrite and (EX/MEM.RegisterRd 0) and (EX/MEM.RegisterRd = /EX.RegisterRs)) ForwardA = 10 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd 0) and (EX/MEM.RegisterRd = /EX.RegisterRt)) ForwardB=10 cslab@ntua ( ) 41
44 2. MEM hazard: if (MEM/.RegWrite and (ΜΕΜ/WΒ.RegisterRd 0) and (EX/MEM.RegisterRd = /EX.RegisterRs)) ForwardA = 01 if (MEM/ RegWrite ( MEM/.RegisterRd 0 ) and and (MEM/.RegisterRd = /EX.RegisterRt)) ForwardB = 01 cslab@ntua ( ) 42
45 Pipelining χωρίς forwarding Forwarding paths: Από: a) ΕΧ/ΜΕΜ register και από: b) MEM/ register προς τις εισόδους της ALU ( ) 43
46 Datapath to resolve hazards via forwarding: ( ) 44
47 Σχεδιασμός Control Είσοδοι Πεδία του instruction Έξοδοι Σήματα ελέγχου ALU Σήματα ελέγχου μνήμης Πολυπλέκτες Combinational control logic Inputs Outputs Datapath control outputs Finite State Machine Inputs from instruction register opcode field State register Next state ( ) 45
48 Σχεδιασμός Control FSM (Multicycle datapath) Start Instruction fetch 0 MemRead ALUSrcA = 0 IorD = 0 IRWrite ALUSrcB = 01 ALUOp = 00 PCWrite PCSource = 00 1 Instruction decode/ register fetch ALUSrcA = 0 ALUSrcB = 11 ALUOp = 00 (Op = 'LW') or (Op = 'SW') (Op = R-type) (Op = 'BEQ') (Op = 'J') 2 Memory address computation ALUSrcA = 1 ALUSrcB = 10 ALUOp = 00 6 Execution ALUSrcA = 1 ALUSrcB = 00 ALUOp = 10 8 Branch completion ALUSrcA = 1 ALUSrcB = 00 ALUOp = 01 PCWriteCond PCSource = 01 9 Jump completion PCWrite PCSource = 10 3 (Op = 'LW') MemRead IorD = 1 Memory access (Op = 'SW') Memory access 5 7 MemWrite IorD = 1 RegDst = 1 RegWrite MemtoReg = 0 R-type completion 4 Memory read completon step RegDst = 1 RegWrite MemtoReg = 0 cslab@ntua ( ) 46
49 Multicycle datapath IorD MemRead MemWrite IRWrite RegDst RegWrite ALUSrcA 0 M ux PC Instruction Read 0 Address [25 21] register 1 1 Memory MemData Write data Instruction [20 16] Instruction [15 0] Instruction register Instruction [15 0] Memory data register Instruction [15 11] 0 M ux 1 0 M ux 1 Read register 2 Registers Write register Write data 16 Sign 32 extend Read data 1 Read data 2 Shift left 2 A M ux 1 B M ux 2 3 Zero ALU ALU result ALU control ALUOut Instruction [5 0] MemtoReg ALUSrcB ALUOp cslab@ntua ( ) 47
50 Datapath to resolve hazards via forwarding: ( ) 48
51 ( ) 49
52 ( ) 50
53 ( ) 51
54 Kίνδυνοι δεδομένων (data hazards) και αναπόφευκτες καθυστερήσεις (stalls) εξ αιτίας τους Όταν η εντολή που κάνει write είναι R-TYPE, τότε το αποτέλεσμα είναι έτοιμο στην φάση EX (έξοδος ALU) και αποθηκέυεται, στο τέλος του κύκλου, στον EX/MEM καταχωρητή. Οι επόμενες χρειάζονται τα ορίσματα στην φάση ΕΧ οπότε το forwarding δουλεύει. (αφού η εντολή που κάνει write θα βρίσκεται στις ΜΕΜ και ) Το forwarding δεν δίνει όμως πάντα λύση!! cslab@ntua ( ) 52
55 αναπόφευκτες καθυστερήσεις (stalls): Όταν η προηγούμενη εντολή (που κάνει write) είναι load ή store, τότε το αποτέλεσμα είναι έτοιμο στο τέλος της φάσης MEM ή και (ακόμα χειρότερα) ( ) 53
56 Λύση: αναπόφευκτες καθυστερήσεις (stalls) στο pipeline Επαναλαμβάνουμε τις ίδιες φάσεις: για την and και για την or. ( ) 54
57 Πως ανιχνεύουμε τις αναπόφευκτες καθυστερήσεις: Hazard detection unit Λειτουργεί στη φάση ώστε να βάλει καθυστέρηση μεταξύ του load και της χρησιμοποίησης των αποτελεσμάτων του. If (/EX.MemRead and ((/EX.RegisterRt = / RegisterRs) or (/EX.RegisterRt = /.RegisterRt))) Stall the pipeline Τι σημαίνει stall: Εμποδίζουμε το PC και τον / να αλλάξουνάρα διαβάζεται σε δύο διαδοχικούς κύκλους η ίδια εντολή και αποκωδικοποιείται η ίδια επόμενή της δύο φορές συνεχόμενα cslab@ntua ( ) 55
58 Final Pipeline: ( ) 56
59 Άσκηση Pipeline Δεδομένα Έχουμε ένα loop... Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: ( ) 57
60 Άσκηση Pipeline Δεδομένα Έχουμε ένα loop... Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: και αυτή την αρχική κατάσταση στους καταχωρητές $1: 500 $7: 5 Δεν υπάρχει cache miss Cache hit σε 1cc branches γίνονται resolve στο MEM stage cslab@ntua ( ) 58
61 Ζητούμενο Για το 1 ο LOOP (μέχρι και το lw του 2 ου LOOP) Να δείξετε τα διάφορα στάδια του pipeline (Διάγραμμα χρονισμού) που περνάνε οι εντολές. Υποδείξτε και εξηγείστε τα πιθανά hazards που μπορούν να προκύψουν κατά την εκτέλεση, καθώς και τον τρόπο που αντιμετωπίζονται. Κύκλος Εντολή 1 Εντολή 2 Εντολή EX MEM EX MEM cslab@ntua ( ) 59
