! # % & % ( )! + #, % ( . / 0 0 % ( )! # % # # % 0 #2 0 + % # # % % % # + %
|
|
- Ὡρος Βλαβιανός
- 9 χρόνια πριν
- Προβολές:
Transcript
1
2 ! # % & % ( )! + #, % (. / 0 0 % ( )! # % # # % 0 #2 0 + % # # % % % # + % ! + 0 & % ) % 8
3 % % %# + 5 % 0 + % ( 0 %! 0 0 ( ) 0 0 % 0 # # ) % # %# : % ;<=<+! 0 0 > 0 0 # )? ;<<; 0 % 8 % :% %,) 0 :% + :% 0 & + :% :% ( > 0?? Α % # 0 % 5 0(% Β + # 0 Χ % 0 )? % 5 & + % # 0 80 : 0?
4 ! + Α +! 7! % # %# %# ( % % %# 0 % 0 + ;<< ( ) <Ε < ;<< + Α + Α +! 7! % # %# %# ( % % %# 0 % 0 ) ) Φ Γ + ;<=< + # %& () +,+ %#. /) + ), 0,1+ %#% 2%&3+ %#. 0+ % 0 % & + ;<=< + Α + Α +! 4 %,%,. &., 35%,. 1 % +.) + 0 Η 0 % 0 > 2 # % 5 & + ;<=<
5 % ( 9 ) + Ι,0 % ϑ
6 + % # % + # # ) / % ) ) Α % # % + % # 0 + % ( %!> % / > %# 0 % ( Χ Α % % ( 9 ) + Ι,0 % ϑ # 0 ) 0 %# / Κ % ( : 0 Α % + + # 0 1 &% 0 % 0 0 %# % % Α # % % %. 9 # Η Χ # # % ( # # 0? / % % 0, % # :8 # 0 + / % 0 % / %6.& %,. 1)+ &+) % 76.& % # 0 % 0 % % ( 0 # 0 Α +& 1 ),&4+ / % % # 0 # 0 % % ( ) ) 0 :% 0 Α 0 % % %,) %# Λ %.&)+),%+ / % 0 0 % # > 0! 0 # 0 0 % ( % Μ 3 % ΝΑ % % % 0 # Χ # 0 ) 0 # 0 Α + % + Κ %# # 0 # + # # 1 Κ! 0 + / 1 ( + %
7 Μ ) / # % 0 ( ( Ν Β Ο 5 Β Φ;<<Π+ # ΕΘΓ! +6.7+! 8 Ρ< ΣΘ ΣΘ
8 1+,&% 1+,&% %# / ) 1+,&% 8 0,#! 0 % / ΕΕ ΕΣ Ε
9 9 &:2 % # 0,#! 7 %# % &:2 % # 0,#! 7 1 &:2 % 8 # 0,#! 7 &:2 % ; # 0,#! 7 % &:2 % < # 0,#! 7 0 % ΣΤ ΣΤ ΣΠ ΣΠ ΣΕ
10 !!! 0 Χ % 0 :% 0 % %# (
11 =1&+,) 0 # # Χ % ;Τ =1&+ : 0 ;Σ =1&+ 8 Τ= =1&+ ; 5 7 # 0 =1&+ < 0,# 1! 0 =1&+ > %# ( % 1 ΤΠ ΤΣ Π =1&+? ) %# ( Ε< =1&+! > 7 =Υ 0,# & 1 % % # 0 =1&+ Α! > 7 ;Υ 0,# & ( 1 Κ =1&+! > 7 ΘΥ 0,# & % % =1&+! > 7 ΤΥ 0,# & ) % 0, =1&+! > 7 ΠΥ 0,# & 1 # % Ι 8 0 ) =1&+ 8! # 9 # Φ;<<<Γ 6 0,#! Ρ; Ρ; ΡΘ ΡΤ ΡΠ ΡΕ
12 Φ5 Γ % 1 0 % % % 0 % 0 0 %# ( % + Χ ( % 1 Η + % ) ) 0 % 0 %# ( & 0 % 0 Χ 0 % % % 0 / 1 % ) % + 1 # + 0 % : % Η + / ) 1 0 % # 0 # # 1 0 Α 0 + / ) 0 0 Α % % 1 %# ( 0 Η # Χ % # 0,# 1 0 Φ! Γ 0 ) % % / %# ) 0 :% 0 & + / + : % 5 % % # # 0 # / ) 0 % Χ ) 1 % > %# / Κ 0 0 # 0,#! + # # # 5 # & / # 0,#! # % / 5 # % % 0 / # % ) 0 ( % 1 0 % 0 # # 0 % # & / Κ # 0,#! + # + / %# + 0 ) / % # # 0 + # % %,) # 0,# 1 0 # 0 % % ) % # >) # 0 + / 0 % > &+ Β+0. %# ( Α 1 0 Α
13 5 ( Φ5 Γ ( 0 %% 0 ϑ % + ( # 1 % + ς ) ς ( # % ( ς ( % 0 % ( # # ς % % ϑ + 0 % % + ( + 0 ϑ ( % ϑ+ ς( 0( ( ( # % ϑ # ϑ ( 1 + ( 0 ( ( ( 1 ς ( ( % 1 %# ϑ ( # # ς ( ( # + 5 # 0 # ( 1 0 ϑ Φ! Γ 0 ϑ 0 %# ( ς ( ϑ ς & + % ς( 0(+ ( ( ) # ( 5 # # 0 % 0 % % ( 0( % % Β ϑ ( 0 %# ( 0 ( ) # 0 #! + # # ϑ ( 5 + Β ς ς( ( ( 5 # / 00 ( 0 #! ( ( ς ( ( 5 0 % % % ( # % 0 1 % % Χ 0 ( # 0 + ( ς ) # / 00 ( # 0 # (! + 0 ( 0 %# + 0 ( ( # ς % 0 % % + ( ) ) ( 0 0( # 0 # Β ( 1 0 ϑ 0 0 % ) % ( 0 % % + ς( 0( 0 ϑ 0 ϑ ( 5 Χ. Ε%&, % ϑ ϑ
14 9 ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ > = = %+35%,% &%67.#+ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ =Σ = ; 6Γ. 0% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ = = = = Θ Η ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ;< Φ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ; = 7+).Γ+#.) % ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ;; ; ; &+ 4= + ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ;Τ ; Θ 7+).Γ+#.) % &+ 4= %ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Θ= ; Τ!+7+)., %&. +&, ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΘΤ Τ<! ΤΘ! # % & ΤΡ! ; Π.&.) +#.) %,%..#.)Β%,+ &=+) Ι+35%ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΠΤ ; Ε & 4& %,. ϑ.7/) +,% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Ε; 8Φ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ >> Θ = %,.. Κ1 + ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΕΕ Θ ; % 17+35% +70%. +#% &+ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΕΡ Θ Θ ) &1#.) %,. %7. +,.,+,% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΕΣ Θ Τ &+ +#.) %,%,+,% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Ρ= ;Φ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ?? Τ = +&+.& Ι+35%,+ %&=+) Ι+3Λ. ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΡΡ # ( ΡΡ ) +) ) Ρ, Σ< ) Σ= <Φ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ 8 Π =. 