Προηγμένες ικτυακές Τεχνολογίες
|
|
- Ἄννα Πρίσκιλλα Στεφανόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Προηγμένες ικτυακές Τεχνολογίες εαρινό εξάμηνο 015 Καθ. Ιωάννης Σταυρακάκης Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Υλικό μαθήματος Διαλέξεις.ppt διαφάνειες, επιπλέον papers συνοδευτικά γράψιμο στον πίνακα Ε-class link γραφτείτε αν δεν τo έχετε κάνει ήδη! Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015
2 Eπιπλέον Ερευνητικέςομιλίες σεμινάρια διοργανώνονται σε τακτά διαστήματα (π.χ. 18/5/015, κ.λ.π. best-effort συμμετοχή, για όσους ενδιαφέρονται για το κάτι παραπάνω Διπλωματικές εργασίες θα υπάρξουν θέματα σχετικά με το περιεχόμενο του μαθήματος Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Εξέταση/αξιολόγηση Ερευνητικές εργασίες παρουσίαση άρθρων (0-30% Γραπτές εξετάσεις (70-80% στο τέλος του εξαμήνου, καλύπτουν τις παρουσιάσεις από τους διδάσκοντες του μαθήματος. Κατά κανόνα, γίνονται με κλειστά άββλί βιβλία. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 4
3 Topics Scalability of mobile ad hoc networks (MANET Delay Tolerant networks (DTN (Mobile Social Networks Information centric networking Content placement / replication Decision making in distributed competitive environments Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης MANET vs. DTN MANET t 1 DTN t > t 1 t 1 6 t > t 1
4 MANET vs. DTN MANET t 1 t > t 1 DTN 7 Scalability of Ad Hoc Routing Protocols References: C. Santivanez, R. Ramanathan, I. Stavrakakis, Making Link-State Routing Scale for Ad Hoc Networks, MobiHoc 001, Oct. 4-5, 001, Long Beach, CA, USA. C. Santivanez, B. McDonald, I. Stavrakakis, R. Ramanathan, On the Scalability of Ad hoc Routing Protocols, IEEE INFOCOM 0, N. York, USA. C.Santivarez, R. Ramanathan, "Scalability of Routing in Ad Hoc Networks: Principles and Practise", in AD HOC WIRELESS NETWORKING, X. Chieng, X. Huang, D.-Z. Du (eds., klywer Academic Publishers, 003. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 8
5 ROUTING ALGORITHMS PROACTIVE (table-driven REACTIVE (on-demand SLS AODV DSR HYBRID ZRP Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Proactive/Table-Driven Maintain routes (paths for all possible destinations + Minimum route discovery delay Additional induced control overhead Meaningless in highly mobile environments Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
6 Proactive Algorithms Assumption: By talking (control message exchanges with its neighbors, each node (router learns: --every neighbor s address --cost to communicate with each neighbor And eventually has routing info for all destinations. Two basic categories (protocols for routing table constructions: -- Distance vector -- Link state Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Standard Link State (SLS Every node sends Link State Updates (LSUs --in case of a link status change --periodically Every node stores a copy of the latest LSU in a topology table The topology table provides connectivity info for the entire network The source node may apply a Dijkstra s Shortest Path First (SPF algorithm to find a route Typical representative of proactive routing algorithms Simple, predictable dynamics, quick convergence Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 1
7 Reactive/On-Demand Acquisition of routing info only when it is needed + Lower bandwidth consumption - Dramatic increase of delay for specific applications Generally better than proactive for highly mobile environments, but still rather inefficient Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Dynamic Source Routing g( (DSR It is a reactive algorithm and consists of two main processes: Route Discovery: a source node S wishing to send a packet to a destination node D obtains a source route to D. --It is used only when S attempts to send a packet to D and does not already know a route to it. Route Maintenance: a source node S, while using a source route to D, is able to detect errors that prohibit the use of its route to D because a link along the route no longer works. In such case, S can attempt to use any other route to D it happens to know, or it can invoke a new Route Discovery to find a new one. --It is used only when S is actually sending packets to D. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
8 Proactive/Table-Driven Maintain routes (paths for all possible destinations + Minimum route discovery delay Additional induced control overhead Meaningless in highly mobile environments Reactive/On-Demand Acquisition of routing info only when it is needed + Lower bandwidth consumption - Dramatic increase of delay for specific applications Generally better than proactive for highly mobile environments, but still rather inefficient Development of hybrid algorithms Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Hybrid routing algorithms Trying to take advantage of the efficiencies of proactive and reactive schemes by applying them in environments (under conditions where these efficiencies would materialize Advantage of proactive algorithms: low delay Advantage of reactive algorithms: high efficiency Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
9 Zone Routing Protocol (ZRP A typical representative of hybrid routing algorithms A set of k-hop neighbors constitute the node s zone The size of a zone is given by a radius of length r, where r is the number of hops to the perimeter of the zone The zones may be overlapping and of variable size (proactive function : A node disseminates event-driven Link State Updates LSUs to its k-hop neighbors (up to k hops Proactive discovery within a node s local neighborhood (zones Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Zone Routing Protocol (ZRP (reactive function : Reactive protocol for communication between the zones Use of peripheral nodes for efficient flooding To forward packets outside its zone, it sends route request to a subset of nodes (peripheral nodes, reducing overhead K G E D A B I C L H Routing zone of node A with r = F J Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