62 Ζητούμενο (2) Πόσοι κύκλοι απαιτούνται συνολικά για να ολοκληρωθεί ο βρόχος (για όλες τις επαναλήψεις του, όχι μόνο για την 1η); Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: Κύκλος Εντολή 1 Εντολή EX MEM EX MEM Εντολή cslab@ntua ( ) 60
63 Απάντηση Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: $1: 500 $7: 5 Δεν υπάρχει cache miss cache hit σε 1cc $1 = 500, 495, 490, 485,... Ο βρόχος θα εκτελεστεί για 500 / 5 = 100 επαναλήψεις. cslab@ntua ( ) 61
64 Το διάγραμμα χρονισμού του pipeline για τη χρονική διάρκεια που ζητείται είναι το ακόλουθο: Κύκλος lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep lw $2,100($3) EX MEM EX MEM EX MEM EX MEM EX MEM Κύκλος lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep EX MEM lw $2,100($3) EX MEM cslab@ntua ( ) 62
65 Ή πιο συμπιεσμένο για να χωράει σε μια σελίδα C C lw sw bne lw EX M cslab@ntua ( ) 63
66 Hazards C C lw sw bne lw EX M Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: Stalls στους κύκλους 4,5: Ο καταχωρητής $2 για την εντολή $2,$2,$5 (η ανάγνωση του οποίου γίνεται στο στάδιο ) γίνεται διαθέσιμος στο τέλος του κύκλου 5 (στάδιο ) από την εντολή lw. cslab@ntua ( ) 64
67 Hazards C C lw sw bne lw EX M Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: Stalls στους κύκλους 7,8: O $2 για την εντολή sw $2,100($3) γίνεται διαθέσιμος στο τέλος του κύκλου 8. cslab@ntua ( ) 65
68 Hazards C C lw sw bne lw EX M Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: Stalls στους κύκλους 12,13: Ο $1 για την εντολή bne $1,$0,Rep γίνεται διαθέσιμος στο τέλος του κύκλου 13. cslab@ntua ( ) 66
69 Hazards C C lw sw bne lw EX M Το δεύτερο στιγμιότυπο της εντολής lw $2,100($3) αρχίζει να εκτελείται από τον κύκλο 16, διότι η απόφαση για την διακλάδωση ελήφθη στον κύκλο 15. cslab@ntua ( ) 67
70 Υπολογισμός χρόνου C C lw sw bne lw EX M 15 κύκλοι ρολογιού Γιαταπρώτα99 loops έχουμε 99 15cc= 1485cc. Για την 100 η επανάληψη έχουμε 16cc. Συνολικά απαιτούνται 1485cc + 16cc = 1501cc για την εκτέλεση του βρόχου. cslab@ntua ( ) 68
71 Pipeline 2 Για την ίδια ακολουθία εντολών, δείξτε και εξηγείστε τον χρονισμό του pipeline, θεωρώντας τώρα ότι υπάρχει σχήμα προώθησης. Θεωρείστε ότι οι αποφάσεις για τις διακλαδώσεις λαμβάνονται στο στάδιο ΜΕΜ. Πόσοι κύκλοι απαιτούνται συνολικά για να ολοκληρωθεί ο βρόχος; Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0, Rep Exit: cslab@ntua ( ) 69
72 Με / Χωρίς προώθηση C C lw sw bne lw EX M C C lw EX 4 M EX M sw EX M bne lw cslab@ntua ( ) 70
73 Hazards Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0,Rep Exit: Στον κύκλο 4 υπάρχει stall. Γιατί; C C lw sw bne lw EX 4 MEM EX MEM EX MEM EX MEM EX MEM EX MEM EX MEM cslab@ntua ( )
74 Hazards Rep: lw $2,100($3) $2,$2,$5 sw $2,100($3) $3,$3,$6 $1,$1,$7 bne $1,$0,Rep Exit: C C lw sw bne lw EX Η τιμή της θέσης μνήμης 100($3), που θα αποθηκευτεί στον $2, δεν μπορεί να είναι διαθέσιμη πριν το στάδιο MEM. Όταν όμως θα γίνει διαθέσιμη στο τέλος του κύκλου αυτού θα προωθηθεί στις εισόδους της ALU, ώστε να εκτελεστεί η εντολή $2,$2,$5 χωρίς να περιμένουμε να γραφτεί η τιμή στον $2. Αποφεύγεται το stall που είχαμε στην προηγούμενη περίπτωση στην κύκλο 5 4 MEM EX MEM EX MEM EX MEM EX MEM EX MEM cslab@ntua ( ) EX MEM
75 C C lw sw bne lw 1 Το ίδιο ισχύει και για τα stalls που είχαμε στους κύκλους 7, EX M C C lw EX 4 M EX M sw EX M bne lw cslab@ntua ( ) 73
76 C C lw sw bne lw 1 Το ίδιο ισχύει και για τα stalls που είχαμε στους κύκλους 12, EX M C C lw EX 4 M EX M sw EX M bne lw cslab@ntua ( ) 74
77 Υπολογισμός χρόνου C C lw EX 4 M EX M sw EX M bne lw 10 κύκλοι ρολογιού Γιαταπρώτα99 loops έχουμε 99 10cc = 990cc. Για την 100η επανάληψη έχουμε 11cc. Συνολικά απαιτούνται 990cc + 11cc = 1001cc για την εκτέλεση του βρόχου. Χωρίς την προώθηση χρειαστήκαμε 1501cc. cslab@ntua ( ) 75
78 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
Pipeline: Ένα παράδειγμα από.τη καθημερινή ζωή. 30 min κάθε «φάση»
Pipeline: Ένα παράδειγμα από.τη καθημερινή ζωή 1. Πλυντήριο 2. Στεγνωτήριο 3. Δίπλωμα 4. αποθήκευση Σειριακή προσέγγιση για 4 φορτία = 8h 30 min κάθε «φάση» Pipelined προσέγγιση για 4 φορτία = 3.5h Το
30 min κάθε «φάση» Pipeline: Ένα παράδειγµα από.τη καθηµερινή ζωή. 1. Πλυντήριο. 2. Στεγνωτήριο. 3. ίπλωµα. 4. αποθήκευση. προσέγγιση για 4.