17 +,% %6,% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΣΘ Π ; Μ & ) Ν % Ο &+,1Ι & +. &+ 4= +.#.&#% %.&+ %)+ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ΣΕ Π Θ Μ & ) Ν % Ο 7 )Β+& + %&=+) Ι+35% Π. &+ 4= + ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Σ Π Τ 8Μ & ) Ν % Ο &+) 2%&#+& +. &+ 4= +.# +&.2+,. %,% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ = Π Π ;Μ & ) Ν % Ο %)0.&.& +. &+ 4= +.# &%. % %) Ν)1% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Θ Π Ε <Μ & ) Ν % Ο %6 7 Ι+& + #1,+)3+ %& #. %,+,.&+)3+ ϑ ΦΦΦΦΦΦΦ Ε Π Ρ ):7.,% &. 17 +,% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Σ >Φ Θ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ Ε =. %),.),% +% 6Γ. 0%.&+7ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ =<= Ε ; # +3Λ. ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ =<; Ε Θ 1=. Λ. +&+ &+6+7Β% 21 1&% ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ =<Θ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ ; ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ
15 % ( %# 0 ) # 0 %# ) 0 > % 0 > 0 # /, > 0 ) 0 / % #Λ 0 8 % %# % % 0 0 ( % 1 0 # %# 0 ) % %# ( %# % 0 % ( 0 # / % % # 0 Χ ) % Χ + # 0 # %# 80 # 0 0 %# + # # + # # ) 1 0 > # 0 + # # 0 8 Φ9 Ι + ;<<ΕΓ 5 Ι % Φ;<< + # ΡΓ % / % 1 Η + # 8 % ( % 0 % % # 0 + % 0 % % /Ω % + / % # >) # ( % 1 + # % # 0 ) + # 0 % / % 0 0 % + # # 1 0 ) Φ# % ( % Γ+ % % 0 % # 0 % # 0 ( % / Χ % + / Χ ( ) 1 / % 0 % #,) 0 # ) 0 # 0 # >) ) % %. > 0 % # 0 # + % = <+ 9 # Φ;<<<Γ ) ) % Φ5 Γ # 0 % / % 1 # ) %# ( 1 0 % ) Ρ (> 0 0 % 0 0 / # % % / %# 0 % ) 0 3% 0 # + # % ( % 0 % Ι % ) Φ;<< Γ % / + % + 5 % % 0 % 0 ) % # % 0 % 0 + # % # ) % 0 %# ( + 0 %# % 0 % % ) / %# % %# ( + # % ) % )
16 %# % # / # # 0 ) # 0 # # 0 ) # % 9 # Φ= ΡΓ+ 1 % 0 + % % / % % 0 / 0 %# ( % # Η 8 0 ) / 1 % ) % + 1 # + 0 % : % Η + / ) 1 0 % # 0 # # 1 0 Α 0 + / ) % 0 Α % % 1 %# # # 0 5 # % Η # % 0 0 ) % + 0 % % % Χ % 0 0, 0 0 ( % 0 # 0 # 0 + # ) 1+ Χ ) 1 0 % 0 % %> 0 % # 0 0 ( + %# % # 0 # 0 % Η Κ 0 # ) 1 + # / + %+ ( % % 0 0 # ) ) Χ ) # # + 0 % %# ( + ) 0 0 Φ9 Ι + ;<<ΤΓ > %# ( ) 0 # / # %,) 0 % ) ) % 0Β Φ= Γ+ % % 1 / 0 > 8# 0 0 %# ( % ) % ) Η % % # # 0 0 # ) # 0 %+ & 0 > # / %# 0 % 0 # Χ ) % Χ + 0 % 0 # Χ % % 1 # # 0 0,) %# ( # ) / 0 1 % 0 % # 0 0, # 0 # ) %# % + 9 # Φ;<<<Γ % / %# %& 0 5 # % % # ( % % / + % 0 1 Κ # # % + % % /Ω: ) % 0 0 # 0,# 0 % + / 0( % % # 0,# 1 0
17 + 00( Φ;<<ΣΓ # # 0,# 0 # & % Μ 1 # Ν+ 1 % % # 0 Α ( 1 Κ Α % % Α 0 ) % # 0 0, Α % 1 % # % 8 0 ) # 0 ),) %# ) 0 :% 0 Φ Γ # 0,# 1 0 Φ! Γ+ # # # 9 # Φ;<<<Γ+ ) 0 8 # : 0 5 # > 0 # 0,#! % %# + / % # # 0 + # # # # % 0 # % 0 # + 0 ) % # # # % # 0 % 0 1 % %# 5 % % > Χ 0 # %, # %> + % + 0 % % %,,/ + 0 % %# + / 5 0 % % 0 + # 1 Η & # 0 % + 0 % > # 0 + % % + 0 % 0 Η 0 % / 2 % %# + / % % 5 + % > 0 > + 0 Χ # 0 # 0 # ) ) # Φ %+35%,% &%67.#+ 1 Η # 0 ) / # ) ) % : 0 8 % + # % 0 %# ) + %# # 0 % 0 0 ) ς Φ;<<<Γ+ 0 0 # Η % % / Χ > 1 ) 0 % % ) % 0 %# ) % 0 & / + # %# ) 0 &0( ) %# : 0 + / 0 # 0 Κ # #,) + Χ + % 1 1 #
18 ) & # 0 ( 0 % # % :% % Κ 1 Η / # % % 0, ) %# ( + / %# % :% 0 # ) ) # > # Χ % 0 0 % 0 Λ 0 # # ) ( # / + # % % + % % % % % 1 + % % # 0,#! # 9 # Φ;<<<Γ + 0 & # 1 %,%! 4 &4 &.Κ1 % +&+ + +,. 5% +% & ) Ν %,+ Φ / % ) 0 8 # : 0 5 # > 0 # 0,#! 5 + % Ξ Φ;<<ΠΓ / Η 0 # 0,#! / % # / &,) % 0 > % Κ % Ψ &,) ( % 1 ) 0 ) # %# % % Ψ & ) %# ( ) % Ψ & # 0 # % % % # % Κ % Η 0 ) 0 > Ψ &,) % 1 Ι ) # 0 Ψ Φ 6Γ. 0%. 0,) %# % # 0,#! + ) 0 % 8 # : 0 5 # > 0 # 0,# + 0 % % 9 # Φ;<<<Γ+ # % 1 %,%! 4 &4 &.Κ1 % +&+ + +,. 5% +% & ) Ν %,+ Σ Γ 0 %# % + 8 : 0 # > 0 / # % # 0,#! % / Η 1 # Ξ Φ;<<ΠΓΑ
19 ! Α Γ. 0,) % # > 0 0 # 0,# 0Γ! 1 % > 0 %# ) 1 Η % % Κ # 0,#! Φ8 Η Η 0 0 % / %# 0 %# % 0 1 % 0 % 0 # :8 % % + / ) 8 0 %,) Φ0 % 0 ) 0 Γ + 1& 0 > 0 )Λ 0 # / Κ )Λ 0 0, 0 + # / 0 0 # 9 # Φ;<<<Γ % # / 1 % %# %& 0 / % 5 + ) % 0 0 # 0,# 0 % + / % % # Μ 0 0 # 0,# 1 0 Ν+ / 20 # ) )Λ 0 # > 0 + #, % 0 / 1 Η # % # % 0 > % 0 %# ) 9 # Φ;<<<Γ 0 % % % =<Ζ % 0 % 0> % :8 + / ) 1 / # 0 0 # 0 # % / 1 # > 0 # 0? 0 + % / 0 %# % 0 1 % Η 0 % 1 0 % % / 0 : 0 # 0 ( 0 / % ) ) % # 0 # % % 0 % / %# # Χ % % %# ( 0 %# ) + ( 0 # 1 Η % % ( % # > 0 % / 1 % / + 0 / % + # > Χ % (, 0 # ) + Χ % Η 0 % 0 + # > 0 ) # / 0