10 Components of ZRP ZRP NDP IARP IERP ICMP BRP IP NDP - Neighborhood Discovery Protocol: A node needs to know about its neighbors IARP - Intrazone Routing Protocol: Determine the routes to peripheral nodes (proactive IERP - Interzone Routing Protocol: Communication between different zones (reactive BRP - Bordercast Resolution Protocol: Efficient use of peripheral nodes ICMP - Internet Control Message Protocol: Existing protocol to support IP-routing Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Plain Flooding g( (PF The source node broadcasts the packet to be transmitted The neighbors of the source node rebroadcast it once to their neighbors, and this is repeated until it reaches the destination Nodes must keep track of the packets previously sent, to avoid sending a packet more than once PF is not used for data packet delivery due to increased useless retransmissions Meaningful in cases of control traffic, small traffic load, small network size and high mobility rate Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 0
11 Scalability of Ad Hoc Routing Protocols References: C. Santivanez, R. Ramanathan, I. Stavrakakis, Making Link-State Routing Scale for Ad Hoc Networks, MobiHoc 001, Oct. 4-5, 001, Long Beach, CA, USA. C. Santivanez, B. McDonald, I. Stavrakakis, R. Ramanathan, On the Scalability of Ad hoc Routing Protocols, IEEE INFOCOM 0, N. York, USA. C.Santivarez, R. Ramanathan, "Scalability of Routing in Ad Hoc Networks: Principles and Practise", in AD HOC WIRELESS NETWORKING, X. Chieng, X. Huang, D.-Z. Du (eds., klywer Academic Publishers, 003. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Communication overhead Traditionally: overhead control overhead ( = amount of bandwidth required to construct and maintain a route o In proactive approaches: number of packets exchanged in order to maintain the node s forwarding tables up-to-date o In reactive approaches: bandwidth consumed by the route request/reply messages (global or local control overhead fails to include the impact of suboptimal routes Suboptimal routes not only increase the end-to-end delay but also result in a greater bandwidth usage than required. As the network size increases keeping route optimality imposes an unacceptable cost. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015
12 Communication overhead reactive protocols introduce suboptimal routes because: o they try to maintain the current source-destination path for as long as it is valid, although it may no longer be optimal o local repair techniques try to reduce the overhead induced by the protocol at the expense of longer, non optimal paths proactive protocols introduce suboptimal routes by: o limiting the scope of topology information dissemination (e.g. hierarchical routing and/or o limiting the time between successive topology information updates dissemination (topology updates are no longer instantaneously t event-driven Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Communication overhead revise the concept of overhead so that it includes the effect of suboptimal routes The minimum traffic load of a network, is the minimum amount of bandwidth required to forward packets over the shortest distance (in number of fh hops paths available, ilbl assuming all the nodes have instantaneous a priori i full topology information. routing protocol-independent metric assumes that all the nodes are provided a priori global information o possible in fixed networks o inmobilescenariosthisishardlypossible is hardly (even if static routes are provided it is unlikely that these remain optimal motivates the definition of the total overhead of a routing protocol Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 4
13 Minimum traffic load Total overhead Total amount of bandwidth = minimum traffic load + total overhead routing protocol dependent routing protocol independent routing protocol dependent The total overhead induced by a routing protocol is the difference between the total amount of bandwidth actually consumed by the network operating under such routing protocol, minus the minimum traffic load that would have been required should the nodes had a priori full topology information. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Minimum traffic load Total overhead The total overhead : provides an unbiased metric for performance comparison that reflects bandwidth consumption may not fully characterize all the performance aspects relevant to specific applications, but o bandwidth is likely to remain a limiting factor in terms of scalability o bandwidth is proportional to factors including energy consumption, memory and processing requirements The different sources of overhead may be expressed in terms of o Reactive routing overhead o Proactive routing overhead o suboptimal routing overhead Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 6
14 Proactive, Reactive & Suboptimal overhead The reactive overhead of a protocol is the amount of bandwidth consumed by the specific protocol to build paths from a source to a destination, after a traffic flow to that destination has been generated at the source. In static ti networks is a function of the rate of generation of new flows. In dynamic (mobile networks is a function of both the traffic and the rate topology change. (paths are (rebuilt not only due to new flows but also due to link failures in an already active path Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Proactive, Reactive & Suboptimal overhead The proactive overhead of a protocol is the amount of bandwidth consumed by the protocol in order to propagate route information before it is needed. The suboptimal routing overhead of a protocol is the difference between the bandwidth consumed when transmitting data from all the sources to their destinations using the routes determined by the specific protocol, and the bandwidth that would have been consumed should the data have fll followed dthe shortest tavailable ilbl path(s. th( Example: a source that is 3 hops away from its destination a protocol chooses to deliver one packet following a k ( k 3 hop path (for example, due to out-of-date information ( k 3 packet_length bits will be added to the suboptimal RO Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 8
15 Achievable Regions & Operating points The 3 different overhead sources are locked in a 3-way trade-off in an already efficient algorithm, the reduction of one of them will most likely cause the increase of one of the others For example, reducing the zone size in ZRP: will reduce ZRP s proactive overhead, but will increase ZRP s reactive overhead achievable region of overhead: The three dimensional region formed by all the values of proactive, reactive, and suboptimal routing overheads that can be induced by any protocol under the same scenario (traffic, mobility, etc. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Achievable Regions & Operating points Figure: -dimensional transformation of the achievable region horizontal axis: proactive overhead induced by a protocol vertical axis: reactive + suboptimal routing overheads ra bandwidth ptimal routes, usage per no ode route reques st,etc. Extr (sub-op Achievable Region Proactive cost (per node Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