Pipeline: Ένα παράδειγµα από.τη καθηµερινή ζωή Time 6 PM 7 8 9 10 11 12 1 2 AM 1. Πλυντήριο 2. Στεγνωτήριο 3. ίπλωµα 4. αποθήκευση Task order A B C D Σειριακή προσέγγιση για 4 φορτία =8h 30 min κάθε «φάση»
Pipeline: Ένα παράδειγµα από.τη καθηµερινή ζωή. 30 min κάθε «φάση»
Pipeline: Ένα παράδειγµα από.τη καθηµερινή ζωή 1. Πλυντήριο 2. Στεγνωτήριο 3. ίπλωµα 4. αποθήκευση Time Task order A B C D 6 PM 7 8 9 10 11 12 1 2 AM Σειριακή προσέγγιση για 4 φορτία =8h 30 min κάθε «φάση»
Single Cycle Datapath. Αρχιτεκτονική Υπολογιστών. 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: Νεκ. Κοζύρης
Αρχιτεκτονική Υπολογιστών 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: 2014-2015 Νεκ. Κοζύρης nkoziris@cslab.ece.ntua.gr Single Cycle Datapath http://www.cslab.ece.ntua.gr/courses/comparch/ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Multi Cycle Datapath. Αρχιτεκτονική Υπολογιστών. 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: Νεκ. Κοζύρης
Αρχιτεκτονική Υπολογιστών 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: 2014-2015 Νεκ. Κοζύρης nkoziris@cslab.ece.ntua.gr Multi Cycle Datapath http://www.cslab.ece.ntua.gr/courses/comparch/ Άδεια Χρήσης Το παρόν εκπαιδευτικό
O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control)
O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control) 4 κατηγορίες εντολών: Σχεδίαση datapath Αριθμητικές-λογικές εντολές (add, sub, slt κλπ) R Type Εντολές αναφοράς στη μνήμη (lw,
Σχεδίαση μονάδας ελέγχου επεξεργαστή
Σχεδίαση μονάδας ελέγχου επεξεργαστή Αρχιτεκτονική Υπολογιστών 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: 29-2 Νεκτάριος Κοζύρης nkoziris@cslab.ece.ntua.gr http://www.cslab.ece.ntua.gr/courses/comparch/ Datapath ενός
O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control)
O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control) 4 κατηγορίες εντολών: Σχεδίαση datapath Αριθμητικές-λογικές εντολές (add, sub, slt κλπ) R Type Εντολές αναφοράς στη μνήμη (lw,
και η µονάδα ελέγχου (control) O επεξεργαστής: Η δίοδος δεδοµένων (datapath) Εντολές διακλάδωσης (branch beq, bne) I Type Σχεδίαση datapath
O επεξεργαστής: Η δίοδος δεδοµένων (path) και η µονάδα ελέγχου (control) Σχεδίαση path 4 κατηγορίες εντολών: Αριθµητικές-λογικές εντολές (add, sub, slt κλπ) R Type Εντολές αναφοράς στη µνήµη (lw, sw) I
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. Αρχιτεκτονική Υπολογιστών Νεκτάριος Κοζύρης. Multicycle datapath
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Αρχιτεκτονική Υπολογιστών Νεκτάριος Κοζύρης lticycle path Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Τέτοιες λειτουργίες γίνονται διαμέσου του
Για κάθε εντολή υπάρχουν δυο βήματα που πρέπει να γίνουν: Προσκόμιση της εντολής (fetch) από τη θέση που δείχνει ο PC Ανάγνωση των περιεχομένων ενός ή δύο καταχωρητών Τέτοιες λειτουργίες γίνονται διαμέσου
Κάθε functional unit χρησιµοποιείται µια φορά σε κάθε κύκλο: ανάγκη για πολλαπλό hardware = κόστος υλοποίησης!
Single-cyle υλοποίηση: ιάρκεια κύκλου ίση µε τη µεγαλύτερη εντολή-worst case delay (εδώ η lw) = χαµηλή απόδοση! Αντιβαίνει µε αρχή: Κάνε την πιο απλή περίπτωση γρήγορη (ίσως και εις βάρος των πιο «σύνθετων»
Κάθε functional unit χρησιμοποιείται μια φορά σε κάθε κύκλο: ανάγκη για πολλαπλό hardware = κόστος υλοποίησης!
