Struct : public by default but Class: private by default. ClassPoint { Struct Point { Public: Double x; Double x; Double y; Double y;
|
|
- Ξένων Αλεξάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Classes: In C++, classes are very much like structs, except that classes provide much more power and flexibility. In fact, the following struct and class are effectively identical. Struct : public by default but Class: private by default ClassPoint { Struct Point { Public: Double x; Double x; Double y; Double y; }; };
2 Inline: Increase the execution time of a program. Compiler replace those function definition wherever those are being called at compile time instead of referring function definition at runtime. NOTE- This is a suggestion to compiler to make the function inline, if function is big, compiler can ignore. inline int square(int x) { return x*x; } class Vector { float x, y, z; public: Vector(float x, float y, float z) : x(x), y(y), z(z) {} float GetX(void) { return x; } // by default treated inline }; int x = square(2);// function code copied here so this is equal to: int x = 2*2; Vector v(0, 1, 2); x = v.getx(); // code from Vector::GetX also is copied here
3 Overloading: You can have multiple definitions for the same function name in the same scope. The definition of the function must differ from each other by the types and/or the number of arguments in the argument list. You can not overload function declarations that differ only by return type.
4 Overloading: class printdata { public: void print(int i) { cout << "Printing int: " << i << endl; } void print(double f) { cout << "Printing float: " << f << endl; } void print(char* c) { cout << "Printing character: " << c << endl; } }; int main(void) { printdata pd; pd.print(5); pd.print( ); pd.print("hello C++"); return 0; }
5 Constructor: A class constructor is a special member function of a class that is executed whenever we create new objects of that class. A constructor will have exact same name as the class and it does not have any return type at all, not even void. Constructors can be very useful for setting initial values for certain member variables.
6 Constructor <<Get-ers>> for be able to call protected, private members But without changing var. values
7 Object-Oriented Programming OOP: Encapsulation: grouping related data and functions together as objects and defining an interface to those objects. Inheritance: allowing code to be reused between related types. Polymorphism: allowing a value to be one of several types, and determining at runtime which functions to call on it based on its type.
8 Encapsulation just refers to packaging related stuff together : with classes. If someone hands us a class, we do not need to know how it actually works to use it; all we need to know about is its public methods/data its interface. This is often compared to operating a car: when you drive, you don t care how the steering wheel makes the wheels turn; you just care that the interface the car presents (the steering wheel) allows you to accomplish your goal.
9 Encapsulation just refers to packaging related stuff together : with classes. If someone hands us a class, we do not need to know how it actually works to use it; all we need to know about is its public methods/data its interface. This is often compared to operating a car: when you drive, you don t care how the steering wheel makes the wheels turn; you just care that the interface the car presents (the steering wheel) allows you to accomplish your goal.
10 Objects being boxes with buttons you can push, you can also think of the interface of a class as the set of buttons each instance of that class makes available. Interfaces abstract away the details of how all the operations are actually performed, allowing the programmer to focus on how objects will use each other s interfaces how they interact. This is why C++ makes you specify public and private access specifiers: by default, it assumes that the things you define in a class are internal details which someone using your code should not have to worry about.
11 The practice of hiding away these details from client code is called data hiding, or making your class a black box. One way to think about what happens in an objectoriented program is that we define what objects exist and what each one knows, and then the objects send messages to each other (by calling each other s methods) to exchange information and tell each other what to do.
12 Inheritance: When creating a class, instead of writing completely new data members and member functions, the programmer can designate that the new class should inherit the members of an existing class. This existing class is called the base class, and the new class is referred to as the derived class. The idea of inheritance implements a relationship between classes.