16 Achievable Regions & Operating points the achievable region is convex o consider the points P 1 and P achieved by protocols P 1 and P o any point P1(1 P can be achieved by engaging protocol P 3 that behaves as protocol P 1 a fraction of a (long time as protocol P the remaining of the time is lower-bounded by the curve of overhead points achieved by the efficient protocols ( efficient protocols: minimize some source of overhead given a condition imposed on the others Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Achievable Regions & Operating points P best pure proactive approach (reactive overhead = 0 given that optimal routes are required (suboptimal overhead= 0 P moves to the right as mobility increases R best protocol that does not use any proactive information R moves upward as traffic increases or diversifies the best protocol (in terms of overhead minimizes total overhead point Opt : point tangent to the curve x y constant achieves point Opt Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 3
17 Effect of increasing the network size " " " " R " " the boundary region is pulled up the region displacement is not uniform P Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Effect of increasing the network size points P and R increase proportionally to ( N Pure proactive protocols (SLS [Pure reactive algorithms (DSR without the route cache option] generate a control message [a route request (RREQ message] each time a link changes (worst case [a new session is initiated] Each control message [RREQ message] is retransmitted by each node The generation rate of control messages [RREQ messages] increases linearly with network size ( N The number of message retransmissions increases linearly with N The total overhead increases as rapidly as N Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
18 Effect of increasing the network size R " " " Protocols ri αivizn inducing m,hvmk mαfrwf,meαf intermediate υim-αn(a" Hierarchical link state (HierLS: 166 ZRP: N 15 N " " " P As size increases, the best operating point is far from the extreme points P and R and in the region where the proactive, reactive, and suboptimal routing overheads are balanced. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Network s scalability (Qualitatively Scalability is the ability of a network to support the increase of its limiting parameters. Limiting parameters of a network are those parameter whose increase causes the network performance to degrade. For example: mobility rate traffic rate network size network density Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
19 Network s scalability (Quantitatively Let Tr ( 1 be the minimum traffic load experienced by a network under parameters 1. Then, the network scalability factor of such a network, with respect to a parameter i ( i is: def log Tr ( 1 lim i i log relates the increase in network load to the different network parameters may be used to compare the scalability properties of different networks (wireline, mobile ad hoc, etc. For the class of mobile ad hoc networks defined by assumptions 15 a.1-a.8 the minimum traffic load Tr( N = ( 0, 1,and 15 lc t N lc i t t N Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Network s scalability (Quantitatively Define the network rate to assess network scalability w.r.t. i network The network rate R of a network is the maximum number of bits that can be simultaneously transmitted in a unit of time. network To compute the network rate ( R, ALL successful link layer transmissions must be counted, regardless of whether the link layer recipient is the final network-layer destination or not. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
20 Network s scalability (Quantitatively A network is said to be scalable with respect to the parameter i if and only if, as the parameter i increases, the network s minimum traffic load does not increase faster than the network network rate ( R can support. That is, if and only if: i network log R ( 1 lim i log i Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Network s scalability (Quantitatively Scalability of Mobile Ad Hoc Networks (with respect to N: It has been shown [Gupta, Kumar 000] that in mobile ad hoc networks Θ(Ν successful transmissions can be scheduled simultaneously. I.E., the network rate is Θ(Ν log R / log N 1. Thus, to be regarded as scalable with respect tto network size N 1 For example, for the class of networks considered here (assumptions a.1- a.8 15 N networks under study are not scalable wrt w.r.t. tonetwork size Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
21 Network s scalability (Quantitatively Scalability of Mobile Ad Hoc Networks (with respect to N Delay Tolerant Networks: average path length may be reduced to ( Θ(1 provided that applications can tolerate infinite delivery delays and mobility pattern is random ([Groossglauser&TSE, Infocom 001] thus, network scalability factor with respect to network size Ψ Ν is equal to 1. (N nodes X traffic rate X constant path length Thus, those ad hoc networks (random mobility and capable of accepting infinitely long delays are the only class of ad hoc networks that are scalable with respect to network size. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Network s scalability (Quantitatively Scalability of Wireline fully connected Networks (with respect to N They may have 1, thus potentially scalable w.r.t. N N (1li link-load kl dis needed d for any transmission; i thus, the network rate is Θ(Ν (However, this scalability requires the nodes degree to grow without bound, which may be prohibitively expensive epesve Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 4