Single-cyle υλοποίηση: Διάρκεια κύκλου ίση με τη μεγαλύτερη εντολή-worst case delay (εδώ η lw) = χαμηλή απόδοση! Αντιβαίνει με αρχή: Κάνε την πιο απλή περίπτωση γρήγορη (ίσως και εις βάρος των πιο «σύνθετων»
2 η Ενδιάμεση Εξέταση Λύσεις/Απαντήσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) HMMY 212 Οργάνωση Η/Υ και Μικροεπεξεργαστές Εαρινό Εξάμηνο, 2007 2 η Ενδιάμεση Εξέταση Λύσεις/Απαντήσεις Άσκηση 1: Διασωλήνωση
Διάλεξη 12 Καθυστερήσεις (Stalls) Εκκενώσεις Εντολών (Flushing)
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 2 Καθυστερήσεις (Stalls) Εκκενώσεις Εντολών (Flushing) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Καθυστερήσεις και Εκκενώσεις Εντολών
Υλοποίηση Mικροεπεξεργαστή MIPS -16
Υλοποίηση Mικροεπεξεργαστή MIPS -16 Διάδρομος Δεδομένων και Μονάδα Ελέγχου 1 Περίληψη Μνήμη RAM Εκτέλεση εντολών με πολλαπλούς κύκλους Σχεδιασμός Διαδρόμου Δεδομένων (Data Path) Καταχωρητής Εντολών (Instruction
Διάλεξη 12 Καθυστερήσεις (Stalls)
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 12 Καθυστερήσεις (Stalls) Νίκος Μπέλλας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 1 Καθυστερήσεις και Εκκενώσεις Εντολών Οι κίνδυνοι δεδομένων (data
2η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Ακ. έτος , 5ο Εξάμηνο Σχολή ΗΜ&ΜΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ε Ρ Γ Α Σ Τ ΗΡ ΙΟ Υ ΠΟΛΟΓΙΣ Τ Ι Κ Ω Ν Σ Υ Σ Τ ΗΜΑΤΩΝ w w w. c s l ab.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΔΕΥΤΕΡΗ ΠΡΟΟΔΟΣ ΣΤΗΝ ΟΡΓΑΝΩΣΗ ΣΤΟΥΣ Η/Y (ΗΥ232)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΔΕΥΤΕΡΗ ΠΡΟΟΔΟΣ ΣΤΗΝ ΟΡΓΑΝΩΣΗ ΣΤΟΥΣ Η/Y (ΗΥ232) Δευτέρα, 3 Νοεμβρίου 25 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 3 ΛΕΠΤΑ Για πλήρη
ΠΛΕ- 027 Μικροεπεξεργαστές 6ο μάθημα: Αρχιτεκτονική πυρήνα: υλοποίηση με διοχέτευση
ΠΛΕ- 027 Μικροεπεξεργαστές 6ο μάθημα: Αρχιτεκτονική πυρήνα: υλοποίηση με διοχέτευση Αρης Ευθυμίου Απόδοση απλής υλοποίησης Υλοποίηση ενός κύκλου είναι πολύ αργή κάθε κύκλος είναι τόσο μεγάλος όσο χρειάζεται
ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I
ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I MIPS Η MIPS (Microprocessor without Interlocked Pipeline Stages) είναι μία αρχιτεκτονική συνόλου εντολών (ISA) γλώσσας μηχανής που αναπτύχθηκε από την εταιρεία
Διάλεξη 11 Προώθηση (Forwarding)
ΗΥ 3 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη Προώθηση (Forwarding) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων (HY3) Η μέχρι τώρα μικρο-αρχιτεκτονική του MIPS ID/EX PCSrc Control WB
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Οργάνωση επεξεργαστή Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Pipeline: Ένα παπάδειγμα από.ηη καθημεπινή ζωή. 30 min κάθε «φάση»
Pipeline: Ένα παπάδειγμα από.ηη καθημεπινή ζωή 1. Πιπληήξην 2. Σηεγλσηήξην 3. Δίπισκα 4. απνζήθεπζε Σεηξηαθή πξνζέγγηζε γηα 4 θνξηία = 8h 30 min κάθε «φάση» Pipelined πξνζέγγηζε γηα 4 θνξηία = 3.5h Τν
Chapter 6 Αύξηση της απόδοσης με διοχέτευση (pipeline)
Chapter 6 Αύξηση της απόδοσης με διοχέτευση (pipeline) Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης, Τμήματος Ηλεκτρονικών Μηχανικών
ΕΠΛ221: Οργάνωση Υπολογιστών και Συμβολικός Προγραμματισμός. Κεφ. 4: Ο επεξεργαστής 1. Διάδρομος δεδομένων και μονάδα ελέγχου 2.
