1 Advanced Encryption Standard (AES)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Advanced Encryption Standard (AES)"

Transcript

1 Date: Monday, September 24, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on the Advanced Encryption Standard (AES) 1 Advanced Encryption Standard (AES) 1.1 AES History In 1997, the National Institute of Standard and Technology (NIST) of United States initiated the development of an Advanced Encryption Standard (AES) to replace the Data Encryption Standard (DES). The objective was to develop with the industry and cryptographic community an encryption algorithm sufficiently powerful to protect government, as well as private sector, information for several years. As for DES, the algorithm should be royalty-free, publicly disclosed. The AES algorithm was designed as a symmetric block cipher using a minimum of 128-bit input blocks and supporting 3 key sizes, that is: 128-bit, 192-bit and 256-bit keys. In August 1998, NIST announced that 15 AES proposals were received for evaluation and comments. After an analysis of the proposed algorithms, NIST announced in April 1999 that five algorithms were retained as finalist algorithms. These were: 1. MARS 2. RC6 3. Rijndael 4. Serpent 5. Twofish These algorithms were further analyzed in terms of their relative cryptographic strength and ease of implementation. In October 2000, NIST announced that the Rijndael algorithm was selected for the new AES standard. The algorithm is presently under further review, that is validation testing, and it is expected that the AES algorithm be completed for this summer. In February 2001, the NIST delivered a draft Federal Information Processing Standards (FIPS) for the specification of the Advanced Encryption Standard. On November 26, 2001, NIST announced the final specification of the Advanced Encryption Standard (FIPS PUB 197) [NIS01]. 1

2 1.2 Rijndael Block Cipher Algorithm Mathematical Background In the AES algorithm, the operations, such as the addition and the multiplication, are performed on bytes over a finite field, the Galois Field GF(2 8 ). Addition The addition between two elements, or bytes, from the finite field is achieved by the addition modulo 2 of the corresponding bits in the representation of the bytes. The addition of the bytes A = (a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8 ) and B = (b 1, b 2, b 3, b 4, b 5, b 6, b 7, b 8 ) gives C = A + B with C = (c 1, c 2, c 3, c 4, c 5, c 6, c 7, c 8 ) where c i = a i b i for 1 < i < 8. The finite field elements can also be represented in polynomial form. For instance, the sum of A = and B = 4E 16 (in hexadecimal notation) is obtained as: E 16 = 3D 16 (hexadecimal notation) = (binary notation) (x 6 + x 5 + x 4 + x + 1) + (x 6 + x 3 + x 2 + x) = (x 5 + x 4 + x 3 + x 2 + 1) in polynomial notation. Multiplication As for the multiplication operation, it is also done over the Galois Field GF(2 8 ) and is obtained by the multiplication of the two elements polynomials and then reduced modulo an irreductible polynomial m(x), which is equivalent to a prime number in the standard numbering system. As a prime number, the irreductible polynomial as only two divisors: 1 and itself, m(x). For AES, this irreductible polynomial is m(x) = (x 8 + x 4 + x 3 + x + 1). Let, for example, A = C3 16 and B = 85 16, that is, a(x) = (x 7 +x 6 +x+1) and b(x) = (x 7 +x 2 +1). Then C = A B is given by: c(x) = [a(x) b(x)] mod (x 8 + x 4 + x 3 + x + 1) c(x) = [(x 7 + x 6 + x + 1) (x 7 + x 2 + 1)] mod (x 8 + x 4 + x 3 + x + 1) c(x) = [(x 14 + x 13 + x 8 + x 7 ) + (x 9 + x 8 + x 3 + x 2 ) + (x 7 + x 6 + x + 1)] mod (x 8 + x 4 + x 3 + x + 1) c(x) = [(x 14 + x 13 + x 9 + x 6 + x 3 + x 2 + x + 1)] mod (x 8 + x 4 + x 3 + x + 1) c(x) = [(x 6 + x 5 + x 2 + x + 1) (x 8 + x 4 + x 3 + x + 1) + (x 7 + x 5 + x 3 + x 2 + x)] mod(x 8 + x 4 + x 3 + x + 1) c(x) = (x 7 + x 5 + x 3 + x 2 + x) and then c(x) = (x 7 + x 5 + x 3 + x 2 + x) or C = in binary notation or, in hexadecimal notation: C = AE 16. 2