20 # %+ (> )Λ 0 0 / # # % ( %# ( 1 Η + # % 0 # > 0 / # % ), # / / # %# + # # % % 0 %# ) # ) # 1 + ) % 0 ( % # 8 %# # 0,#! 1 Η #2 0 # )
21 0 #, # % % + / ) ) % Λ% 0 # Χ % ,# 1! 0 %# ( 1 Η / % ) ) % > # / + % 0 % + 0 ( 0 % / Φ 7+).Γ+#.) % # 0 # Χ % 8 0 % # # % # %# / 0 % 0 # ) 0 > 0 ( 0 0 ( 0 0 % + %, % + % 0 >) % / # % # % ) 0 %# ) Χ % ) / 0 # ) % # % 0 / + ) # Χ % ( 0 ) % # ) % >0 / # % ) % + 0 > # Χ + 1 % % % / # Χ % 0( ) % Κ ) % :8 / # Χ Φ 5 [ + ;<<ΤΓ # Χ % 0 > / 0 0 / Χ ) ) % 0 Χ 0 Η # + + % % 0 Η / ) / % Η # % 0 %# 8 % %# # 0 0, 0 % # 0 # 0 %# 8 0 Κ Χ % 0 + # / % Χ % # 0 :% 0 0 Η ) 0 /Ω: 0 Φ Ξ + ;<<ΣΓ & / Χ ) # Χ % ) ) # % ) / # % % 0 %# 0 Η
22 0 Η # Η + 0 / 1 ) + 0 % % 1 Φ;<<ΤΓ+ 0 % ( 0 0, + 0 # 0 # >0 # % # Χ % # 0 % # Χ % / # / % # + % % % / ) % 0 >& + % 0 % 1:& Φ;<<ΣΓ %# ) % % % % / ) ) 1 Χ ) # Χ % # 0 % % % # 0 + Η % 0 ) & / 0 # 1 % # Χ % 0 % # ) + 0 % 0 # % # 8 %# + > #, % # 1 > 0 0 % 5+ 8 Χ + + ) % 0 + ) 0 + / # % %? # ) Β Φ;<<ΣΓ % / # Χ % ) ) ) # % # 0 0 > % % / % 0 0 % # # + %# # % % & & + % 0 0 # Χ % # 0 % # # 0 ) ) % 0 %# ) % Κ %# % % % # > 0 + Φ;<<ΤΓ 8 # 0 # Χ % % : # 0 + > 0 # 0 Φ! =Γ 7+).Γ+#.) %. &+ 4= % # 1 # 0 # 0 % % % / ) % # % % 8 + # # % > Ο Ο Φ! / 1 30 Γ 0 Ε<! 0 Η % 0 % / % 0 0 % ] ] / 1 % %# 0 % ] # ] % / 0 ) % 0 Φ 5 [ + ;<<ΤΓ > 2 3 # 0 Χ % 0 % % 0 Φ! +! / 1 + # % Γ % 0 %# ) ) ( ϑϑ Φ;<=<Γ %# # % % Κ > 8 % + 0 % 0 # 0 + %# (
23 # 1Η # ( # + / ) % 8 0 # 1 0 ) % 0 %# ) %# % % % 0 # ( ) % 0 %# ) ) 0 & / ) # Χ % % % 0 > # 0 / # / 1 ) # 0 % 0 : 0 % 0 Η + + # 0 Η + 0 # % + 0 # 0 # Η 1 % % 7+).Γ+#.) % : %Ρ ) ) #,) & % / # Χ # > 7+).Γ+#.) % %.&+ %) % ) % % Η 0 / ) % Χ ) 0 # > 0! = &,) 0 # # Χ %! + ;<<Τ Φ # Γ % 0 0 # + # 0 & / # Χ % 0 % # 0 ) / %# % 1 # 0 0 % + % 0 Η # & ) # ) ) # % %+ % ) 0 % ( / ) # % Φ &+ 4= + # 0 # Χ % + %# 0 % ) ) + % 0 % # % ) ( % # ) 0 %
24 0 + + % + # %# % + #, 0 + % + ) + 0 ) + % ) % 0 %# ) # Ο ( Φ;<<ΡΓ % / > 0 # / ) ) # % % Χ ) 1 0 % + % % + ( ) 0 1 % 8 Φ# 0 # % % ) > Γ+ 0 % % + % 0 % % %# 0 %# ) 5 +! ( Φ;<<ΣΓ % / Μ # 8 # ] %# + ) 0 & / ( Χ ( ) % ) # 0 % + ) 0 % # # % 0 %# Ν % Μ Ν ) % / 0! 1 # % % ) 0 # % % # ) 0 & % 0 66 Ρ (> % 0 Η 0 0 % + / ) ) # + Φ;<<ΕΓ 0 ) 0 % % # ) % % + # 0 %! / 1 % _ 0 _ 0 0 / + %# + / ) 0 Η + 0 % 0 : 0 0 % % %# # Χ % # Η 0 % % 0 % % # # % % % (, ( + # 0Β 0( Φ;<<ΘΓ % / 0 ( 0 (> % %# / (> % #,) # 0 ) 0 0 # 0 ) %# % %# + % # 0 0 ) 8 %# + # ) % 0 % 0 # 0 /Ω: 0 0 Φ# 8 %# Γ ) Φ;<< Γ # ) % 0 % % / % # # ( 0 + % Χ ) 0 % % 1 # # 0 Χ ) 0 %# % % / # 0 0 # % # 0 0 %# 8 % 0 Η ( %
25 0 0 1 / % 0 # # ) % ), 1 %+ ) & / 1 # # 0 % ( % % 0 ) ) % ) % 0 %# ) >) ) %# / # 0 8 % + 0 % # # Χ ) ) Κ % + / % % 1 % % ) % % 0 > > Η %# Φ. Ξ! + ;<<ΡΓ 00( Φ;<<Σ+ # ΤΓ % % # 0 % % # 0 0 ( % # 0 Η %# / % ) Χ ) # # Α % # 0 % / % 0 0 % 0 ) 0 %# ) % 0 Α % # 0 Η Η / # 0 % 1 % :% Χ ) 1:& Χ ) # 1 Α % # ) 0 Η Η + # Χ ) + / / # 0 Η % # % % % 8 ) % ( Κ 0 # ) + # 0 % # 0 % 0 + # % Η / # % # % ) ) % 0 %# ) # & 0 > % % % 8 0 Φ;<<=Γ % 0 Χ % 0 % > # 0 % 0 ( 0 + > 0 %# % 1 % % % / > + 0 / + % ) 1 + % # 1 Κ % % # 0 / 0 ( 0 %+ % / % % # / ) / Κ # > 0 % % # ) % 1 % ) Η # %, Φ Ι + ;<<;Γ 0 %# % % / ) % # + % % % % ) 0 0 / 0 % / # % % ( + # # / 0
26 Φ;<<ΣΓ 0 ) ) # 0 % #,0 % # # ) # 0 (> # + > 0 Η 0 / 0 % Η %# % + & / % ) % 0 %# ) %# 0 Η # ( ) % >) % % 0 #,) 0 0 % ) % 0 %# ) + Φ= ΣΕΓ+ 1 / 0 % % % 0 % %# 0 %# > % % ) Φ= Σ Γ 0 0 / ) % 0 %# ) >) # %# ( 0 % % % # 1 # # ) 0 %# ) / 0 % 0 % 0 # ) %& : / + 0 % ; # %. &+ 4= + %#. 0+,. 1 %+ / %# : 0 # ) + %# ) % # % % 1 0 % # # + : # / ) ) % 0 + % # % # 0 # ) # 0 % + ) 0 ) Φ= ΡΓ % % / + / # # 0 # + %# 0 % 8 > % 3 # 0 2 / / % % Χ Κ # % / # 0 0 %# 1 0 % / 0 Χ % / % % % 0 % %# 0 ) # 0 % 0 Κ # # #. &+ 4= + %#. 0+,., 2.&.) +35% 1 0 % / %# ) % # % % %+ 0 + : # / ) ) % + 0 ( % + # / % 0 + / % 0 0 # 0 % + ) 0 ) Φ= ΡΓ 0 # # 0 Κ %# % 0 % + % % % % / # % # % % / % # Φ + 0 # # % # % % # / 0 % / % ( Κ 0 Γ %+ % % % +