ΕΠΛ221: Οργάνωση Υπολογιστών και Συμβολικός Προγραμματισμός Κεφ. 4: Ο επεξεργαστής 1. Διάδρομος δεδομένων και μονάδα ελέγχου 2. Pipelining (Αν υπάρχει χρόνος) Θα ξαναπάμε πίσω στο Κεφ.3αργότερα. ΕΠΛ 221--
Επεξεργαστής Υλοποίηση ενός κύκλου μηχανής
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 9 Επεξεργαστής Υλοποίηση ενός κύκλου μηχανής Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Ti είναι Αρχιτεκτονική και τι Μικροαρχιτεκτονική
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών. Διάλεξη 13. Διακλαδώσεις. Νίκος Μπέλλας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 13 Διακλαδώσεις Νίκος Μπέλλας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Η μέχρι τώρα μικρο-αρχιτεκτονική (Eντολές Διακλάδωσης) Η μικρο-αρχιτεκτονική
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr ΠΡΟΗΓΜΕΝΑ ΘΕΜΑΤΑ
Διοχέτευση (Pipeline)
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη Διοχέτευση (ipeline) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Θέματα Απόδοσης Αν και απλή, η υλοποίηση ενός κύκλου ρολογιού είναι
Κεφάλαιο 6 Βελτίωση Απόδοσης με Διασωλήνωση (Enhancing Performance with Pipelining)
Κεφάλαιο 6 Βελτίωση Απόδοσης με Διασωλήνωση (Enhancing Performance with Pipelining) 1 Διασωλήνωση (Pipelining) Διασωληνώση: επικαλυπτόμενη εκτέλεση πολλαπλών εντολών σε ένα κύκλο του ρολογιού, όπως σε
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy. Chapter 5. Ο επεξεργαστής: διαδρομή δεδομένων και μονάδα ελέγχου
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 5 Ο επεξεργαστής: διαδρομή δεδομένων και μονάδα ελέγχου Ενδέκατη (11 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ε Ρ Γ ΑΣ Τ ΗΡ ΙΟ Υ ΠΟΛΟΓΙΣ Τ ΙΚΩΝ Σ Υ Σ Τ ΗΜΑΤΩΝ w w w. c s l ab.ece.ntua.gr
Κεφάλαιο 4. Ο επεξεργαστής. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 4 Ο επεξεργαστής ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες (µετάφραση,
Οργάνωση Η/Υ. Γιώργος Δημητρίου. Μάθημα 4 ο ΜΕΔ πολλαπλών κύκλων
Γιώργος Δημητρίου Μάθημα 4 ο ΜΕΔ πολλαπλών κύκλων Εντολή Απλού Κύκλου Μηχανής Όλες οι φάσεις του κύκλου εντολής στον ίδιο κύκλο μηχανής: Ο χρόνος από την ανάκληση μέχρι την ολοκλήρωση της εκτέλεσης (με
Επεξεργαστής Υλοποίηση ενός κύκλου μηχανής
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 9 Επεξεργαστής Υλοποίηση ενός κύκλου μηχανής Νίκος Μπέλλας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 1 Ti είναι Αρχιτεκτονική και τι Μικροαρχιτεκτονική
Επανάληψη Σύστημα Διασωλήνωσης (Pipelining) Κεφάλαιο 4 - Σύστημα ιασωλήνωσης
Επανάληψη Σύστημα Διασωλήνωσης (Pipelining) 1 ιασωλήνωση 2 Pipelining Παραλληλισμός + Pipelining 3 Χρόνος Εκτέλεσης = I x CPI x Cycle Time Με ή χωρις pipeline το Ι είναι το ίδιο όπως και τo CPI = 1. Το
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 6 ο ΠΜΣ Εφαρμοσμένη Πληροφορική ΕΝΤΟΛΗ ΑΠΛΟΥ ΚΥΚΛΟΥ ΜΗΧΑΝΗΣ Όλες οι φάσεις του κύκλου εντολής στον ίδιο κύκλο μηχανής: Ο χρόνος από την ανάκληση μέχρι
Α. Δίνονται οι. (i) στη. πρέπει να. πιο. (ii) $a0. $s0 θα πρέπει να. αποθήκευση. αυξάνει τον. f: sub sll add sub jr. h: addi sw sw.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΡ ΙΟ ΥΠΟΛΟΟ ΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua. gr ΑΡΧΙΤΕΚΤΟΝΙΚΗ
Θέµατα Φεβρουαρίου
Θέµατα Φεβρουαρίου 2-2 cslab@ntua 2- Θέµα ο (3%): Έστω η παρακάτω ακολουθία εντολών που χρησιµοποιείται για την αντιγραφ από µια θέση µνµης σε µια άλλη (memory-to-memory copy): lw $2, ($) sw $2, 2($) i)
ΠΛΕ- 027 Μικροεπεξεργαστές 5ο μάθημα: Αρχιτεκτονική πυρήνα: υλοποίηση ενός κύκλου
ΠΛΕ- 27 Μικροεπεξεργαστές 5ο μάθημα: Αρχιτεκτονική πυρήνα: υλοποίηση ενός κύκλου Αρης Ευθυμίου Δομή σύγχρονων υπολογιστών Κώδικας μηχανής Αρχιτεκτονικό συνόλο εντολών (InstrucDon Set Architecture ISA)
Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων
Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Οργάνωση Η/Υ Ενότητα 1η: Εισαγωγή στην Οργάνωση Η/Υ Άσκηση 1: Αναλύστε τη διαδοχική εκτέλεση των παρακάτω εντολών MIPS με βάση τις