13 Inheritance example 1: (Shape-Rectangle): // Base class class Shape { public: void setwidth(int w) { width = w; } void setheight(int h) { height = h; } protected: int width; int height; }; // Derived class class Rectangle: public Shape { public: int getarea() { return (width * height); } }; int main(void) { Rectangle Rect; Rect.setWidth(5); Rect.setHeight(7); cout << "Total area: " << Rect.getArea() << endl; return 0; }
14 Inheritance example 2: (Vehicle-Car):
15 Inheritance example 2: (Animal-Cat-Dog): class Animal { public: Animal(char* name) : name(name) {} void Walk(void); private: char* name; }; class Dog : public Animal { public: Dog(char* name):animal(name){} void Bark(void); }; class Cat : public Animal { public: Cat(char* name):animal(name){} void Climb(void); };
16 Polymorphism: Polymorphism means many shapes. It refers to the ability of one object to have many types. If we have a function that expects a Vehicle object, we can safely pass it a Car object, because every Car is also a Vehicle. Likewise for references and pointers: anywhere you can use a Vehicle *, you can use a Car *. The idea of inheritance implements a relationship between classes. There is still a problem. Take the following example:
17 There is still a problem. Take the following example: (The -> notation on line 3 just dereferences and gets a member. ptr-> member is equivalent to (*ptr).member.). Because vptr is declared as a Vehicle *, this will call the Vehicle version of getdesc, even though the object pointed to is actually a Car. Usually we d want the program to select the correct function at runtime based on which kind of object is pointed to.
18 We can get this behavior by adding the keyword virtual before the method definition: Compiler does not statically link the code of the function but produce code that will decide what function must be called at runtime (also known as late (ή dynamic) binding). binding
19 Polymorphism example: struct Base { void foo(void) { printf( base );} }; struct Derived : public Base { void foo(void) {printf( derived );} }; Derived derived; Base base, *b = new Derived; base.foo(); //prints base derived.foo();//prints derived b->foo(); Problem!!! prints base but intended derived struct Base { virtual void foo(void) { printf( base ); } }; struct Derived : public Base{ void foo(void) { printf( derived ); } }; Derived derived; Base base, *b = new Derived; base.foo(); //prints base derived.foo();//prints derived b->foo(); Solve!!! Prints derived
20 Pure virtual συναρτήσεις λέγονται οι virtual συναρτήσεις που δεν έχουν υλοποίηση Δηλώνονται κανονικά ως virtual συναρτήσεις προσθέτοντας ένα =0 στο τέλος τους Δε μπορούμε να δημιουργήσουμε στιγμιότυπα από κλάσεις που έχουν έστω και μια pure virtual συνάρτηση Αυτές οι κλάσεις ονομάζονται abstract Χρησιμοποιούνται για να ορίσουν γενική λειτουργικότητα που θα υλοποιηθεί αργότερα από τα derived classes Αν ένα derived class δεν υλοποιεί pure virtual συναρτήσεις ενός base, τότε είναι και αυτό abstract Μπορούμε να έχουμε pointers και references σε abstract classes, όχι όμως αντικείμενα
21 Ενδέχεται να έχουμε δεσμεύσει δυναμικά μνήμη για πολυμορφικά αντικείμενα. Κατά τη διαγραφή τους με delete θέλουμε πάντα να κληθεί ο κατάλληλος (πιο derived) destructor. Για αυτό το λόγο ορίζουμε το destructor της base class virtual. Πάντα όταν σχεδιάζουμε μια κλάση που πιθανό να κληροδοτήσει σε κάποια άλλη ορίζουμε τον destructor της ως virtual. Στο επόμενο παράδειγμα, αν ο destructor της Shape δεν ήταν virtual, κατά το delete shape θα καλούνταν μόνο ο destructor της Base (Shape) και θα είχαμε memory leak αν είχαμε κάνει new ένα Object της Derived κλάσης Circle.
22 Στο παράδειγμα δίπλα, αν ο destructor της Base δεν ήταν virtual, κατά το delete b θα καλούνταν μόνο ο destructor της Base και θα είχαμε memory leak για το Object o της κλάσης Derived struct Base { Base(void) { } virtual ~Base(void) { foo(); } virtual void foo(void) { printf( base ); } }; struct Derived : public Base { Derived(void) { o = new Object; } ~Derived(void){ foo(); delete o;} void foo(void) { printf( derived ); } private: Object* o; }; Base* b = new Derived; delete b; //prints derived base Στο επόμενο παράδειγμα, αν ο destructor της Shape δεν ήταν virtual, κατά το delete shape θα καλούνταν μόνο ο destructor της Base (Shape) και θα είχαμε memory leak αν είχαμε κάνει new ένα Object της Circle.