27 %# ) 0 0 % % + # ( 0 %# % % % + % ) 1 / 0 % 0 # 0 % % % 0 0, 0. &+ 4= + %#. 0+,. 2% +7 Ι+35% 0 0 ( % ) + / + # % %# # 0 1 > % 0( # 0, 0 + ) 0 ) Φ= ΡΓ % / / % / %# > 0 # 0 % ( +70%. &+ 4= % / / 0 0 / 0 % 2 % 2% % 2 ) 0 ) 0 % + % # % / %# % 0 % % 0 1% + # ) % Η # 0 + ( # + ) 0 + ) # 0, 0 # ) % # 0 % 8 % # 0! ; : 0! Φ= Σ Γ Χ (Χ Φ;<<ΡΓ 0 %# % / + 0 ( % 0 + %# ) # ) 1+ 0 ( % 0 + %# ) 2 0 % % % Η / % ) 1 # 0 %+ 0 ( % 0 + %# < ) 0 % # / % % 2 # # :& 0 0 / 0 % % # 0
28 ) % 0 %# ) + ) %# 1 % 0 ( > + > ( % ) % 0 %# ) % % + % %# / % # 0 % %# ( 8 % % 2 > Φ;<< Γ % / %# / # % # 0 %# % 0 %# / 0 % ) % % 0 # # 0 # # # % # # / % # % ( / % # 1 % + % # % 0 ) %+ %# 0 % %# % #, / / / Χ 0 %# ) / % ) 0 Φ;<<ΠΓ+ + / # #Η % : 0 + % # ) + % % 0 ( 0 % 8# : 0 + # Η : ( % 0 # 1 0 # # ( % / # %>/ / # % 0 Ρ ) # Η Φ;<<ΕΓ+ # / 0 # % 0 > / > 0 / % % / 1 # 1 0 % 0 & # # / + % 0 Χ 0 % ) + % % % 0 %# ) 1 % Κ 0 0 : 0 % 8 % # % % / 1 > % # % % 0 %# ) ) 9 # Φ;<<<Γ+ 0 % 0 % 0 Χ ) % / 1 > 80 Ρ 0 0 >) % 0 %# % % % % / # % % + ) # Η # 8 0 % # % 0 %# + 1 # + Χ (Χ Φ;<<ΡΓ 0 0 / % %# / ) ) % + ) %# 0 0 ) 0 % % % 0 ( 1 % % ) 0 %# ( % 0 0, + % / 1 Χ Χ ) # # 0( ) 0 # % ) ) ) % % 0 % # # ) 80 )
29 5 ( % Φ;<<ΤΓ / # 0 % ) 0 0 % %# Χ # Η # 1 Φ;<<=Γ 0 %# % / (> 0 0 %# % 0 %# ) + % ) 1 / + % ) + 8 % + # 0 8 % / > Ι + % ) % %# % Κ ) % 0 # Ρ 0 % % 0 %# ) 0 0 / % # / %# % % % # ) % 0 %+ %# 0 % % % + / # # 0 0 0, 0 ) # 1 # 0 + # 0 0 %# 1 0 (,0 % : % Η % / / # 0 / ) 1 % # 0 # % # %# # : / Η %# %& 0 / 0 ( % % # / # & % 0 % % ( # 0? ) ) % 0 # ( 0 8#,0 : % Η ΦΞ 9 + Ι Ι + ;<<ΕΓ 9 # Φ;<<<Γ % / % ) ) % 0 %# 0 # 1 # 1 ) 8 > & %# ( + # % 0 ) : 0 0 % 1 # 0 % 0 # % # 1 Η / 0 % % 0 0 %# ) % 0 % Η 0 % % ) %# 0 ) 1 % + ) %# % 0 0 # %+ 1 % > + %# :% % % ( # 0 % % 0 Φ5 5 + Ι + ;<<ΣΓ 00( Φ;<<ΣΓ / + 0 % + % # % 1 % 1 + %#,0 % > Η / 0 % % % % ( # %# % 0! ) Φ;<< Γ 0 0 % / % % # 0 %# >& # % # % % + Χ + # % % # # % % Α 0 % % % %
30 7 % Α %# 7 0 % ( Φ;<<ΣΓ % / # 0 % ) ) ) 0 0, 0 ) + 0 /,0 ) ) % % ) %# Η % Α 0 %, Α 0 1 Α #, %# Α % % Α ) 0 ) Α # 1 % %# % / % 0 %# 8 + / # % % % # % 0 % % 0 0 % 8 # 1 % ( + 1 Η # 0 % 8,) # 0 % Κ Η % 0 % % 1 % + ) 0 ) # % + Φ;<<ΣΓ % / % %# % # #Η % % 0 Χ ) 0, ) + / ) % % % 1 % 8 + ) Φ;<< Γ 0 0 % / (> % 0 % % / %# % + / 0 # 0 %+ & / % % Χ # 1 0 % + # 0 0>0 ( ) % 0 %# ( % 0 + # % # % > 0 # Μ / 1 ΝΦ Μ0 % 1 Ν ) 0 0 % + / # 0 ) ),) ( > / 0 + Ρ %Ρ 0 Χ ) + # % % # Χ % 0 Φ8 7+).Γ+#.) %. &+ 4= % 0 > % 0 Λ% 0 %# ),) + Χ> 8 % : 0 0 % >) + # Χ % 0 & % % / # 0 # / 1 Η 0 % Χ ) % 0 + % # 1 % % %& 0 %# )
31 ) 0( 0 % Φ;<<ΣΓ # Χ % 0 % % / 0 % % % 0 Η / ) ) % % % Χ + 0 Χ Χ ) # 0 # 0 # / 0 % 1 % + Φ;<<ΣΓ+ # Χ % 0 # >) # 0 %# 1 ) ) >) % 8 + # 0 # % # % 0 ) Φ;<<ΤΓ+ # Χ % 0 > 0 0 % % 0 Χ 0 Η % % # 8 0 ) # % / # Α + %# % 0 Η % ) >) + % / # 8 0 % : 0 %+ # Χ % 0 0 %# % 0 ) 1 # 0 ) ) 0 ( 0 % 8 / # % # ) %# % + # Χ % 0 % # 0 / 0 0 Χ ) # ) % 0 ) ) % > %> 0 # % # ) % % % % # 0 %# Η / ) % % 0 ) % Φ + 9. Ι 9 + ;<<ΣΓ! ( + ) Φ;<<ΣΓ % / # Χ % 0 % # 0 :% 0 + # % ) 0 Χ Χ ) Χ + 0 ) 1 % ># + %# % + ) 0 % % 8 # % 0 Η ) 5 Ι % Φ;<< Γ % % 0 0 # > 0 # Χ % 0 / 1 % / % % % ) / # 0 0 %# 1 + ( # ) #,) Η Κ Η %# 0 % / # ) % 0 0 % / Χ ) + # + %# 0 % % # Χ % 0 + Χ ) # % / %# # 0 + / # Χ % 0 % # 0 & / 1 / % ) ) % % # Χ % 0 % ) + % Χ ) / # 0 % % 0 %# ( % + 0 ) > 0 # 0
32 ! ( + ) Φ;<<ΣΓ # % / + 0 % 0 # & # 0 0 # > 0 + / ) # %# % % Χ ) 0 # > 0 % # >) 0 1 Η / / ) ) / # 0 Χ ) 0 % / / # # 0 # 0 # %# 0 Χ ) ) %& % / # 0 / # 0 / + / % % 0 / Χ ) 5 Ι % Φ;<< Γ % % / 0 % % %# ( # Χ % 0 ( Κ ) %# + & 1 > 0 # / Χ ) Χ % 0 0( 0 % Φ;<<ΣΓ % / # Χ % % / + % + % %# : 0 % % % + 0 ) + ) >) / % 0 # ) 8# : 0 # 0 >& # Χ % / + % / # > 0 %,# + 0 %,0 / 0 %# % # Χ % 0 % # > 0 / Λ 0 # # # 0 % >0 + % Λ% 0 % + % & 0 ) + % Η 0 # # ) # / Χ % 1 ) + 9 ) Β Φ;<<ΣΓ % / # Χ % Η 0 ) + % # ) % 0 0 % # Χ % # / 0 0 % %# # 0 1 ) % + 0 %# / # % + 0 > Η # / 0 ) # 0 0 % ( % # )>) % 0 % Η # 0 > 0 ( 0 # 9 # Φ;<<ΤΓ 0 % % / % 1 Η + % % Χ> % 0 = Ρ<+ # ) % 0 0 # % # % 0 Χ % 0 ) ) # 8 0 # % % % 0 % % 0 0 # %# # 0,# / #