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Οργάνωση επεξεργαστή Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΘΝΙKΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Ονοματεπώνυμο: ΑΜ:
ΕΘΝΙKΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ονοματεπώνυμο: ΑΜ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ (τμήμα Μ - Ω) Κανονική εξεταστική Φεβρουαρίου
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 5 ο ΠΜΣ Εφαρμοσμένη Πληροφορική ΣΥΝΟΛΙΚΗ ΔΟΜΗ ΚΜΕ Μία ή περισσότερες μονάδες αριθμητικών και λογικών πράξεων Μονάδα ολίσθησης Φάκελος καταχωρητών γενικού
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Κεφάλαιο 4. Ο επεξεργαστής
Κεφάλαιο 4 Ο επεξεργαστής Εισαγωγή Παράγοντες απόδοσης της CPU Πλήθος εντολών Καθορίζεται από την αρχιτεκτονική συνόλου εντολών και το μεταγλωττιστή CPI και Χρόνος κύκλου Καθορίζεται από το υλικό της CPU
Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής. Οργάνωση Η/Υ. Γιώργος Δημητρίου. Μάθημα 3 ο ΜΕΔ απλού κύκλου
Γιώργος Δημητρίου Μάθημα 3 ο ΜΕΔ απλού κύκλου Συνολική Δομή ΚΜΕ Μία ή περισσότερες μονάδες αριθμητικών και λογικών πράξεων Μονάδα ολίσθησης Φάκελος καταχωρητών γενικού σκοπού Κρυφή μνήμη (ενοποιημένη ή
Κεντρική Μονάδα Επεξεργασίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17 Κεντρική Μονάδα Επεξεργασίας (Σχεδιασμός και λειτουργία μιας απλής ΚΜΕ) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης
Chapter 2. Εντολές : Η γλώσσα του υπολογιστή. (συνέχεια) Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 2 Εντολές : Η γλώσσα του υπολογιστή (συνέχεια) Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση:
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr ΠΡΟΗΓΜΕΝΑ ΘΕΜΑΤΑ
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Αρχιτεκτονικό σύνολο εντολών Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΗΥ425 Αρχιτεκτονική Υπολογιστών. Προχωρημένες Τεχνικές Pipelining. Ιάκωβος Μαυροειδής
ΗΥ425 Αρχιτεκτονική Υπολογιστών Προχωρημένες Τεχνικές Pipelining. Ιάκωβος Μαυροειδής WB Data Imm Επεξεργαστής DLX Instruction Fetch Instr. Decode Reg. Fetch Execute Addr. Calc Memory Access Write Back
ΠΛΕ- 027 Μικροεπεξεργαστές 8ο μάθημα: Παραλληλία επιπέδου εντολής
ΠΛΕ- 027 Μικροεπεξεργαστές 8ο μάθημα: Παραλληλία επιπέδου εντολής Αρης Ευθυμίου Ταχύτερη εκτέλεση Με τις τεχνικές που είδαμε στα προηγούμενα μαθήματα μπορούμε να εκτελέσουμε (με επικάλυψη) περίπου 1 εντολή
Κεφάλαιο 5. Ο Μικροεπεξεργαστής: Διάδρομος Δεδομένων και Μονάδα Ελέγχου. (The Processor: Datapath and Control)
Κεφάλαιο 5 Ο Μικροεπεξεργαστής: Διάδρομος Δεδομένων και Μονάδα Ελέγχου (The Processor: Datapath and Control) Τι έχουμε μάθει μέχρι στιγμής Καθορισμός και ανάλυση απόδοσης (Κεφ. 4): Αριθμός εντολών, αριθμός
Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εισαγωγή. Σύνοψη βασικών εννοιών, 5-stage pipeline, επεκτάσεις για λειτουργίες πολλαπλών κύκλων
Εισαγωγή Σύνοψη βασικών εννοιών, 5-stage pipeline, επεκτάσεις για λειτουργίες πολλαπλών κύκλων 1 Παράγοντες που επηρεάζουν την επίδοση της CPU CPU time = Seconds = Instructions Cycles Seconds --------------
Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Αρχιτεκτονικό σύνολο εντολών Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Υ- 01 Αρχιτεκτονική Υπολογιστών Υπόβαθρο: Διοχέτευση
Υ- 01 Αρχιτεκτονική Υπολογιστών Υπόβαθρο: Διοχέτευση Αρης Ευθυμίου Το σημερινό μάθημα Υπόβαθρο: Διοχέτευση (Pipelining) Βασική οργάνωση Δομικοί κίνδυνοι Κίνδυνοι δεδομένων (hazards): RAW, WAR, WAW Stall
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr ΠΡΟΗΓΜΕΝΑ ΘΕΜΑΤΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr ΠΡΟΗΓΜΕΝΑ ΘΕΜΑΤΑ
Δυναμική Δρομολόγηση Εντολών (Dynamic Scheduling)
Δυναμική Δρομολόγηση Εντολών (Dynamic Scheduling) Απόδοση pipeline Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data Hazard Stalls + Control Stalls Ideal pipeline CPI: μέτρο της μέγιστης απόδοσης
Απλός επεξεργαστής (Επανάληψη)
Απλός επεξεργαστής (Επανάληψη) Διάδρομος δεδομένων και μονάδα ελέγχου 4 ο κεφάλαιο Ο επεξεργαστής : Διάδρομος Δεδομένων και Έλεγχος Σε αυτό το κεφάλαιο θα μελετήσουμε την υλοποίηση του διαδρόμου δεδομένων
AΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ (5 ο εξάμηνο) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (ΦΘΙΝΟΠΩΡΟ 2007) ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 2 ΩΡΕΣ 30 ΛΕΠΤΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ε Ρ Γ Α Σ Τ ΗΡ ΙΟ Υ ΠΟΛΟΓΙΣ Τ Ι Κ Ω Ν Σ Υ Σ Τ ΗΜΑΤΩΝ w w w. c s l ab.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΔΕΥΤΕΡΗ ΠΡΟΟΔΟΣ ΣΤΗΝ ΟΡΓΑΝΩΣΗ ΣΤΟΥΣ Η/Y (ΗΥ232)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΔΕΥΤΕΡΗ ΠΡΟΟΔΟΣ ΣΤΗΝ ΟΡΓΑΝΩΣΗ ΣΤΟΥΣ Η/Y (ΗΥ232) Σάββατο, 26 Νοεμβρίου 2016 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 120 ΛΕΠΤΑ 1) Υλοποίηση
ΕΠΛ221: Οργάνωση Υπολογιστών και Συμβολικός Προγραμματισμός Κεφ. 4: O επεξεργαστής Σύστημα Διασωλήνωσης (Pipelining)
ΕΠΛ221: Οργάνωση Υπολογιστών και Συμβολικός Προγραμματισμός Κεφ. 4: O επεξεργαστής Σύστημα Διασωλήνωσης (Pipelining) 1 ιασωλήνωση 2 Διασωλήνωση και Παραλληλισμός (Parallelism) Διασωλήνωση (Pipelining):
Άσκηση IF ID EX MEM WB α. 300ps 400ps 350ps 500ps 100ps β. 200ps 150ps 120ps 190ps 140ps
Άσκηση 4.12 Στην άσκηση αυτή, εξετάζουµε την επίδραση της διοχέτευσης στο χρόνο κύκλου ρολογιού του επεξεργαστή. Τα προβλήµατα αυτής της άσκησης θεωρούν ότι τα µεµονωµένα στάδια της διαδροµής δεδοµένων
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 6: Διασωλήνωση Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
CS425 Computer Systems Architecture
CS425 Computer Systems Architecture Fall 2017 Dynamic Instruction Scheduling: Scoreboard CS425 - Vassilis Papaefstathiou 1 DLX Processor Instruction Fetch Instr. Decode Reg. Fetch Execute Addr. Calc Memory
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Οργάνωση επεξεργαστή Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Κεφάλαιο 4: Pipelining 75
Κεφάλαιο 4: Pipelining 75 4. Pipelining Το pipelining (στα ελληνικά ορισμένες φορές καλείται σωλήνωση αλλά θα αποφύγουμε τη χρήση αυτού του όρου εδώ) είναι η λειτουργία κατά την οποία η εκτέλεση μιας διαδικασίας
Ασκήσεις στα Προηγμένα Θέματα Αρχιτεκτονικής Υπολογιστών
Ασκήσεις στα Προηγμένα Θέματα Αρχιτεκτονικής Υπολογιστών ακ. έτος 2006-2007 Νεκτάριος Κοζύρης Νίκος Αναστόπουλος {nkoziris,anastop}@cslab.ece.ntua.gr Άσκηση 1: pipelining Εξετάζουμε την εκτέλεση του παρακάτω
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 4. Ο επεξεργαστής
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 4 Ο επεξεργαστής Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση Υπολογιστών:
Μηχανοτρονική. Τμήμα Μηχανικών Παραγωγής και Διοίκησης 7 ο Εξάμηνο,
Τμήμα Μηχανικών Παραγωγής και Διοίκησης 7 ο Εξάμηνο, 2016-2017 ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΕΣ Μικροϋπολογιστής Υπολογιστής που χρησιμοποιείται για την είσοδο, επεξεργασία και έξοδο πληροφοριών. Είδη μικροϋπολογιστών:
add $t0,$zero, $zero I_LOOP: beq $t0,$s3, END add $t1, $zero,$zero J_LOOP: sub $t2, $s3, $t0 add $t2, $t2, $s1 int i, j, tmp; int *arr, n;
Άσκηση 1 η Μέρος Α Ζητούμενο: Δίνεται το παρακάτω πρόγραμμα σε C καθώς και μια μετάφραση του σε assembly MIPS. Συμπληρώστε τα κενά. Σας υπενθυμίζουμε ότι ο καταχωρητής $0 (ή $zero) είναι πάντα μηδέν. int
Υ- 01 Αρχιτεκτονική Υπολογιστών Υπερβαθμωτοι επεξεργαστές
Υ- 01 Αρχιτεκτονική Υπολογιστών Υπερβαθμωτοι επεξεργαστές Αρης Ευθυμίου Το σημερινό μάθημα Υπερβαθμωτοί επεξεργαστές (superscalar) Εκτέλεση σε σειρά Εκτέλεση εκτός σειράς Alpha 21164 Scoreboard Μετονομασία
O επεξεπγαζηήρ: Η δίοδορ δεδομένων (datapath) θαη ε μονάδα ελέγσος (control)
O επεξεπγαζηήρ: Η δίοδορ δεδομένων (datapath) θαη ε μονάδα ελέγσος (control) 4 θαηεγνξίεο εληνιώλ: Σχεδίαση datapath Αξηζκεηηθέο-ινγηθέο εληνιέο (add, sub, slt θιπ) R Type Εληνιέο αλαθνξάο ζηε κλήκε (lw,
Περιορισμοί των βαθμωτών αρχιτεκτονικών
Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς. Περιορισμοί
Chapter 5. Ο επεξεργαστής: διαδρομή δεδομένων και μονάδα ελέγχου. Ενδέκατη (11 η ) δίωρη διάλεξη.