22 Network s scalability (Quantitatively mobile networks: the network rate does not increase with mobility or traffic load Recall: [Gupta, Kumar 000]in mobile ad hoc networks Θ(Ν successful transmissions can be scheduled simultaneously. I.E., the network rate is Θ(N --> logr/log* = 0, *=mobility or traffic load the network will be scalable w.r.t. mobility lc 0 (=network rate w.r.t. traffic t 0 (=network rate the networks considered here ( lc 0, t 1, and N 15 o are scalable w.r.t. mobility o but are not scalable w.r.t. traffic Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Network s scalability (Quantitatively Similar conclusions for scalability w.r.t. other parameters: For example, w.r.t. transmission range as transmission range l increases the spatial reuse decreases (assuming an infinite size network with regular density network rate decreases as rapidly as (reduction of space available for additional, non-interfering transmissions should be lower than for the network to be scalable (to compensate for the above network rate reduction Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
23 Network s scalability (Quantitatively should be lower than for the network to be scalable (to compensate for the above network rate reduction ad hoc networks are not scalable w.r.t. transmission range (since the length of a path has linear dependence on the transmission range, a transmission range l increase leads to a path reduction that is linear with l the minimum traffic load decreases only linearly w.r.t. => 1 focus on networks with power control (the transmission range changes so that the network degree is kept bounded Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Routing Protocol s scalability (Qualitatively mobile ad hoc networks are not scalable with respect to size How about routing gprotocol scalability? Routing protocol s scalability is the ability of a routing protocol to support the continuous increase of the network parameters without degrading network performance. the network s own scalabilty properties provide the reference level as to what to expect of a routing protocol If the overhead induced by a routing protocol grows slower than the minimum traffic load (network property then the routing protocol is not degrading network performance, even if the overhead happens to grow faster than the network rate. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
24 Routing Protocol s scalability (Quantitatively Let X ( ov 1 be the total overhead induced by routing protocol X, dependent on parameters 1 (e.g. network size, mobility rate, data generation rate, etc.. Then, the Protocol X s routing protocol scalability factor X with respect to a parameter i ( is defined to be : i def X log X ov( 1 lim i i log provides a basis for comparison among different routing protocols i Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Routing Protocol s scalability (Quantitatively (to assess whether a routing protocol is scalable the following definition is used A routing protocol X is said to be scalable with respect to parameter i if and only if, as i increases, the total overhead induced by such protocol ( X ov does not increase faster than the network s minimum traffic load. That is, if and only if: X i i For the class of network under study, a routing protocol X is: X o scalable w.r.t. network size 15 X o scalable w.r.t. traffic 1 X o scalable w.r.t. mobility rate 0 t N lc Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
25 Scalability dimensions network size is a key parameter, but not the only one (mobility, network density, network diameter, traffic diversity, energy etc. Examples : diameter => latency for control => inconsistent routes, instability density spatial reuse => capacity dimension Size Mobility Density Diameter layer Transport Network Link/MAC Physical Key scalability dimensions and their effect on the lower four layers (in addition to traffic Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Scalability dimensions size, density, diameter, and transmission range are related. Given size & density, different transmission power levels ( result in different (node degree (, network diameter ( in order to increase the overall network performance, the average node degree must remain bounded d( (provided d (bi-connectivity it density dimension can be addressed by means of effective topology (transmission power control algorithms Focus on: network size, mobility & traffic load assuming topology control Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
26 Network model: Notations N : number of nodes in the network d : average in-degree L : average path length over all source destination pairs lc : expected number of link status changes that a node detects (/sec t : average traffic rate that a node generates in a second (in bps s : average number of new sessions generated by a node in a second Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Standard asymptotic notations f ( n ( g( n if c 1, n 1 : c1 g( n f ( n, n n1 f ( n O( g( n if c, n : f ( n c g( n, n n f ( n ( g( n if c 1 c, and n 0 : cg 1 ( n f( n cg ( n, n n0 c1 cconstants Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 5
27 Assumptions o a.1 As the network size increases, the average in-degree remains constant. d imposing a fixed degree in a network is: o desirable (density increase jeopardizes the achievable throughput h t o achievable (through effective power control mechanisms a topology control algorithm should: o make the density as small as possible o without compromising (biconnectivity Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Assumptions a. : Let A be the area covered by the N nodes of the network, and NA be the network average density. Then, the expected (average number of nodes inside id an area A 1 is approximately A1. on large scales uniformity is expected to increase (for example, it is expected that half the area contains approx. ½ of the nodes focus on expected (mean behavior (for a specific network topology this assumption may not hold Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
28 Assumptions a. Let A be the area covered by the N nodes of the network, and NA be the network average density. Then, the expected (average number of nodes inside an area A 1 is approximately A1. One can talk about the `geographical' and `topological' regions. In the `geographical' (large-scale region, geographical-based reasoning shapes routing decisions. In the `topological' region, it is the actual link connectivity (topology that drives the routing decisions, and geographical insights are less useful. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Assumptions a.3 : The number of nodes that are at distance of k or less hops away from a source node increases (on average as ( d k. The number of nodes exactly at k hops away increases as ( d k. a.4 : The maximum and average path length (in hops among nodes in a connected subset of n nodes both increase as ( n. In particular, the maximum and the average ( L path length across the network increase as ( N. a.3 and a.4 are based on a. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