3 Construction of an (extended) Galois Fields Let p be a prime number. Galois Field GF(p) is given by the element {0} and the (p 1) successive powers: 1, α, α 1, α 2,..., α (p 1) Many computer based algorithms operate on extensions of the Galois Field GF(2) which consists of the two binary elements {0, 1}. Reed-Solomon error correction codes and the AES encryption algorithm, which are basically Byte-oriented algorithms, use extended Galois Field such as GF(p m ) = GF(2 8 ) = GF(256) that contains 256 distinct elements. To generate such an extended Galois Field, a primitive polynomial p(x) over GF(q) is needed. An irreductible polynomial p(x) is a polynomial which cannot be factored into lower degree polynomials in over GF(q). An irreductible polynomial p(x) of degree m is a primitive polynomial if the smallest positive integer n for which p(x) divides x n 1 is n = p m 1. To form the Galois Field, one has to determine a root α of the primitive polynomial p(x), that is p(α) = 0. For instance, the primitive polynomial p(x) = x 4 + x + 1 can be used to form the extended Galois Field GF(2 4 ) = GF(16), that is for p = 2 and m = 4. Then the root α of p(x) is: p(α) = 0 α 4 + α + 1 = 0 and therefore: α 4 = α + 1. Table 1 illustrates how to generate the extended Galois Field GF(2 4 ) from the primitive polynomial p(x). Table 4 gives an extended Galois Field GF(2 8 ) that can be used for Reed-Solomon error control coding and for AES byte operations. The primitive polynomial p(x) = x 8 + x 4 + x 3 + x is used and the extended Galois Field GF(2 8 ) is obtained with the polynomial root: α 8 = α 4 + α 3 + α

4 Table 1: Galois Field GF (2 4 ) = GF (16). element of polynomial binary decimal GF (16) form form form α α α 2 α α 3 α α 4 α α 5 α 2 +α α 6 α 3 +α α 7 α 3 +α α 8 α α 9 α 3 +α α 10 α 2 +α α 11 α 3 +α 2 +α α 12 α 3 +α 2 +α α 13 α 3 +α α 14 α

5 1.3 Advanced Encryption Standard Algorithm The Advanced Encryption Standard Algorithm encrypts a 128-bit plaintext block M into a 128-bit ciphertext block C using a cipher key K of either 128 bits, 192 bits or 256 bits. The different key lengths employed for AES are refered to: AES-128, AES-192, and AES-256. The algorithm operates on bytes and the block size for the input, output and key are represented by 32-bit words, that is 4 bytes. The AES algorithm performs a number N r of cryptographic rounds depending on the actual key length used as indicated in Table 2 for AES-128, AES-192 and AES-256. Table 2: Number of cryptographic rounds N r for AES encryption. AES Input/output Key length Number of algorithm length N b N k rounds N r AES words 4 words 10 rounds AES words 6 words 12 rounds AES words 8 words 14 rounds Each round consists of four byte-oriented cryptographic transformations: 1. Byte Substitution 2. Shifting rows of the State Array 3. Mixing data within a column of the State Array 4. Round Key addition to the State Array Cipher(byte in[4 * Nb], byte out[4 * Nb], word w[nb * (Nr + 1)]) begin byte state[4,nb] state = in AddRoundKey(state, w) for round = 1 step 1 to Nr - 1 SubBytes(state) ShiftRows(state) MixColumns(state) AddRoundKey(state, w + round * Nb) end for SubBytes(state) ShiftRows(state) AddRoundKey(state, w + Nr * Nb) out = state end (Source: AES draft specification: 5