Chapter 5 Ο επεξεργαστής: διαδρομή δεδομένων και μονάδα ελέγχου Ενδέκατη (11 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης,
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 7 ο ΠΜΣ Εφαρμοσμένη Πληροφορική ΔΙΑΔΟΧΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Σειριακή εκτέλεση, χωρίς καμία επικάλυψη: 50ns 100ns Δ1 Χρόνος Δ2 Δ3 Συνολικός χρόνος ολοκλήρωσης
Κεφάλαιο 4. Ο επεξεργαστής. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 4 Ο επεξεργαστής ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες (µετάφραση,
Υπερβαθμωτή (superscalar) Οργάνωση Υπολογιστών
Υπερβαθμωτή (superscalar) Οργάνωση Υπολογιστών 1 Περιορισμοί των βαθμωτών αρχιτεκτονικών Μέγιστο throughput: 1 εντολή/κύκλο ρολογιού (IPC 1) Υποχρεωτική ροή όλων των (διαφορετικών) τύπων εντολών μέσα από
ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Φροντιστήριο: MIPS assembly
ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Φροντιστήριο: MIPS assembly Αρης Ευθυμίου Το σημερινό μάθημα! Σύνταξη εντολών! Θέματα σχετικά με τη προσπέλαση, οργάνωση μνήμης διευθύνση για κάθε byte διευθύνσεις λέξεων
ΠΛΕ- 074 Αρχιτεκτονική Υπολογιστών 2
ΠΛΕ- 074 Αρχιτεκτονική Υπολογιστών 2 6ο μάθημα: χρονοπρογραμματισμός, αλγόριθμος Tomasulo, εικασία Αρης Ευθυμίου Πηγές διαφανειών: συνοδευτικές διαφάνειες αγγλικης εκδοσης του βιβλιου InstrucDon- Level
i Όλες οι σύγχρονες ΚΜΕ είναι πολυπλοκότερες!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17 Κεντρική Επεξεργασίας (Σχεδιασμός και λειτουργία μιας απλής ΚΜΕ) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Η υπολογιστική
Chapter 2. Εντολές : Η γλώσσα του υπολογιστή. Τρίτη (3 η ) δίωρη διάλεξη. Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 2 Εντολές : Η γλώσσα του υπολογιστή Τρίτη (3 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 6: Διασωλήνωση Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
Application Operating System. Datapath & Control/Memory. Digital Design Circuit Design. Layout
Application Operating System Λογισμικό Oργάνωση Μικρο- Αρχιτεκτονική Compiler Firmware Instr. Set Proc. I/O system Datapath & Control/Memory Digital Design Circuit Design Layout Instruction Set Architecture
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών. Διάλεξη 3 Εντολές του MIPS (2)
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 3 Εντολές του MIPS (2) Νίκος Μπέλλας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Y Παράδειγμα (συνέχεια από προηγ. διάλεξη) $s3 = &A[0] = 0x0001080 &A[8]
1. Οργάνωση της CPU 2. Εκτέλεση εντολών 3. Παραλληλία στο επίπεδο των εντολών 4. Γραμμές διοχέτευσης 5. Παραλληλία στο επίπεδο των επεξεργαστών
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΟΡΓΑΝΩΣΗ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι Γ. Τσιατούχας 2 ο Κεφάλαιο ιάρθρωση 1. Οργάνωση της 2. εντολών 3. Παραλληλία στο επίπεδο των εντολών 4. Γραμμές διοχέτευσης 5. Παραλληλία στο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr ΠΡΟΗΓΜΕΝΑ ΘΕΜΑΤΑ
Εντολές του MIPS (2)
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 3 Εντολές του MIPS (2) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Παράδειγμα (συνέχεια από προηγ. διάλεξη) $s3
Συστήματα σε Ολοκληρωμένα Κυκλώματα
Συστήματα σε Ολοκληρωμένα Κυκλώματα Κεφάλαιο 4: Αρχιτεκτονική των Embedded Μικροεπεξεργαστών Διδάσκων: Καθηγητής Οδυσσέας Κουφοπαύλου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΕΙΣΑΓΩΓΗ Παρουσιάζεται
Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ»
Περιεχόμενα Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ»... 2 Καταχωρητές... 3 Αριθμητική-λογική μονάδα... 3 Μονάδα μνήμης... 4 Μονάδα Εισόδου - Εξόδου... 5 Μονάδα ελέγχου... 5 Ρεπερτόριο Εντολών «ΑΒΑΚΑ»... 6 Φάση
Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 4 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων
Γιώργος ηµητρίου Μάθηµα 4 ο Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Συνολική οµή ΚΜΕ Μία ή περισσότερες µονάδες αριθµητικών και λογικών πράξεων Μονάδα ολίσθησης Φάκελος
Τελική Εξέταση, Απαντήσεις/Λύσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) HMΜY 212 Οργάνωση Η/Υ και Μικροεπεξεργαστές Εαρινό Εξάμηνο, 2007 Τελική Εξέταση, Απαντήσεις/Λύσεις Άσκηση 1: Assembly για
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 7: Αποκωδικοποίηση Εντολής x86 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
-Επεξεργαστής: datapath (δίοδος δεδοµένων) (1) και control (2) -Μνήµη (3) -Συσκευές Εισόδου (4), Εξόδου (5) (Μεγάλη ποικιλία!!)
Οργάνωση Υπολογιστών 5 συστατικά στοιχεία -Επεξεργαστής: datapath (δίοδος δεδοµένων) (1) και control (2) -Μνήµη (3) -Συσκευές Εισόδου (4), Εξόδου (5) (Μεγάλη ποικιλία!!) Συσκευές γρήγορες π.χ. κάρτες γραφικών,
Δείγμα Τελικής Εξέτασης στο ΗΜΥ213. Διδάσκοντας: Γιώργος Ζάγγουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) Δείγμα Τελικής Εξέτασης στο ΗΜΥ213 Διδάσκοντας: Γιώργος Ζάγγουλος Οδηγίες Διαβάστε Προσεκτικά! Αυτή η εξέταση γίνεται με