33 % Λ% 0 ( Χ + % ># % ) Ρ % 1 Η 1 % % % % 1 Η 0 % ) # % # 0 % # 0 > 0 %+ ) ) % 5 # 0 % / % 1 # ) %# ( 1 0 % + 0 % # 0 # % / %# 0 % ) 0 3% 0 # Ι % ) Φ;<< Γ+ % % % 0 % 0 ) % # % 0 % 0 + # % # ) % 0 %# ( + 0 %# % 0 % % ) / %# % %# ( + # % ) % ) %# % # / # # 0 ) # 0 # # 0 ) # % Φ; <+ % ) # 0 0 %# % 0 %# ( % % % + # # 0 ) 0 + / # 0 # % 0 # + 0 % 0 %# ( / % # 0 # % / # # 0 ) / 5 # #Η % % ) % 0 0 ) 0 + # 0 + # 1?0 0 % % % %# ( 0 + # ) 1 ) % % % Κ ) Κ 1 Φ Ξ + Ι ΙΞ +;<< Γ ) 1 Η / # ) % %# ( % 5 + # % ) % ) ) % %# ( + 0 % 0 % 9 # Φ;<<<Γ # >) # # % % 0 / % # 1 % %# ( 0 #0 % % % % # + % % Η + % % %# % % 0 % ) / # % / 1 # # ) # 0 ) ) % 5 # % 0 % ( #! ) / % ) % 1 #
34 # % # Χ>) + % 0 % 1 0 ) # + Χ % Χ ) ) % ( # % % 0 # %# # 1 + ( % 0 0 % ( # 0, 5 ) ) 0 % / # # 0 ) ) # 1 + %& 0 0 # # 0 ) + / % % # Φ;<<<Γ+ 5 # ) % % 0 # %# % + / 8 0 ) # / %# % % 0 + / % 0 0 % / %# % %# ( Ξ Φ;<<ΠΓ 0 0 / + 0 > 0 ( 0 % + % 0 % # Η! 1& 0 > % 2 0 Ρ ) + # 1 5 0( + # 0Β 0( Φ;<<ΘΓ 0 %# % % / % % %# ( + # ) 0 ),) % _ _ % / 5 % # 0 ) 0 ) ),),) ) & / % 0 0, % ),) + % / # % ) % % % 1 # 0 / % % %# ( %+ ) # / 0 ) Φ;<<ΡΓ 0 0 > 0 % % 1 0 % % / # % %# ( 1 Η % 0 > 0 ) 0 0 % / # # 0 ) Φ # % # 1 %Γ # / %# 0 Χ ) %# % % / Χ ) ) + 0 % 0 0 Χ ) % % ( 0 ) 0 + % ( / # 1 0
35 ) ) % 5 + # + 0 & % # 0 # 1 0 %# 0 % % 0 %# ( % % Η + 0 # % 5 + % %# # % % 1 # 0 / Η Η %# + 0 % % 0 >) ) % % Η % 0 + / 8 % # 0 # / Κ 0 : 0 0 % 0 + / 8 0 ) > % 0 > ΦΞ 9 + Ι Ι + ;<<ΕΓ Φ;<< Γ % / + + % % 0 # 1 % + % ( Χ % % 0 # Χ %# / # 0 % ) % ) ( 0 %# : 0 + Φ;<< Γ 0 0 % / 5 0 # ) 0, 0 ) 0 # 0 > 8 0 ) %# / Χ % 0 # 1 Χ % % ) ) %# ( 0 # 1 + ) # # 0 ) 0 + ) 0 % ) ) # % %# ( 0 0 %# ) # % # % %# 0 0 ) ) 0 %# ) # 1 ) 0 0, 0 % Ρ / % 0 ) 0 % / % 0 %+ 1 Φ;<<ΘΓ 0 0 / + / Λ% 0 5 % 1 + / % 0 8 %# ? 0 + # % / 0 % 0 % 0 + 0! 0 Φ;<<ΕΓ % / 5 % % % % / Χ 1 & % Χ ) % >) 1 0 % % % 0 % & 0 # 0 Χ, 1 Η 0 % 0 0 ( % 0 Η # 0 ) %# % Φ;<<ΣΓ 0 0 % / % % 8 ) 0 # 0 # 0 0 %# ) + % % ) 0 Χ # % 0 %# % % / ),),)
36 % % % 0 # % %# ( 1 Η + 0 # 0 % + 0 Μ/ 0 / 0 Ν %+ & / % 0 1 ( 0 # % %# ( 1 % 0 + % # 1 % % Η 0 > Χ % % %# # ) % 0 + / # + %# + 0 / ) Φ;<<ΡΓ ) % / % ( 0 # % 0 0 % % % # 8 # 0 # Χ % 0 ) % # 0 ) % 0 %# ) % 0 /Ω: 0 + % % # 1 Η # 0 > # 0 %# ) Ξ Β + # Ι Φ;<<ΕΓ % Φ 0 Γ 1 /, Χ ) 0 # 1 + % 0 & : 0 : 0 + % # # 0 ) / % # 0 8 %# % % 0 % #, # % % + % % # 0 Φ Γ 5 0 ) 1 % # # % % 0 % % % 0 0 %# % % 0 %# ( 0 0 % Η %# + 0 % : 0 # # ( % + 0 # % # % % 0, 5 0 % %# ( Ξ Φ;<<ΠΓ+ ) % % ( % # # / 0 % # 0 % % % / 1 % %# % Χ ) + % + % 0 ) >0 % # # 0 # / + # 0 %# (,) 0 %# ) % %# % # Κ / Η =Γ % ) %# + / 0 %# ) Ψ ;Γ % 0 % : 0 + / 0 %# ( % %# Ψ ΘΓ 0 % 0 / ) / ) 0 % Ψ
37 ΤΓ / 0 ) % % % 0 0 % ) % # 1 Ψ 5 0 # / % Ξ Φ;<<ΠΓ+ % 0 1 % ) 1 Η % % %# ( Ρ / ) % # % % % 0 9 # Φ;<<ΕΓ 0 %# % % / / 1 Κ 0 % ) % + 1 # + 0 % : % Η = 7 ) 1 0 % # 0 # # 1 0 Α ; ) % Η ) % ( Κ Α Θ 1 7 %# ) % % 1 # % 0 % ) % % ) # > 0 + Φ;<<Ρ+ # ΣΓ % / 0 % 0 0 / # / 0 %# ( % %# ( ) % + > % % % # 1 # # 0 0 ) + Χ + # ) + # Χ # 0 + # % ( ) + ς ) Φ;<=<Γ % 5 %# # 0 % % % % Η 1 Χ ) 0 + % % % 0 % % % # # 0 % / # Η # % 0 % 0 1 % ( 0>0 5 + % % / % % # ) # 0 + ) ) + # # 0 & ( % % 0 # 0 ) ) / # % % Χ ) 0 0 / % 0 0 % Η % # 0 + / % 5 % 0 0 ) 1+ % # 0 5 Χ % 0 0 %# % 0 %# %# Λ % ) 1 / % Χ ) 0 + % 0 & ) + # # ) # ) Η / # % ) % % ),),)
38 Ι > % ) # / Χ ) # 1 + % ) 1 / # >) # ) ) ) # 0 ) ( 1 Φ= ΤΓ+ # 0 % + # 0 # ) + # 0 + % / 0 0 ( 0 / # 0 0 ( 0 %+ ) % / 0 # 0 # 0 0 # / % # % ) 0,) Χ (Χ Φ;<<ΡΓ 1 Η % ( %,0 % ( 0 ) # 5 0( ) 0 5 # % 0 %# % 0 + # # % % 1 Η # > + 1 Η 0 % / # % 5 % % + ) 5 > 0 %# % 1 +,) 0 %# % % 0 % % + % 0 % # 0 % #,) ) (! 0 Φ;<<ΡΓ 5 + % % % ) %# ( + % % % % 0 % % % ) + 0 % 0 0 % % + # Χ % Χ ) + / 0 # ) ) % % % # % % 0 %+ % 5 % ) ) ) # 0 ) %# Φ ) Η 0 Γ ) # %# % %# ) # / % % % % # % % # % Η & & %# # 1 %! Η ) % 1 Φ5 Ξ!+ 95 Ξ!!! + ;<<ΘΓ Χ ) + % + % 0 ) 0 % / # # 0 ) # # ) + 5 % ) 0 % % % 0 / ) % 0 0 %# Λ 0 # # 0 ) & 0 ) + ς ) Φ;<=<Γ # 0 % 0 0 % % Η 0 # % # Η 0 ) % 0 Η # %+ %# 0 Χ % %# % # 0 # % + # # % ) ) % ) % Κ
39 % # 0 >& ) % %# ) # ) ) % 0 % / Χ % 0 ) Χ # 0 ) ) % ) %# ( / % # Χ 0 % % 0 Η > % ) % ( 0 % ) % 0 %# ) Φα & Ξ + ;<<ΤΓ + Φ;<<ΣΓ % / (> 0, 0 ( 0 5 % ) # % 0 0 % / 8 % 0 0 # % / Χ #,) % / 5 Χ # # % % %# ( 0 / % % / 8 % 0 0 % % / 0 # % # 0 ) % # / + % %#, 0 / # 0 # > 0 0 Χ % 0 %# ( # 0 % % / %# % %# ( Χ ) % 5 ) % ) %# % Λ% + Χ ) % 0 1 % %# ( 1 0 / # # 0 ) # 0 # % Φ ΙΙ + ΙΙ + ;<< Γ Ξ Φ;<< Γ / # # 0 ) 0 #,) % 0, 0 # % 1 Η %,) 0 Γ ) 0 0 # % Α Γ % ( # 0 0 : 0 Α 0Γ 0 ) 0 Α Γ % 0 0 % % + ) 1 % 0 Χ / 0 %# ( + # % ) 8 0 % # % / # # 0 ) ) + 0 % Θ