6 Byte Substitution: SubBytes() transformation The first AES transformation is a non linear byte substitution transformation called SubBytes() transformation. It operates independently on each byte. It first computes the multiplicative inverse in the finite Galois Field GF(2 8 ). It then applies an affine transformation on the multiplicative inverse: b b 0 1 b 1 b b b 2 0 b 3 b = b b b b 5 1 b b 6 1 b b 7 0 where b i represents the i th bit of byte b. Shifting rows of the State Array: Shif trows() transformation The next transformation of the AES cipher consits in shifting the rows of the State array. The amount of shifting shift(r, N b ) depends on the row number r. The input (plaintext) and output (ciphertext) blocks are 128 bit-blocks or consist of N b = 4 32-bit words. The Shif trows() transformation can be expressed as: s r,c = s r,(c+shift(r,nb )) mod N b where 0 c < N b. For the first row, there is no row shifting, that is: shift(0, N b = 4) = 0. For the remaining rows the amount of shifting depend on the row number: shif t(0, 4) = 0 shif t(1, 4) = 1 shif t(2, 4) = 2 shif t(3, 4) = 3 Mixing data within a column of the State Array: M ixcolumns() transformation The MixColumns() transformation is used to Mix the data within a single column of the State matrix. The columns are represented as polynomials over the Galois Field GF(2 8 ). The output of the MixColumns() transformation s (x) is given by the multiplication of the input column s(x) with the polynomial a(x) and reduced modulo (x 4 + 1): s (x) = a(x) s(x) mod (x 4 + 1) where a(x) = x x x In matrix form, this column mixing transformation can be represented as: s 0,c s 1,c s 2,c s 3,c = s 0,c s 1,c s 2,c s 3,c where 0 c < N b. 6

7 Round Key addition to the State Array: AddRoundKey() transformation In the AddRoundKey() transformation, the key bits derived from the original Cipher Key by the Key Expansion transformation are added bitwise to the State array. An initial Round Key w 0, i.e. for round = 0, is added prior the first cryptographic round. Then at each round, i.e. for 1 round N r, a different 32-bit Round Key w i is added: [ s 0,c, s 1,c, s 2,c, s ] 3,c = [s0,c, s 1,c, s 2,c, s 3,c ] [ w (round Nb )+c] where 0 c < N b. AES Key Expansion The AES algorithm generates from the Cipher Key (128-bit, 192-bit or 256-bit long) an initial set of N b 32-bit words and a N b 32-bit for each of the N r rounds, resulting in a total of N b (N r + 1) 32-bit words, {w i }, for 0 i < N b (N r +1). The pseudocode for the AES key expansion algorithm is given in the FIPS draft (Web site: and reproduced hereafter. Note that this is a draft document and that the final AES specification should be adopted in the summer of The function SubW ord() applies the substitution transformation of the S-box on a 4-byte input word to produce a 4-byte output word. Function RotW ord() performs a cyclic byte permutation on a 4-byte (32-bit) word w i. RotW ord(a 0, a 1, a 2, a 3 ) = (a 1, a 2, a 3, a 0 ) AES Key Management As is the case for DES, the AES is a symmetric block cipher cryptosystem that requires the secure distribution of the secret key between the sender and recipient. Table 3 indicates the length of the public key for the three AES key lengths. This entries in Table 3 show the advantage of using a key exchange scheme based on Elliptic Curve Cryptography (ECC) instead of the RSA algorithm for the same level of security. Table 3: Required RSA and Elliptic Curve Cryptography (ECC) key lengths for encryption of AES secret keys with equivalent security. AES algorithm AES key length RSA key length ECC key length AES bits 3,072 bits 283 bits AES bits 7,680 bits 409 bits AES bits 15,360 bits 571 bits 7

8 KeyExpansion(byte key[4 * Nk], word w[nb * (Nr + 1)], Nk) begin i=0 while (i < Nk) w[i] = word[key[4*i],key[4*i+1],key[4*i+2],key[4*i+3]] i = i + 1 end while end i = Nk while (i < Nb * (Nr + 1)) word temp = w[i - 1] if (i mod Nk = 0) temp = SubWord(RotWord(temp)) xor Rcon[i / Nk] else if (Nk = 8 and i mod Nk = 4) temp = SubWord(temp) end if w[i] = w[i - Nk] xor temp i = i + 1 end while (Source: AES draft specification: 8