29 Assumptions a.3, a.4 R S a.3 and a.4 are based on a. R example: a circular area centered at node S of radius R with n nodes If R R o covered area, number of nodes inside the area 4R* o distance (in meters from S to the farthest tnodes R o distance (in hops from S to the farthest nodes R (assuming that the transmission range of the nodes does not change o `boundary' area (where the nodes farthest away from S are R Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Assumptions a.5 : The traffic that a node generates in a second ( t, is independent of the network size N (number of possible destinations. As the network size increases, the total amount of data transmitted/received by a single node will remain constant but the number of destinations will increase (the destinations diversity will increase. a.6 : For a given source node, all possible destinations ( N 1 nodes are equiprobable e and as a consequence ce of a.5 the traffic from one node to every destination decreases as (1 N. a.5 & a.6 : As the network size increases the total amount of traffic generated by a single user typically diversifies rather than increases. a.5 & a.6 are first order approximations motivated by observed behavior with existing networks (human users some other networks may violate these assumptions Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
30 Assumptions a.5 & a6 Examples: low-cost long distance service: a user speaks with more friends (wherever they are, but does not increase the total time the user has to spare for personal phone calls increase in size and content of the Internet: a user may find more web pages (destination set diversifies but he/she will limit the total time (and traffic spent on the Internet Sensor networks may violate these assumptions o each node may broadcast its information i to all other nodes increases as ( ( t o or, may transmit to a central node (causing the destination set to consist of only 1 node, violating a.6 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Assumptions a.6 Traffic assumption largely determines the effect of suboptimal routing on performance. o limited to the locality of the source hierarchical routing, ZRP, and NSLS will benefit o small set of destinations will favor algorithms such as DSR o uniform traffic tends to favor proactive approaches such as link state Equally distributed traffic (a.6 tends to pose the most demanding requirements on a routing protocol. A protocol that is scalable (with respect to traffic under a.6, will also be scalable under any other traffic pattern. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
31 Assumptions a.7 : Link status changes are due to mobility. lc is directly proportional to the relative node speed. assumption: short-lived link degradation will not trigger updates short-term variations in link quality can be offset by link control mechanisms for example: by requiring a high fading margin before declaring a link up by waiting for several seconds before declaring a link down wireless channel is quite unpredictable and long-lived link degradation is possible without mobility Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Assumptions a.8 : Mobility models : time scaling. Let f ( x y 10 be the probability distribution function of a node position at time 1 second, given that the node was at the origin (0 0 at time 0. Then, the probability distribution function of a node position at time t given that the node was at the position ( x t y t at time t 0 is given by xx yy tt t t tt tt f xyx y f. 1 t0 t0 ( ( 10( tt motivated by mobility models where the velocity of a mobile over time is highly correlated for example, this is the case if the unknown speed and direction are constant does not hold for a random walk model induces smaller node displacements over time ( ( t, t : elapsed time focus on the most demanding scenario (larger displacements Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 6
32 Routing protocol scalability conditions for the networks subject to assumptions a For the class of mobile ad hoc networks defined by assumptions a.1-a.8 the 15 minimum traffic load Tr( N = ( and thus : lc t t N 0, 1, and 15 lc t N Consequently, for the class of network considered here, a routing protocol X is: X o scalable w.r.t. mobility rate 0 X o scalable w.r.t. traffic 1 X o scalable w.r.t. network size 15 t N lc Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Plain Flooding (PF PF reactive RO = PF proactive RO = 0 15 PF suboptimal RO / sec = ( ( N N ( N t N t data packets are generated / sec N 1 transmissions / packet (is (retransmitted by every node, except the destination optimal value (on average = L, L ( N (a.4 (up to L hops broadcast needed, the rest is OH additional bandwidth required = data ( N 1 L t N bps t PF total t RO /sec = ( t N PF PF 0, 1, PF lc t N Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
33 Standard Link State (SLS SLS reactive RO = SLS suboptimal RO = 0 SLS proactive RO / sec = lsu N bps = N lc ( lc lsu := size of the LSU (Link State Update packet N lc lc N LSUs are generated /sec (on average (each node generates an LSU at a rate of lc / sec overhead of lsu N bits / LSU (each hlsu is transmitted at least N times (once/node lc SLS total RO /sec= lsu bps = ( N lc lc N bps = SLS SLS SLS 1, 0,. lc t N Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Dynamic Source Routing (DSR no proactive information is exchanged A node (source reaches a destination by flooding the network with a route request (RREQ message. When an RREQ message reaches the destination (or a node with a cached route towards the destination a route reply message is sent back to the source, including the newly found route The source attaches the new route to the header of all subsequent packets to that destination, and any intermediate node along the route uses this attached information to determine the next hop in the route. focus on DSR without the route cache option (DSR-noRC Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