40 ! # % & ( ) +,, ( ) + # ( ) +! Θ ! 9 # Φ= ΡΓ. # / & 0 1 ( ) + 5 ) % % % # % 0 + # % / # # 0 ) ) : # # 0 ) ) % 0 # 0 Φ0 # 0 + # 0 ( % Γ % 0 # 0 )! Φ;<<ΕΓ+ # # 0 ) # % # # > # 0 # Β Φ;<<ΤΓ % % 0 % # 1 % 1 0 % 0 0 % β # 0 β % # # 0 ) 0 β % 0 % # 1 % 0 0 % # + 0 % # 0 %# % # 0 # ) 1 ) % # # 0 ) 0 + % 0 % 0 # # 0 ) 0 % + 0 / % 0 ) # 1 0 3% 0 % Η Χ> 1 0 % 1 + %# % # % ( 0 Χ ) 0 ) % # / # # 0 ) 5 Φ + ;<<ΣΓ
41 5 Ι % Φ;<< Γ % 5 # % Χ ) 0 8#,0 + % # % Χ ) 0 0 % # # 0 ) % # # ) 0 0 % / % 0 + % # 0, & ) + / 0 % % & ) + 0 ΦΞ + ;<< Γ # # 0 ) > 0 # 0 # / %# ) % % Κ 8# 0 ) 0 ) : 0 % 0 0 % + % % > ) ) % 0 %# ( % 0 0 Κ Ρ 0 # 0 % Φ;<<ΣΓ # # 0 ) 0 5 # % / 8 0 ) ) / % % 0 % 0 / 1 ) 0 %# / # 0 ) % %# ( 0 > 0 0 % / % % 0, )> % > 0 0 0>0 % 0 % + + / + 0 ) # 0 # 0 % & ) > # # 0 ) # 0 % 0 % Χ ) # 0 # + # % : 0 # ) 0 % 0 8 : % Κ / 0 Κ # 0 0 Η % # 0 % Φ;<<ΣΓ % / + # # 0 ) # 0 0, 0 # 0 80 : 0 0 # # % / %# # # ) / % 0 % % & ) + 1 8# 0 ) % 0 # 0 / 0 % % %# 0 0 / % # 0 Χ ) 0 % % % ( # % + (&Ξ % (+ % ( % ϑ Φ;<=<Γ % % / # # 0 ) # ) # # % % %# ( 0 # # 0 ) + # + 0 ) # 0 0 % / %# % 80 : 0 # / # # 0 ) + # 1 % 0 0 % + % 0 % # 0 # ) / ) %# + ) 0 ( ) ) # >
42 # # 1 % 0 ) 0 ( 0 % ΦΞ + ;<<ΠΓ # # 0 ) % % + + % ( 0 > 0 0 % ) # 0, 0 Φ + ;<<ΣΓ +! ( Φ;<< Γ % % / # 0 ) ) # 1 0 & / %# ) # 0 0 % % ( % # 1 + # # 0 ) ) 0 # 1 %+ ) 0 ( 0 % %, 0 %# : 0 ) 0 ) % # # 0 ) (&Ξ % (+ % ( % ϑ Φ;<=<Γ+ # # 0 ) # % 1 0 ) / % 1 % % # + % # 0 % 1 0 # # 0 ) 0 %# 1 ) ) ) % % ( / %# # 0 1 # ) # # 0 ) # % ) ) ) 0 # 0 # 1 + % # # # 1 # 0 # % 0 % # 0 + % 0 > + % 0 %# 0 % %# ( %# + ) & / # # 0 ) > 0 Κ 0 # 0 0 > + % % ( % 1 0 # 0 0 # Κ % 0 0 # 0 #,) / 0 % ) %# % % + # # 0 ) ) 5 + # % 0 ( 0 % + ( % / 0 > # 0 Φ # % Γ+ # ) 0 # Φ# 0 Γ+ 0 ) # 0, 0 % 0 Φ0 Γ+ 0 % # % ) 0 Φ 0 Γ+ %+ # 0 1 # # 0 ) 5 % Φ Ξ +! + ;<<ΣΓ! + % 5 + % # 0 :% Χ ) # ) % Η 0 Χ ) 0 %# % % % %# >0 0 %# # %# + # 0 0 ) % % # 0 % )
43 1 ΦΞ + ;<<ΠΓ 5 1 % %# 0 0 ) % %# 0 ) ) % # % ) % Φ5 Ξ!+ 95 Ξ!!! + ;<<ΘΓ 0( 0 % Φ;<<ΣΓ+ % # 0 ) % 0 ) 1 ) Η 0 Χ ) & + %+ Η % ( # 8 %# % ( % %# 0 % + 1 % 0 # 0 % Χ ) 0 Μ 1 %# 0 % Ν+ 0 Χ ) Μ 1 0 # 0 Ν Ι + % # 0 % ) %# % 0 % 0 + / 0 / ) # %# ( >0 % Φ ΤΓ+ 0 ) + % + 0 % %# 0 > ) % # 1 + # 0 Η 0 # 0 %! Φ;<<ΕΓ+ % 0 0 & ) % % % ( %# ( %# + 0 ) ) % # Χ + % ) % 0 # 1 0 %# ) # 1
44 ,, 7 #., 6 #, 5!, +,, 3 ( 3 3 3, # 4,. 2! Τ 5 7 # 0! 9 # Φ;<<ΕΓ ( #. Χ ) # 0 0 Χ # % # # # 0 ) # # % 0 Φ 0 0 Χ ) 0 0 Γ Χ ) # % 0 # + % % + # % 2 % + % 0 Χ Η 0 0 Χ ) + ) 0 % # # 0 %# % # 0 ) Χ ) Φ + ;<=<Γ % # ) 0 % ),) # 0 0 ) # # + # % / # # 0 ) ) # # 0 ) 0 # 0,) # # 0 ) 0 ) # # 0 ) # 0 & ) ( % Η ( 0 % # # ) : # # 0 ) # 0 0 # 0 &0( ) / 8 0 % % % %# 0 %+ # # 0 ) # % 0 ) ),) % # 0 # # # 0 0 ) Φ9 Ι + ;<<ΤΓ
45 % % % / % # 0 + % ) / 1 + / ( Κ # # 0 ) = # 0 )! 0 7 / 0 & ) & 0 /, Η 0 # 1 0 % Χ ) # 1 + ) 0 % % # 0 ; # 0 ) & # # ) 0 & # 0,# / 1 ) 0 ) 0 + ) 1 0 & ) Θ # 0 ) & ) # % # 0 0 & # 0 0 % # 0 Τ # 0 ) # 1 0 % 7 ( % 0 ),) 7 0 # ( % + 0 # % 0 # 1 0 ) % # 0 Η 0 % # 0 % 0 % % ) ) 1 8 0,0 ) % # # % ) 0 ( 0 0 # > # 1 + # ) % 0 # 5 % / 0 % # 0 0 % + 5 % # 0 0 % 0 # / 0 %# ( %# + 0 % ) + # % / # # 0 ) % 0 Χ Χ ) 1 0 %# % + 5 % 0 % # 0 # Η Γ 0 % 0 1 Α Γ ( Η 0 % Χ ) 0 Α 0Γ % %# ( 1 0 ( Φ;<<ΣΓ+ + % / % # # % % 1 Η 1 % % 0 Χ % # 8 # 0 % # 0 Α 0 Μ 0, 0 0 Ν # 0 0 Χ ) 0 Α 0 0 Η,) # 0 % Χ ),) # Α % # # 1 Φ! ΓΑ > ) 0 0 Α % 0 Α % % 0 Α Μ# ( ΝΑ! 0Α
46 % 0 0 %# ( 0 Α % # 0 ) +! # %! %# % % % %# # ) : % 0 / 8 0 % % Κ % Φ9 Ι + ;<<<Γ % % & ) 0 / 0 % ( >) # / 1 Η 0 % 0 ) % # 1 # / 0 # 0 0 % 0 # / % % # 0 Χ ) # 0 # %# 80 % % % 0 % # # #,) ( 0 # 0 # ) ) + Χ + 0 ( % 0 % % % # 0 % # 0 ( % 0 / # # ) 1 # % ) 0 > # 0 + # # 0 8 Φ9 Ι + ;<<ΕΓ 5 Ι % Φ;<< Γ % / ) 1 Η + # 8 % ( % 0 % % # 0 + % 0 % % /Ω % + / (> # >) # ( % 1 + # % # 0 ) + # 0 % / % 0 0 % + # # 1 0 ) # % ( % + % % 0 % % / + # %# % + # 0 % # 0 ( % / Χ / Χ ( ) 1 / 0 % % # % / /,) 0 # 0 # >) ) 1 % 0,0 0.