9 Table 4: Galois Field GF (2 8 ) = GF (256). element of polynomial binary decimal GF (256) form form form α α α 2 α α 3 α α 4 α α 5 α α 6 α α 7 α α 8 α 4 +α 3 +α α 9 α 5 +α 4 +α 3 +α α 10 α 6 +α 5 +α 4 +α α 11 α 7 +α 6 +α 5 +α α 12 α 7 +α 6 +α 3 +α α 13 α 7 +α 2 +α α 14 α 4 +α α 15 α 5 +α 2 +α α 16 α 6 +α 3 +α α 17 α 7 +α 4 +α α 18 α 5 +α 3 +α α 19 α 6 +α 4 +α 3 +α α 20 α 7 +α 5 +α 4 +α α 21 α 6 +α 5 +α 4 +α α 22 α 7 +α 6 +α 5 +α 3 +α α 23 α 7 +α 6 +α α 24 α 7 +α 3 +α 2 +α α 25 α α 26 α 2 +α α 27 α 3 +α α 28 α 4 +α α 29 α 5 +α α 30 α 6 +α α 31 α 7 +α

10 element of polynomial binary decimal GF (256) form form form α 32 α 7 +α 4 +α 3 +α α 33 α 5 +α 2 +α α 34 α 6 +α 3 +α 2 +α α 35 α 7 +α 4 +α 3 +α α 36 α 5 +α α 37 α 6 +α 3 +α α 38 α 7 +α 4 +α α 39 α 5 +α 4 +α α 40 α 6 +α 5 +α 3 +α α 41 α 7 +α 6 +α 4 +α α 42 α 7 +α 5 +α 4 +α α 43 α 6 +α 5 +α 4 +α 2 +α α 44 α 7 +α 6 +α 5 +α 3 +α 2 +α α 45 α 7 +α α 46 α 7 +α 4 +α 3 +α 2 +α α 47 α 5 +α α 48 α 6 +α 2 +α α 49 α 7 +α 3 +α α 50 α α 51 α 3 +α α 52 α 4 +α α 53 α 5 +α α 54 α 6 +α α 55 α 7 +α α 56 α 6 +α 4 +α 3 +α α 57 α 7 +α 5 +α 4 +α 3 +α α 58 α 6 +α 5 +α α 59 α 7 +α 6 +α 4 +α α 60 α 7 +α 5 +α 4 +α α 61 α 6 +α 5 +α 3 +α 2 +α α 62 α 7 +α 6 +α 4 +α 3 +α 2 +α α 63 α 7 +α

11 element of polynomial binary decimal GF (256) form form form α 64 α 6 +α 4 +α 3 +α 2 +α α 65 α 7 +α 5 +α 4 +α 3 +α 2 +α α 66 α 6 +α α 67 α 7 +α 6 +α α 68 α 7 +α 4 +α α 69 α 5 +α 3 +α 2 +α α 70 α 6 +α 4 +α 3 +α 2 +α α 71 α 7 +α 5 +α 4 +α 3 +α α 72 α 6 +α 5 +α α 73 α 7 +α 6 +α 3 +α α 74 α 7 +α α 75 α 3 +α 2 +α α 76 α 4 +α 3 +α 2 +α α 77 α 5 +α 4 +α 3 +α α 78 α 6 +α 5 +α 4 +α α 79 α 7 +α 6 +α 5 +α α 80 α 7 +α 6 +α 5 +α 4 +α 3 +α α 81 α 7 +α 6 +α 5 +α 2 +α α 82 α 7 +α 6 +α 4 +α α 83 α 7 +α 5 +α 4 +α 3 +α α 84 α 6 +α 5 +α 3 +α α 85 α 7 +α 6 +α 4 +α 2 +α α 86 α 7 +α 5 +α α 87 α 6 +α 5 +α 4 +α 3 +α 2 +α α 88 α 7 +α 6 +α 5 +α 4 +α 3 +α 2 +α α 89 α 7 +α 6 +α α 90 α 7 +α 6 +α 4 +α 3 +α 2 +α α 91 α 7 +α 5 +α α 92 α 6 +α 4 +α 3 +α α 93 α 7 +α 5 +α 4 +α 2 +α α 94 α 6 +α 5 +α α 95 α 7 +α 6 +α 5 +α