34 DSR without Route Cache (DSR-noRC DSR-noRC reactive RO RREQ (route request messages are generated by: new session requests (at a rate s per second per node failures in links that are part of a path currently in use only new requests are considered a lower bound is obtained s N RREQ messages are generated / sec (new session requests overhead of size_ of_ RREQ ( N 1 bits / RREQ message (each RREQ message is flooded N 1 retransmissions DSR-noRC reactive RO / sec = ( N s upper bound O(( s lc N (assumption: each link failure has the same effect as a new session request (local repair fails Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης DSR without Route Cache (DSR-noRC DSR-noRC suboptimal RO only the extra bandwidth required for appending the source-route in each data packet is considered a lower bound is obtained number of bits appended in each packet ~ length L i of path i opt opt L L (optimal path length, L instead of L i lower bound i i i t d extra bits for a packet delivered using a path i : (log N( L opt i opt opt o at least L i retransmissions of at least Li log N bits log N is the minimum length of a node address o Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
35 DSR without Route Cache (DSR-noRC extra bits for a packet delivered using a path i : (log N( L opt i extra bits / packet over all paths (average: opt opt E{(log N( L } (log N E{ L } (log N L bits i i N t packets are transmitted / sec t suboptimal RO at least (log N L bps, L ( N (a.4 t N DSR-noRC suboptimal RO / sec = ( N log N t bps Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης DSR without Route Cache (DSR-noRC DSR-noRC reactive RO / sec = ( N s = O(( N DSR-noRC suboptimal RO / sec = s lc ( N log N t bps DSR-noRC total overhead / sec = ( sn tn log N DSRnoRC DSRnoRC DSRnoRC 1, 0 1, t lc N Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
36 Hierarchical Link State (HierLS The network organized in m level clusters, each of equal size k m ( N k, k is predefined while m increases with N. Location Management (LM service choices: LM1 Pure proactive. LM Local paging. pg g LM3 Global paging. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης HierLS-LM1 Total Overhead HierLS-LM1 proactive RO = HierLS-LM1 suboptimal RO / sec = 15 ( sn lc N 15 ( N t HierLS-LM1 total overhead / sec = ( sn N N lc t HierLS LM 1 t HierLS LM 1 HierLS LM1 1, 1, and lc N (HierLS is almost scalable w.r.t. network size Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 7
37 HierLS-LM Total Overhead HierLS-LM suboptimal RO / sec = 15 = HierLS-LM1 suboptimal RO / sec = ( N t HierLS-LM proactive RO = 15 = HierLS-LM1 proactive RO = ( s N N HierLS-LM reactive RO = O( N t lc HierLS-LM total overhead = ( sn lcn t N same asymptotic scalability factors as HierLS-LM1 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης HierLS-LM3 Total Overhead HierLS-LM3 suboptimal RO / sec = = HierLS-LM1 suboptimal RO / sec = HierLS-LM3 proactive RO = ( s Nlog N N lc N t 15 ( HierLS-LM3 reactive RO = O N 15 ( t 15 HierLS-LM3 total overhead = ( s Nlog N N N lc t same asymptotic scalability factors as HierLS-LM1 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
38 Zone Routing Protocol (ZRP lower bound for ZRP total overhead (can be proved ZRP = ( n N N n ov k lc s k where: n k = average number of nodes inside node s zone o proactive overhead: ( n N o reactive overhead: ( N n (For the sub-optimal routing overhead an upper bound can be proved that shows that it is (asymptotically dominated by the reactive overhead Minimizing this lower bound by properly choosing the value n k 3 s N k (( ( n k lc s k lc 1 lc s N k 5 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Flat Routing ``flat'' hierarchical each node and link in the topology table is an actual node or link (no topology abstraction, no ``boundaries'', no hierarchical addressing the topology table may grow large as the network size increases usually requires much more memory and processing power (however, a key challenge is the excessive bandwidth requires careful design (else may result in much more bandwidth consumption than hierarchical Techniques for bandwidth consumption reduction: (in isolation or in combination o efficient/controlled flooding o limited LSU generation rate o limited LSU dissemination depth Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
39 Efficient Flooding classical flooding is very inefficient (each node receives the same packet several times Efficient flooding: o reduce the number of times a message is retransmitted o each recipient should receive each message at least once Example (mechanism: o find a tree that covers all the nodes o propagate the message across all the nodes in the tree (every node in the tree transmits the message only once Examples (protocols: o Optimized Link State Routing (OLSR o Topology Broadcast based on Reverse Path Flooding (TBRPF o Core Extraction Distributed Ad-Hoc Routing (CEDAR Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Limited Generation (Rate limit the amount of control information through update aggregation and reduced generation frequency Examples update generation at times which h are multiples l of a base period t e (effective for high mobility o Global State Routing (GSR o Discretized Link State (DLS updates only for changes that affect another node's best route o Source-Tree Adaptive Routing g( (STAR operating on connected subgraphs o OLSR Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
40 Limited Dissemination (Depth reduced depth of propagation of routing updates o most updates sent to a subset of nodes (not the entire network o the subset may change over time promise for scalability improvement o especially for networks with a large diameter o challenge: not to overly compromise route optimally Examples ZRP, NSLS limit the update propagation to k-neighbors only Fisheye State Routing o Network = in-scope + out-of-scope subsets o out-of-scope nodes are informed with a smaller frequency family of Fuzzy Sighted Link State (FSLS algorithms o LSU generation: at multiples of a base time t e o a LSU (in general travels TTL hops o TTL depends on the current time Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms Key Observation: Nodes that are far away do not need to have complete topological information in order to make a good next hop decision thus propagating every link status change over the entire network may not be necessary. (in hop-by-hop prouting, changes experienced by nodes far away tend to have little impact in a node s local next hop decision pure proactive protocols (as SLS do not scale well with size (induced overhead increases as rapidly as N a reduction of the proactive overhead may be achieved: o in space (by limiting which nodes the link state update is transmitted to o in time (by limiting the time between successive link status updates balance is necessary (a decrease in proactive RO will induce an increase in suboptimal RO Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