23 #include <stdio.h> Virtual Destructor class Shape { public: virtual ~Shape(); virtual void draw() = 0; Pure virtual }; int main() { Shape *shape = new Circle; shape->draw(); delete shape; return 0; } class Circle : public Shape { public: ~Circle(); If you compile it and run it as: ($ g++ -Wall xxx.cpp -o xxx $./xxx Circle::draw circle destructor shape destructor virtual void draw(); simple Destructor }; Will shows: Circle::draw Shape::~Shape() { printf("shape destructor\n"); } circle destructor shape destructor // void Shape::draw() { // printf("shape::draw\n");} Circle::~Circle() { printf("circle destructor\n"); } void Circle::draw() { printf("circle::draw\n"); }
24 Verify your understanding of how the virtual keyword and method overriding work by performing a few experiments: Remove the virtual keyword from each location individually, recompiling and running each time to see how the output changes. Can you predict what will and will not work? Try making Shape::draw non-pure by removing = 0 from its declaration. Try changing shape (in main()) from a pointer to a stack-allocated variable.
25 Assignment 4
26 Implement a class called Tool. It should have an int field called strength and a char field called type. You may make them either private or protected. The Tool class should also contain the function void setstrength (int), which sets the strength for the Tool.
27 Create 3 classes called Rock, Paper, and Scissors, which inherit from Tool. Each of these classes will need a constructor which will take in an int that is used to initialize the strength field. The constructor should also initialize the type field using 'r' for Rock, 'p' for Paper, and 's' for Scissors. Create a virtual function in class Tool, the Tool::play, to compare Rock paper and Scissors strength.
28 The strength field shouldn't change in the tool::play, which returns true if the original class wins in strength and false otherwise. Class game will be responsible for playing the game and will contain 2 tool * (pointers) one for player and one for PC as it is unknown which type class each one will choose in each round of the game.
29 Η Game::draw να καλεί τη Shape::draw κάθε σχήματος με παράμετρο την τοποθεσία που θα απεικονίζει το σχήμα. Η Game, θα μπορεί να γνωρίζει τις διαστάσεις του καμβά.
30 Paper ή square: η οποία ζωγραφίζει πάνω στον καμβά ένα τετράγωνο με περίμετρο από., που με πλευρά μήκους side και με με x, y το κέντρο του σχήματος που αντιστοιχεί σε σημείο πάνω στον κεντρικό άξονα του καμβά και απέχει τουλάχιστον x χαρακτήρες από το κέντρο του καμβά.
31 Rock ή circle: η οποία θα ζωγραφίζει πάνω στον καμβά ένα κύκλο με περίμετρο από αστεράκια (.), με x, y το κέντρο του σχήματος που αντιστοιχεί σε χαρακτήρα πάνω στον κεντρικό άξονα του καμβά και απέχει τουλάχιστον δέκα χαρακτήρες από το κέντρο του καμβά. Scissors ή ένα ζωγραφίζει πάνω γραμμές από.. χιαστί σχήμα: η στον καμβά δυο οποία θα χιαστί με
32
33
34 ΑΠΟΡΙΕΣ???
ΗΥ150a Φροντιστήριο 4 08/12/2017
ΗΥ150a Φροντιστήριο 4 08/12/2017 Outline Classes Member Functions Constructor Overloading Access specifiers Encapsulation Inheritance Polymorphism Vectors 1 Classes Classes in C++ are like structs, except
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Αρχές Τεχνολογίας Λογισμικού Εργαστήριο
Αρχές Τεχνολογίας Λογισμικού Εργαστήριο Κωδικός Μαθήματος: TP323 Ώρες Εργαστηρίου: 2/εβδομάδα (Διαφάνειες Νίκου Βιδάκη) 1 JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο?