12 element of polynomial binary decimal GF (256) form form form α 96 α 7 +α 6 +α 4 +α α 97 α 7 +α 5 +α 3 +α 2 +α α 98 α 6 +α α 99 α 7 +α 2 +α α 100 α α 101 α 5 +α α 102 α 6 +α α 103 α 7 +α α 104 α 3 +α α 105 α 4 +α 3 +α α 106 α 5 +α 4 +α α 107 α 6 +α 5 +α α 108 α 7 +α 6 +α α 109 α 7 +α 5 +α 4 +α 3 +α α 110 α 6 +α 5 +α 2 +α α 111 α 7 +α 6 +α 3 +α 2 +α α 112 α α 113 α 4 +α 3 +α 2 +α α 114 α 5 +α 4 +α 3 +α 2 +α α 115 α 6 +α 5 +α 4 +α 3 +α α 116 α 7 +α 6 +α 5 +α 4 +α α 117 α 7 +α 6 +α 5 +α 3 +α α 118 α 7 +α 6 +α 2 +α α 119 α 7 +α 4 +α α 120 α 5 +α 4 +α 3 +α α 121 α 6 +α 5 +α 4 +α 2 +α α 122 α 7 +α 6 +α 5 +α 3 +α α 123 α 7 +α 6 +α α 124 α 7 +α 4 +α 2 +α α 125 α 5 +α 4 +α α 126 α 6 +α 5 +α 2 +α α 127 α 7 +α 6 +α 3 +α

13 element of polynomial binary decimal GF (256) form form form α 128 α 7 +α α 129 α 4 +α 2 +α α 130 α 5 +α 3 +α 2 +α α 131 α 6 +α 4 +α 3 +α α 132 α 7 +α 5 +α 4 +α α 133 α 6 +α 5 +α 3 +α α 134 α 7 +α 6 +α 4 +α 3 +α α 135 α 7 +α 5 +α α 136 α 6 +α 3 +α 2 +α α 137 α 7 +α 4 +α 3 +α 2 +α α 138 α α 139 α 6 +α α 140 α 7 +α α 141 α 4 +α α 142 α 5 +α 3 +α α 143 α 6 +α 4 +α α 144 α 7 +α 5 +α α 145 α 6 +α 3 +α α 146 α 7 +α 4 +α 3 +α α 147 α 5 +α α 148 α 6 +α 4 +α α 149 α 7 +α 5 +α α 150 α 6 +α 4 +α α 151 α 7 +α 5 +α 3 +α α 152 α 6 +α α 153 α 7 +α 4 +α α 154 α 5 +α 4 +α α 155 α 6 +α 5 +α 4 +α α 156 α 7 +α 6 +α 5 +α α 157 α 7 +α 6 +α 4 +α α 158 α 7 +α 5 +α 4 +α 2 +α α 159 α 6 +α 5 +α 4 +α

14 element of polynomial binary decimal GF (256) form form form α 160 α 7 +α 6 +α 5 +α 2 +α α 161 α 7 +α 6 +α α 162 α 7 +α 5 +α 4 +α 3 +α 2 +α α 163 α 6 +α 5 +α α 164 α 7 +α 6 +α 2 +α α 165 α 7 +α α 166 α 5 +α 4 +α 3 +α 2 +α α 167 α 6 +α 5 +α 4 +α 3 +α 2 +α α 168 α 7 +α 6 +α 5 +α 4 +α 3 +α α 169 α 7 +α 6 +α 5 +α α 170 α 7 +α 6 +α 4 +α 2 +α α 171 α 7 +α 5 +α 4 +α α 172 α 6 +α 5 +α 4 +α 3 +α α 173 α 7 +α 6 +α 5 +α 4 +α 2 +α α 174 α 7 +α 6 +α 5 +α α 175 α 7 +α 6 +α 5 +α 4 +α 3 +α 2 +α α 176 α 7 +α 6 +α 5 +α α 177 α 7 +α 6 +α 4 +α 3 +α α 178 α 7 +α 5 +α 3 +α α 179 α 6 +α 3 +α α 180 α 7 +α 4 +α 2 +α α 181 α 5 +α α 182 α 6 +α 5 +α α 183 α 7 +α 6 +α α 184 α 7 +α 4 +α α 185 α 5 +α 4 +α 2 +α α 186 α 6 +α 5 +α 3 +α 2 +α α 187 α 7 +α 6 +α 4 +α 3 +α α 188 α 7 +α 5 +α α 189 α 6 +α 4 +α 2 +α α 190 α 7 +α 5 +α 3 +α 2 +α α 191 α