41 FSLS Algorithms Family of Fuzzy Sighted Link State (FSLS Key Design Idea: the frequency of Link State Updates (LSUs propagated to distant nodes is reduced a node transmits a Link State Update (LSU o only at particular time instants (potentially several link changes are collected the Time To Live (TTL field of the LSU (specifies how far the LSU is propagated is set to a value that is a function of the current (LSU generation time Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms Under a FSLS protocol (& after one global LSU transmission (TTL =, for example, during initialization a node: 1 wakes up every i te ( i 13 seconds and transmits a LSU with TTL set to s i 1 (if there has been a link status change in the last i te seconds i.e.: o wakes up every t e seconds and sends a LSU with TTL set to s 1 (if there has been a link status change in the last t e seconds o wakes up every t e seconds and transmits a LSU with TTL set to s (if there has been a link status change in the last t e seconds o Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 8
42 FSLS Algorithms Strictly speaking, the node will consider link changes since the last time a LSU with TTL greater or equal to si was considered (not necessarily transmitted. If the value of s i is greater than the distance from this node to any other node in the network, the TTL field of the LSU is set to infinity (global LSU, and all the counters and timers are reset. As a soft state protection on low mobility environments, a periodic timer may be set to ensure that a global LSU is transmitted at least each t seconds. b Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms Example of FSLS s LSU generation process (mobility is high LSUs are always generated every t e seconds the sequence s1 s is non-decreasing Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
43 FSLS Algorithms For example, time 4t e is a multiple of t e (associated with s 1, t e (associated with s and4t e (associated with s 3 if there has been a link status change in the past t e or t e seconds, then there has been a link change in the past 4t e seconds if we have to set the TTL field to at least s 1 (or s we also have to increase it to s3 if there has not been a link status change in the past 4t e seconds, then there has not been a link change in the past t e or t e seconds if we do not send a LSU with TTL = s 3, we do not send a LSU at all At times 4k te ( k odd the link state change activity during the past 4t e seconds is checked and, if there is any, then an LSU with TTL set to s 3 is sent. (In the highly mobile scenario assumed on the figure, a LSU with TTL equal to s3 is sent at times 4t e and1t e. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms nodes that are s i hops away from a tagged node will learn about a link 1 status change at most after i te seconds ( refresh time Tr ( determines the latency in the link state information Different approaches may be implemented by considering different { s i } sequences. o Discretized Link State (DLS o Near Sighted Link State (NSLS Maximum refresh time as a function of fdistance from link event. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
44 FSLS Algorithms: Discretized Link State (DLS DLS is obtained by setting s i for all i is similar to the Standard Link State (SLS difference: under DLS a LSU is not sent immediately after a link status change (only when the current t e interval is completed several llink status t changes may be collected din one LSU (modification of SLS that attempts to scale better w.r.t. mobility Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms: Discretized Link State (DLS Under high mobility some similarities with Global State Routing (GSR In GSR, a node exchanges its version of the network topology table with its one-hop neighbors each t flood seconds. 1 (limits i the frequency of link state updates to be no greater that t Under high mobility (LSUs are sent every t e seconds DLS induces the same proactive overhead as GSR (by setting t e t flood flood Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
45 FSLS Algorithms: Near Sighted Link State (NSLS NSLS is obtained by setting o s i k for i p o sp ( p integer a node receives information only from nodes inside its sight area (that are less than k hops away Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms: NSLS Typical problem due to node mobility: Suppose that initially a node knows routes to every destination. as time evolves nodes move, links go down o the node learns that the previous routes will fail o the node does not learn of new available routes (out-of-sight information is not being updated common to every algorithm in the FSLS family (NSLS represents its worst case scenario Solution using past knowledge the node uses the memory of past links o sends packets in the direction it saw the destination for the last time o if the packet gets to a node that is on the sight of the destination, this node can forward the packet to the destination. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
46 FSLS Algorithms: NSLS NSLS has similarities with: the proactive part of the Zone Routing Protocol (ZRP (without the reactive route search the Distance Routing Effect Algorithm for Mobility y( (DREAM difference: NSLS limits the LSU propagation based on the number of hops traversed DREAM limits the position update message s propagation based on the geographical distance to the source Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms: NSLS NSLS has similarities with Fisheye State Routing (FSR : FSR uses the same topology dissemination mechanism as GSR, but it does not transmit the whole topology information each t flood seconds. (only a short version including only the closest nodes entries is transmitted A second, larger timer ( t large is used for out-of-scope nodes Setting te tflood and t b t large, & k : all the nodes in-scope are k or less hops away NSLS induces the same control overhead as FSR Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 9