47 % 8 % % 2) + ) : 0 # % # % # ) ( % 0 %# ( 1 0 % %# ΦΙ Ο + 5 α 5α + ;<<ΕΓ 00( Φ;<<ΣΓ 1 / ) % Φ9 # + ;<<ΤΓ # 0,# 0 # & Μ 1 # Ν+ 1 % % # 0 Α ( 1 Κ Α % % Α 0 ) % # 0 0, Α % 1 % # % 8 0 ) 0 0 / 1 # # #Η >) χ 0 δ δ # 0,# % ) % # / 1 # 9 # Φ;<<<Γ % %# % % 0 0, 0 0 % + # 0 # 1 Η + / ( % + / % % # 0,# Φ ΠΓ! # % & % % & ( +., 3 3 8# % # ( + 8# 6 6 ) # &,, % %, 8# # # & # & ( ( + 8#. 8#! Π 7 # 0,# 1 0! 9 # Φ;<<<Γ
48 Μ & ) % &+,1Ι & +. &+ 4= +.#.&#% %.&+ %)+ 9 # Φ;<<<Γ+ 5 0 % 0 # 0 ) 0 % 0 % 0 % % 0 # 1 %# % 0 % 0 ):& # % # 0,# % % % 0 0 % # 0 # % ) 0 %# % % 1 0 % %# % + 0 / + ( 0 ( 0 % + ) % 8 0 %,) 1 0 > / # % # % ) 0 %# % ) # % 0 % # 0 9 # Φ;<<<Γ 0 %# % % / #,) 8 0 % 0 %# :& (> 0 % 0 %# :& % # % 0 ):& # + % # % % 5 % # 0 1 ) # 0 % 0 % % 1 ) & ) 0 Η ) 0 ) + Χ> / # 0 ) 0 %# % %# ( + # 0 Χ ) 1 % % # 0 + Χ + ( % # 0 Φ Ξ +! + ;<<ΣΓ # ) ) ) ) % % % # 0 / 1 # 0 0 % 0 % ( 0 0 % 0 #, %& Χ ) 0 + % 0 / % # # 0 ) # 0 0 # % Ξ Φ;<<ΠΓ % # 0,# % : # =Γ 0 ) % % 0 % 0 % # 0 Α ;Γ 0 8# 0 Η 0 Χ ) 0 0 # # # 0 ) ) + % 0 % ),) % % % 0 Α ΘΓ 0 0 & 0 / # % 0 % # 0 0 ) %# + Φ;<< Γ % / 5 # 0 % 0 0 % % (, 0 + # %# % %&
49 0 + 1& 0 > 0 Χ ) % % / > ) % 0 ) # 5 0( + # 0Β 0( Φ;<<ΘΓ % / # 0 0 % 0 0 % 0 % % % 0 % # # 0 % 0 # % % # % + # %,) # 0 # / ) 1 % 0 > # # % / # 1 % 0 0 %# % % / % Κ % / 0 # 0 0 % % % # % ) % 0 %# ) + # / ( 0 % 0 % %# 0 8 %# ( 1 0 %+ 5 % 0 0 % % % # + # % ) % Μ & ) Ν % Ο 7 )Β+& + %&=+) Ι+35% Π. &+ 4= % 9 # Φ;<<<Γ+ ) % # Χ 1 0 %# 0 %#Η % ) + 0 # % # % 0 % # # ) ( +! 0(% Φ;<< Γ 0 0 ( % % / # # 0 % / %# % % + > 0 Χ % 0 %# ) % % > # 0 / 0 Η 0 + / > 0 0 %# % % %# 0 % 0 %,) ( > / 0 %# % / )> % + % # 0 ( % + # + % % Η + % 0 0 %# # ) 1 # # 0 ) ) + ς ) Φ;<=<Γ 0 ) % + ( % % 1 % % 0 % % 0 0 # ) 0 0 : 0 0 # ) % # # ) # %# / % % 0 Η / # % # Χ 0 # 0 + ( 1 Κ 8 + # # % ) + / %# ( Χ % / %# % %
50 # % 0 0 8Η 0 %,) > %# 0 % % 0 + / # % : 0 # 0,# 0 % 0 ( % 0 0 0( + Φ;<<ΣΓ+ # 0 > ) 0 % ) 0 / ( 1 % + % + # Χ ) # % ) + / 2 % % # # % 0 # 1 + # / ( Χ ( % Κ 1 % + %# 1 # % > # % # 8 %# Β + Ξ+! + ( + %# > % 0 ( 0 % + 0 % # # % + / Χ % Κ # 0 # % # 0 % # 0 / + # % ) + %+ Ξ Φ;<<ΠΓ # : / %# # 0 0 %# # ( 1 Κ =Γ 0 + > 0 ), Κ # ) Α ;Γ % ) ( 0 % 0 %# : 0 > 1 Α ΘΓ 1 % # 0 0 % % 0 % Μ & ) Ν % Ο &+) 2%&#+& +. &+ 4= +.# +&.2+,. %,% # 0,# / 1 Η # # 0 % / %# 0 %# % ) ) % 0 % 0 # 0 + # % 0 % 0 + % 0 /Ω % 5 % 0 Η 8 0 # # % > 0 0 ) ) % 1 % % # > 0 + # 0,# # % ) % ) ) %# >,) ) 0 % % #
51 ) 8 %# 0 # 9 # Φ;<<<Γ # % / # 0( # 0 % % Η 0 ( % % # 0 ) 0 + % + % + % ) %# # /Ω % + % % % % # % Η Ξ Φ;<<ΠΓ 0 0 / # / 1 # % % =Γ # / # # 0 # % 0 % ) 0 0 % 0 ;Γ 0 / # %# ) %# Α ΘΓ 0 ) # 1 0 Α ΤΓ. 0 % % 0 %# ) 1 0 ;Μ & ) Ν % Ο %)0.&.& +. &+ 4= +.# &%. % %) Ν)1% / 1 # 9 # Φ;<<<Γ # % / ΣΠΖ / # 0 0 % % % ( # %: 0 % + # / Χ % %# % + 0 / (> 0 % # 0 0 % ) 0 %# ( % 0 9 # Φ;<<<Γ % % / %# %& 0 / % 1 %# % % % # 0 & / 0( % % Μ# 0 # # Ν+ / 0 % > 0 Φ % + 0 ) Η % Γ 0 % 0 % % 2 0 # 0 # 0, & / 0 % 0 % % % ( # / 0 : 0 % 0 % Χ ) # 0 %# % % #,) 0 Η % ( 0 % # % # % 0 Λ 0 # # % + 0 ΤΥ # 0,#
52 0( + Φ;<<ΣΓ % % / # 0 0Β # 1 0 # # 0 Κ %# 0 # 0 # % # ) % # 0 0, Ξ Φ;<<ΠΓ 0 # / ) % 0 ) % # 0 0, =Γ % # Χ ) 0 ) 0 ;Γ ) # 0 % Φ% % Γ+ / # 0 # : 0 0 %# ) % Α ΘΓ % / % # 1 %,) 1 Α ΤΓ % % > / # % > 0 # ) %# ( <Μ & ) % Ο %6 7 Ι+& + #1,+)3+ %& #. %,+ 7,.&+)3+.ϑ % 0 # 0,# + 8 % 4 + / # % + ( % + 0, 0 0 # 0 ) ) % / 0 0 % Χ + % 1 ) # ) ) % Ι 8 0 ) + # % Η % ) / %# % %# ( # % 0 % > 9 # Φ;<<<Γ % / # % 0 %, 0 ) ) + % 0 0 > %# % % + # & # %# ( 8 > Ξ Φ;<<ΠΓ+ % 1 % # % Ι 8 0 ) / =Γ 1 0 ) % # 0 % 8 0 ) % + / %# ( > # #, % # 0 ;Γ ) % / # # >) # %# % 5 # / % 0 %, # 0 Α ΘΓ 1 / # 0 # / / % # # # 0 5 Α + ΤΓ ) ) % ) # % % % 0
53 ) & / % ),) ( % 0 + / # + 0 % + 0 Λ 0 # # Χ ) + % Η # Χ 0 % %# % % % # 0 0, + # % % 0 % % %# ( % # 0,# / # 1 /! 0 %# ) ( # ΒϑΒ( # ) Φ;<=<Γ % / % %# ( # % # # %# 0 # Χ ) 1 0 Φ< # 0 % 0 % % > % % 8 0,0 ( % ) 0 Κ 2 % 0 # 1 1 ) + % %+ : 0 % %# / 0 1 % % >) ( Φ;<<ΕΓ / 0 % % # % # > % # / # % % %# 0 # Χ % / # % %! # % % % # 1 Η % Η Η % %# 0 % 0 = ; 9 (% Φ;<=<Γ % % %# ( 0 %& # # > 0 0 %# Λ 0 % % % 0 % # 0 % 0 1 # ( % 0 + # % % % 0 Χ % 0 0 / # % 0 0 % % % %# ( % % # % % 0 # 0 1 # Κ ) 0 0 Λ 0 ( # ΒϑΒ( # ) Φ;<=<Γ 1 % / 1 8 # 1 % % Χ ) ) % 0 0 % # 1 + # 8 %# + Χ ) # 0 # % %# # 1 0 %>8 % + / Χ ) % 1 % 0 ) # % ) % # % ) 0 %# % % / # 0 0, + 1 ) 0 %# ( %# ( 0 % Χ ) # #