15 element of polynomial binary decimal GF (256) form form form α 192 α 7 +α α 193 α 4 +α α 194 α 5 +α 4 +α α 195 α 6 +α 5 +α α 196 α 7 +α 6 +α α 197 α 7 +α 3 +α α 198 α 2 +α α 199 α 3 +α 2 +α α 200 α 4 +α 3 +α α 201 α 5 +α 4 +α α 202 α 6 +α 5 +α α 203 α 7 +α 6 +α α 204 α 7 +α 6 +α 4 +α 3 +α α 205 α 7 +α 5 +α 2 +α α 206 α 6 +α 4 +α α 207 α 7 +α 5 +α 2 +α α 208 α 6 +α α 209 α 7 +α 5 +α α 210 α 6 +α 4 +α α 211 α 7 +α 5 +α 4 +α α 212 α 6 +α 5 +α 4 +α α 213 α 7 +α 6 +α 5 +α 4 +α α 214 α 7 +α 6 +α 5 +α 4 +α α 215 α 7 +α 6 +α 5 +α 3 +α 2 +α α 216 α 7 +α 6 +α α 217 α 7 +α 4 +α 3 +α α 218 α 5 +α 3 +α α 219 α 6 +α 4 +α 2 +α α 220 α 7 +α 5 +α 3 +α α 221 α 6 +α α 222 α 7 +α 3 +α α 223 α

16 element of polynomial binary decimal GF (256) form form form α 224 α 4 +α α 225 α 5 +α α 226 α 6 +α α 227 α 7 +α α 228 α 5 +α 4 +α 3 +α α 229 α 6 +α 5 +α 4 +α 3 +α α 230 α 7 +α 6 +α 5 +α 4 +α α 231 α 7 +α 6 +α 5 +α 4 +α α 232 α 7 +α 6 +α 5 +α 4 +α 2 +α α 233 α 7 +α 6 +α 5 +α 4 +α α 234 α 7 +α 6 +α 5 +α 4 +α 3 +α α 235 α 7 +α 6 +α 5 +α 3 +α α 236 α 7 +α 6 +α 3 +α α 237 α 7 +α 3 +α α 238 α 3 +α α 239 α 4 +α 2 +α α 240 α 5 +α 3 +α α 241 α 6 +α 4 +α α 242 α 7 +α 5 +α α 243 α 6 +α 5 +α 4 +α 3 +α α 244 α 7 +α 6 +α 5 +α 4 +α 3 +α α 245 α 7 +α 6 +α 5 +α α 246 α 7 +α 6 +α 3 +α 2 +α α 247 α 7 +α α 248 α 4 +α 3 +α α 249 α 5 +α 4 +α 2 +α α 250 α 6 +α 5 +α 3 +α α 251 α 7 +α 6 +α 4 +α α 252 α 7 +α 5 +α 3 +α α 253 α 6 +α 2 +α α 254 α 7 +α 3 +α 2 +α References [NIS01] NIST. Data Encryption Standard (AES). Technical Report FIPS PUB 197, National Institute of Standards and Technology, Washington DC, November

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Διάλεξη 6-1 5-1 Περίληψη

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο

Διαβάστε περισσότερα

(C) 2010 Pearson Education, Inc. All rights reserved.

(C) 2010 Pearson Education, Inc. All rights reserved. Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 3: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Αλγόριθµοι συµµετρικού κλειδιού

Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A New Algebraic Method to Search Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q )

A New Algebraic Method to Search Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q ) A New Algebraic Method to Search Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q ) Sankhanil Dey and Ranjan Ghosh 2 Institute of Radio Physics and Electronics

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ Διπλωματική Εργασία του

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH

Διαβάστε περισσότερα

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό. UΓενικές Επισημάνσεις 1. Παρακάτω θα βρείτε απαντήσεις του Υπουργείου, σχετικά με τη συμπλήρωση της ηλεκτρονικής φόρμας. Διευκρινίζεται ότι στα περισσότερα θέματα οι απαντήσεις ήταν προφορικές (τηλεφωνικά),

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Θεωρία Πληροφορίας και Κωδίκων

Θεωρία Πληροφορίας και Κωδίκων Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος

Διαβάστε περισσότερα