47 FSLS Algorithms: NSLS the latency in updating link state information is greater in FSR NSLS: Tr ( te for r k, and Tr ( tb for r k FSR: Tr ( te rfor r k, and Tr ( kte ( rk tb (In FSR, a LSU waits at most t e to be propagated one more hop away, if it is in scope ( r kandwaits t b seconds when it is out-of-scope of scope (i.e. r k. NSLS FSR Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης FSLS Algorithms: Hazy Sighted Link State (HSLS HSLS is obtained by setting s i i for all i under a.1-a.8 minimum total overhead almost linear relationship between update latency and distance Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
48 FSLS Algorithms: Hazy Sighted Link State (HSLS latency versus distance curve: optimal performance when linear (optimal balance between proactive and sub-optimal routing overhead it turns out that angular uncertainty is roughly constant (independent of the distance o hop-by-hop routing is based on the next hop decision o Prob. of wrong decision depends mainly in the angular uncertainty o If constant Prob. of bad next hop decision is constant Intuitively: If faster than linear, too many mistakes when forwarding packets to nodes far away If slower than linear, fewer mistakes, but the proactive overhead increases Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Asymptotic Results Protocol Proactive Reactive Suboptimal PF ( t N SLS ( lc N DSR-noRC RC ( s N ( t N log N O (( s lc N HierLS ( sn lcn ( t N ZRP ( nklcn ( N n O( N n HSLS 15 lc 4 15 t e K ( N t e (( e 1 t N s k t k Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
49 Asymptotic expressions Best possible total overhead bounds for mobile ad hoc networks protocols Protocol Total overhead (best Cases PF ( t N Always SLS ( lc N Always DSR-noRC ( N N log N Always s t HierLS ( sn lcn tn LM1 ZRP ( lc N if O( N lc s N ( if lc ( s Nand lc O ( sn ( s N if ( HSLS 15 ( if lc O( t lc t N 15 ( N lc Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης lc lc s s N if ( lc t Observing the asymptotic expressions w.r.t network size HierLS and HSLS scale better flooding the entire network (link state, route request, or data routing protocol scalability factor w. r.t. network size = splitting the information dissemination at two different levels (like in -level hierarchical routing, NSLS, ZRP, and DREAM routing protocol scalability factor w.r.t. network size = 1.66 allowing the number of levels grow as the network size increases (as done explicitly by m-level HierLS and implicitly by HSLS routing protocol scalability factor w.r.t. network size = 1.5 (seems to be the limit for routing protocols for networks defined by a.1-a.8 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
Προηγμένες ικτυακές Τεχνολογίες
Προηγμένες ικτυακές Τεχνολογίες εαρινό εξάμηνο 016 Καθ. Ιωάννης Σταυρακάκης Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 016 1 Υλικό μαθήματος Διαλέξεις.ppt διαφάνειες,
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad hoc δίθηπα κε βάζε ελεξγεηαθά θξηηήξηα ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ
ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ ΥΟΛΖ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΜΖΥΑΝΗΚΩΝ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΜΔΣΑΓΟΖ ΠΛΖΡΟΦΟΡΗΑ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΛΗΚΩΝ Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration
Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration Δρ. Απόστολος Γκάμας Διδάσκων 407/80 gkamas@uop.gr Δίκτυα Επικοινωνιών ΙΙ Διαφάνεια 1 1 Dynamic Routing Configuration Router (config) # router protocol [ keyword
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost
Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης & Τεχνολογίας Τηλεπικοινωνιών Ευάγγελος Α. Κοσμάτος Basic OSPF Configuration Υλοποίηση Δικτυακών Υποδομών
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
EPL324: Tutorials* on Communications and Networks Tutorial 2: Chapter 1 Review Questions
EPL324: Tutorials* on Communications and Networks Tutorial 2: Chapter 1 Review Questions Pavlos Antoniou University of Cyprus Department of Computer Science * The material is taken from J.F. Kurose & K.W.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Δίκτυα Δακτυλίου. Token Ring - Polling
Δίκτυα Δακτυλίου Token Ring - Polling Όλοι οι κόμβοι είναι τοποθετημένοι σε ένα δακτύλιο. Εκπέμπει μόνο ο κόμβος ο οποίος έχει τη σκυτάλη (token). The token consists of a number of octets in a specific
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
σχεδιαστικές προκλήσεις, θεωρία γράφων
Δομή παρουσίασης 1. Εισαγωγή στις κατανεμημένες εφαρμογές: σχεδιαστικές προκλήσεις, θεωρία γράφων 2. Χαρακτηριστικά και πεδία εφαρμογών: ιδιαιτερότητες και χαρακτηριστικά που απαιτούν τη χρήση αλγορίθμων
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Internet protocol stack Encapsulation Connection oriented VS connectionless services Circuit Switching Packet Switching Store-and-forward switches
Internet protocol stack Encapsulation Connection oriented VS connectionless services Circuit Switching Packet Switching Store-and-forward switches ultiplexing: TD, FD, Statistical multiplexing, CDA OSI
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
CMOS Technology for Computer Architects
CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Χρήση συστημάτων πληροφορικής στην οδική υποδομή
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Χρήση συστημάτων πληροφορικής στην οδική υποδομή Συσχέτιση δεδομένων GPS και χάρτη Βύρωνας Νάκος Καθηγήτης ΕΜΠ bnakos@central.ntua.gr
Προσομοίωση BP με το Bizagi Modeler
Προσομοίωση BP με το Bizagi Modeler Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 BPMN Simulation with Bizagi Modeler: 4 Levels
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Quantifying the Financial Benefits of Chemical Inventory Management Using CISPro
of Chemical Inventory Management Using CISPro by Darryl Braaksma Sr. Business and Financial Consultant, ChemSW, Inc. of Chemical Inventory Management Using CISPro Table of Contents Introduction 3 About
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Adaptive Message Routing and Information Acquisition in Dynamic Mobile Networking Environments
Τμήμα Πληροφορικής και Τηλεπικοινωνιών, ΕΚΠΑ - Προηγμένες ικτυακές Τεχνολογίες - 2016 1 Adaptive Message Routing and Information Acquisition in Dynamic Mobile Networking Environments I. Manolopoulos, K.
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
HY335Α Δίκτυα Υπολογιστών Xειμερινό Εξάμηνο Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Routing Algorithms. Network Layer.
HY335Α Δίκτυα Υπολογιστών Xειμερινό Εξάμηνο 2016-2017 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Routing Algorithms Network Layer Nena Basina Υποδίκτυα (subnets) 200.23.18.0/23 11001000 00010111