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 133: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial
ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial Introduction Το Javadoc είναι ένα εργαλείο που παράγει αρχεία html (παρόμοιο με τις σελίδες στη διεύθυνση http://docs.oracle.com/javase/8/docs/api/index.html) από τα σχόλια
(Διαφάνειες Νίκου Βιδάκη)
(Διαφάνειες Νίκου Βιδάκη) JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο? Ανάλυση αντικειμένων Πραγματικά αντικείμενα Καταστάσεις Συμπεριφορές Αντικείμενα στον προγραμματισμό
ΗΥ- ΗΥ 150a Programming Recitation 2 Destructor
Επαναληπτικό μάθημα 2/2 Class- Object- Constructor - Destructor Ενθυλάκωση-Αφαίρεση Κληρονομικότητα Πολυμορφισμός Aντικειμενοστρεφή προγραμματισμό (objectoriented programming), ή OOP, ονομάζουμε ένα προγραμματιστικό
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Δυναμική μνήμη με πίνακες και λίστες
Δυναμική μνήμη με πίνακες και λίστες Ατζέντα ονομάτων Οι πίνακες βοηθάνε στην εύκολη προσπέλαση, στην σειριοποίηση των δεδομένων για αποθήκευση ή μετάδοση. Απαιτούν ωστόσο είτε προκαταβολική δέσμευση μνήμης
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Lab 1: C/C++ Pointers and time.h. Panayiotis Charalambous 1
Lab 1: C/C++ Pointers and time.h Panayiotis Charalambous 1 Send email to totis@cs.ucy.ac.cy Subject: EPL231-Registration Body: Surname Firstname ID Group A or B? Panayiotis Charalambous 2 Code Guidelines:
Προγραμματισμός Ι. Κλάσεις και Αντικείμενα. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Κλάσεις και Αντικείμενα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Κλάσεις Η γενική μορφή μιας κλάσης είναι η εξής: class class-name { private data and
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
ΕΙΣΑΓΩΓΗ ΣΤΟN ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΟN ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Εμβέλεια Μεταβλητών Εμβέλεια = το τμήμα του προγράμματος στο οποίο έχει ισχύ ή είναι ορατή η μεταβλητή.
Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your
Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your GP practice in Islington Σε όλα τα Ιατρεία Οικογενειακού
Εργαστήριο Java. Διδάσκουσα: Εργαστηριακοί Συνεργάτες:
Εργαστήριο Java Διδάσκουσα: Πρέντζα Ανδριάνα aprentza@unipi.gr Εργαστηριακοί Συνεργάτες: Γεωργιοπούλου Ρούλα Λύβας Χρήστος roulageorio@ssl-unipi.gr clyvas@unipi.gr Εργαστήριο 3 Java Classes Java Objects
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Lab 1: C/C++ Pointers and time.h. Panayiotis Charalambous 1
Lab 1: C/C++ Pointers and time.h Panayiotis Charalambous 1 Send email to totis@cs.ucy.ac.cy Subject: EPL231-Registration Body: Surname Firstname ID Group A or B? Panayiotis Charalambous 2 Code Guidelines:
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Abstract classes, Interfaces ΦΡΟΝΤΙΣΤΗΡΙΟ JAVA
Abstract classes, Interfaces ΦΡΟΝΤΙΣΤΗΡΙΟ JAVA Τι θα συζητήσουμε σήμερα Αφαιρέσεις στη Java Abstract μέθοδοι και abstract κλάσεις Interfaces (=διασυνδέσεις, διεπαφές) Instanceof Παραδείγματα κώδικα Αφηρημένες
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Προγραμματισμός Ι. Εισαγωγή στην C++ Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Εισαγωγή στην C++ Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Η γλώσσα C++ Σχεδιάστηκε το 1979 από τον Bjarne Stroustrup στα Bell Laboratories Βασίζεται
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
CYTA Cloud Server Set Up Instructions
CYTA Cloud Server Set Up Instructions ΕΛΛΗΝΙΚΑ ENGLISH Initial Set-up Cloud Server To proceed with the initial setup of your Cloud Server first login to the Cyta CloudMarketPlace on https://cloudmarketplace.cyta.com.cy
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 6: C++ ΚΛΑΣΕΙΣ, ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ, ΠΟΛΥΜΟΡΦΙΣΜΟΣ Πολυμορφισμός ΔΙΔΑΣΚΟΝΤΕΣ:Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes
Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference
Goals of this Lecture. Generics(Γενικότητα) Generic Data Structures Example. Generic Data Structures Example
Generics(Γενικότητα) Μπορούμε να κατασκευάσουμε ΑΤΔ που επιτρέπει χρήση με διαφορετικούς Τύπους Δεδομένων στο ίδιο πρόγραμμα; Π.χ. Μια στοίβα με char* και μια με int Goals of this Lecture Help you learn
Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.
Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ηµιουργία και χειρισµός LIFO λιστών µεταβλητού µήκους µε στοιχεία ακεραίους αριθµούς. Γενίκευση για χειρισµό λιστών πραγµατικών
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
02 Αντικειμενοστρεφής Προγραμματισμός
02 Αντικειμενοστρεφής Προγραμματισμός Τεχνολογία Λογισμικού Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Εαρινό εξάμηνο 2016 17 Δρ. Κώστας Σαΐδης saiko@di.uoa.gr Αντικειμενοστρέφεια Στον προγραμματισμό object
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ
EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312
VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!
VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
HY150a Φροντιστήριο 3 24/11/2017
HY150a Φροντιστήριο 3 24/11/2017 1 Assignment 3 Overview Το πρόγραμμα ζητείται να διαβάζει μια λίστα δεδομένων που περιγράφει τα διαθέσιμα τμήματα μνήμης (blocks) ενός ΗΥ. Το πρόγραμμα ζητείται να μεταφορτώνει
ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018 ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εισαγωγή ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ Ένα πρόγραμμα σε C περιλαμβάνει μια ή περισσότερες συναρτήσεις
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Δομές Δεδομένων - Εργαστήριο 2. Λίστες
Λίστες Λίστες (Lists) : Συλλογή δεδομένων σε δυναμικά δεσμευμένους κόμβους. Κάθε κόμβος περιέχει συνδέσεις προς άλλους κόμβους. Προσπέλαση -στού κόμβου διατρέχοντας όλους τους προηγούμενους. Πολλές παραλλαγές
Η λέξη κλειδί this. Γαβαλάς Δαμιανός dgavalas@aegean.gr
Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Διάλεξη #6 η : Η λέξη κλειδί this, υπερφόρτωση μεθόδων, κληρονομικότητα, πολυμορφισμός, υπερκάλυψη, επίπεδα προσπέλασης Γαβαλάς Δαμιανός dgavalas@aegean.gr
Αντικειμενοστρεφής Προγραμματισμός
Αντικειμενοστρεφής Προγραμματισμός Διδάσκουσα: Αναπλ. Καθηγήτρια Ανδριάνα Πρέντζα aprentza@unipi.gr Εργαστηριακός Συνεργάτης: Δρ. Βασιλική Κούφη vassok@unipi.gr Περιεχόμενα Java Classes Java Objects Java
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost
Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης & Τεχνολογίας Τηλεπικοινωνιών Ευάγγελος Α. Κοσμάτος Basic OSPF Configuration Υλοποίηση Δικτυακών Υποδομών
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο
Case 1: Original version of a bill available in only one language.
currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the
Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.
Topic 1: Describe yourself Write your name, your nationality, your hobby, your pet. Write where you live. Χρησιμοποίησε το and. WRITE your paragraph in 40-60 words... 1 Topic 2: Describe your room Χρησιμοποίησε
Αντικειμενοστρεφής Προγραμματισμός
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Αντικειμενοστρεφής Προγραμματισμός 16/4/2018 Δρ. Ανδριάνα Πρέντζα Αναπληρώτρια Καθηγήτρια aprentza@unipi.gr Τύποι της Java Primitives vs References Οι πρωταρχικοί
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 }
A ΜΕΡΟΣ 1 program Puppy_Dog; begin 4 end. 5 6 { Result of execution 7 (There is no output from this program ) 10 } (* Κεφάλαιο - Πρόγραµµα EX0_.pas *) 1 program Kitty_Cat; begin 4 Writeln('This program');
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Κλάσεις στην Python. Δημιουργία κλάσεων
Κλάσεις στην Python Στον προγραμματισμό γενικά προσπαθούμε να αποφεύγουμε τις επαναληπτικές εργασίες. Προσπαθούμε να γράφουμε κώδικα μία φορά και να τον χρησιμοποιούμε ξανά. Η αποφυγή της επανάληψης κώδικα
Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
1) Formulation of the Problem as a Linear Programming Model
1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade
Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 7: Ενθυλάκωση (encapsulation), Τροποποιητές(modifiers) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ενθυλάκωση -Τροποποιητές Πρόσβασης (Access Modifiers), public, protected, private,