54 0 8 + Φ;<<ΡΓ % / % %# ( %# 0,) # / / 1 + # %# # / % % % 0 % ( 0 ( > / # ) ): % %# 0 0 % / # / %# ( # % 0 > Κ 1 % 0 Χ % % 0 ) #,) % Η # 0 + # + ) + + %# %+ % %# ( # 0 0 % / 1 ) 0 ( 0 + /,) 0 Χ ) # Χ Ι % ) Φ;<< Γ 0 %# % % / % 0 %# ( ) % 1 Η 8 0 > # ) ) % # Η % % % %# 8 Λ% % / % % %# ( :% 0 % # 0 # Χ ) 1 # % 1 % / % # %# 0 % % + # % ) + # % % 0 +! ( Φ;<< Γ # > 0 % %# ( # # % ) % % 1 + / Χ Η ) # 0 %# + 0 % 0 %# % # ) ) Φ 0 >,) Γ 0 % 0 % 1 Η 8 Φ Γ & / % %# ( % # 0 0 / % Η # % 0 %+ %# # # 0 / # % 0 % > % Κ % 0 + %# > 0 Η 0 %# ( 0 0 : 0 # 0 : Φ;<<ΣΓ 0 ) % / ) %# ( % % % # # % / / # 0 %# % % / + % Η # # # # % # # %# + # # % % 0 %# % 1 ( Φ;<<ΕΓ+ 0 % / % 0 % ),) + 8 % %# ( Φ Γ / 0 ) % ) 0 ( 0 % 0 ) (> + 1 Η :% 0 % 0 / 0 % 0 ) %
55 1 Η 8 % ) %# ( ) # 0 + / 0 # / + Χ ) % Χ % 0 % % 1 Φ + ;<<ΣΓ % + 0 % % 9 # Φ;<<<Γ # % / % %# ) 0 %# Φ% =<Ζ % 0 Γ 0 0, % / 0 # % %# / / % # / 0 % / / %# % 1 Η ) ) % 0 % 0>0 = ) 8 0 >) 0 / 1 0 0( % 0 / Κ ) # Α ; 0 Κ % # % + / # ), Α Θ 0 Κ 0 0 Α + Τ 0Β > % % 0 # 0 # & % 0 % 0 : 0 # 0 0 # 1 > Φ;<<ΠΓ / Μ % %# ) ) # # %# % + % % % # 0 ( Ν + # 0 / ) % Γ > 0 0 % # 0 0 %# Ψ Γ > 0 0 % # >) %# Ψ 0Γ > / Κ ) + Κ % + # # + Κ # 0 Χ ) %# Ψ Γ > / 0 8 #,) %# Ψ Γ > 0 0 % 0 / 8 0 ) Χ / Ψ Γ > 0 0 % %# 0 # / Χ ) + % Χ % 0 Ψ Γ > / Κ 8# 0 ) 8 : 0 # 0 # 8 0 ) %# Ψ + 5 ( % Φ;<<ΤΓ % / ) # + # %# % 0 )
56 %# % + Χ % + % # + % % ) # 0 # 0 % # # 5 ( % Φ;<<ΤΓ+ 0 # ) 8# Γ 0 : 0 Α Γ 0 : 0 8 Α 0Γ / 0 Α Γ ) Α Γ ( 1 %# + Γ 0 ) # / + % 1 0 % % %# ( Φ Γ # ) ) % %,) 1 Β Φ= ΠΓ 0 / 0 0 # 0 ) %# ( % 0 0 % # 0 % %? % Ξ> # 0 # 0 0, 0 # % 0 Φ/ + ) + + % Γ # # % 1 # % / ) / ) % / ) % 0> 0 % 0 #, 0 % / ) % # ) ) + % Χ ) / ) 0 % ( % #,) Φ +! ε Ι + ;<< Γ % % ) ) % 0 # # 0 # Η # 0 ) %# ( %# 0,) 8# % Η # # + % % / # % % 0 # ) 0 %# % 0 %#,0 8#,0 ( Φ;<<ΣΓ 0 0 % / # / % Χ ) %# + 0 > ) % % ) # % 0 # # % # 1 0 %# % ) / / 0 % % 1 / 0 % # 0 ) ) % # 0 % + / > 8 %# %# + 0 % %# # % % % % % & / ) 0Β Φ= Γ+ > %# ( ) % %# % ) / % % 0
57 % + %# ( ) 8 # % 0 % + %# /,) 0 %# : 0 / + 0 / # 0 / ( > # + % 0 % 0 ( 0 % 0 / ) % 5 Φ;<<ΠΓ (> # 0 0 % % %# ( % %# 0 %# ( 1 0 % 0 % ) ) + # % % 0 % > /, % % % 0 %# % 0 %# % % % 0 # %# ( + 0 ) % / % Η / 0 % 0 % 0 0 Χ % %# % # 0 / 0 Η / ) % %# ( %+ 0 %# % ( % + + # Η 0 1 % % % ) 0 0 %# % # %# 0 0 # # # %# 9 # Φ;<<<Γ % / % ) # % % ( # Η + % 0 + ) # ) 0 % # % % ( %# ( 0 Ξ 0 % 8 % ) % %# ( % = ΠΤ+ 0Β % # Χ ) Φ Γ+ + % % # ( 0 Η 0 %# % 0 0 % 0 > % = Ρ< % ) 0 % 0 % = Σ<+ 0( Χ % 0 0 % 1 Η ) % # 0 & % # 1 # 1 ( Φ;<<ΣΓ + ) % % 0 0 % 0 ) # 0 Η # / # % # % # 9 # % = ; ( Φ;<<ΕΓ 0 ) % %# ( Φ Γ 0 % % 0 Χ # 0 + # + % + % ) # 0 % % Η ) % Η %# ( + # > )>,) ( > / 0 % % Η + > # % ) %# ( / # + ) + # 0 # # %# + # % 0 Η 8 0 Η
58 ) % ( %# ( Φ # % Ι 9+ = ΠΑ ;<<<Α Ια+ 9 Ια+ ;<<;Γ 0 %# % / + # / % Χ 0 1 Χ Χ ) # # + %# ) % % ) 0 %# % 0 % % > 0 % # % ) # 1 / # % 0 0 / # 0 + % ) 1 + ) 0 % % 0 # %# % / 0 % # % ) % ) + ) & /, 0 0 % 8 + # 0 # % % 1 % % 0? / # ) ) % % / # 0 %# ( ) 0 0 % ) % 0 %# ) % Φ;<<ΤΓ / # / 0 % 1 Η # >) # 1 Χ ) 0 % % 0 > 0 # ) %# ( 0 : 0 / > ) # 1 0 0>0 / Κ 1 Χ ) % %# %# ) % % % %# ( Φ ΕΓ! Ε & %# ( % 1! # 8 % Φ;<<ΤΓ %# % 0 > 0 0 : 0 0>0 + 8 % Φ;<<ΤΓ # % / % ) % 0 + # 0 ) %# ( Φ ΡΓ
59 ! Ρ & ) %# (! # 8 % Φ;<<ΤΓ 5 Ι % Φ;<< Γ % / % % %# ( 0 # 1 # % ),0 ) Κ %# + 0 > / # % # Χ % 0 0 / Χ ( # Φ;<< Γ 0 %# % % / # 0 / ) % ) ) ) ) # % %# % %# % % / ) % 1 # 0 %# 8 # 0 / Χ ) + %# Λ 0 % Κ % 0 # %# + % 0 % 8# 0 ) 0 # %+ 0 % % # + 0 / 1 # % %# ( 1 ) % /Ω: ) %# 0 # ) ) % / %# 0 Χ ) 0 0 # 0 % 0 # + # 0 Χ ) / 1 % ) 1 Ι + ( Φ;<<ΘΓ % %# ( ) % % # 0 ) ) # # % ) %# ( %
60 % 0 + % % % % # 0 & 0 0 % / ) + # 0 # % 0 +! ( Φ;<< Γ 1 % / ) % 8# 0 % % % > %# ( ) ) % % 0 + / > Γ % # 0 0 % Α Γ 0 % 5 + # :% 0 % = ΣΡ+ # 0 ( 0 1 Η / # % % %# ( 80 : 0 + # ) + 0Γ :% #! 0 + % = = % % Χ> 0 + % % > %# ( / % 0 % Χ ) 8 %# 8 0 ) 0 + & Κ %# % + # :% 0 % 5 ) # % ) # % % ( # > 0 + % Χ % 0 %# ), # :% % % %# (, Φ ;<< Γ 0 % 5 ) # % 0 = Ι Α ; Χ % 0 Α Θ 0 : 0 0 % 0 Α Τ > % 0 ( 0 % Α Π 0 : 0 0 Α Ε # 0 Α Ρ 0 % 0 Φ ;<< Γ :% 0 % 0 80 : 0 % 1 % + / = # Α ;. :% 0 Α Θ Α Τ ) Α Π. Α Ε Ι 0 Λ 0 # # Α Ρ! 0 0 % 0 Α Σ # 0 Α % Α =<. 1 # Α == % # # 0 Α =; # Φ! + ;<< Γ! # :% 0 %# ( 0 % # 0 # / # % % ) >& 0 %# >& % Κ % + # Η + 0 # # 0 # 0 % % + 8# % : 0 0>0 # % # % % 0 Φ. Ξ! + ;<<ΡΤ + Ι Ξ Φ;<<ΣΓ % / % % 0 ( % 0, 0 0 %> 0 + ) % / 0 / ) %# ( + # # ) 0 0 % % # ) + % # # % %# ( 1 Η :% 0 0, 0 % 0 % % ) # # 0 # %
61 %,),) + / ) % Φ> 2 % 0 1 Η + # 0 # % 2 + ):% # # 0 ) % Η % % + / # ) % %? % % / % 0 %# ) + % 0 % % ( / # % % % # 1 Η > 80 : 0 7 / 7 :% 0 Φ. Ξ + ;<<ΡΓ :% 0 7 % %> 0 ) %# ( 1 0 %# #! 0 Φ! Γ+ / % 0 % % Μ# % ) # 0 80 : 0 1 Η 0 % % Η 0 0 ) Κ 0 0 # > 0 % 0 + # % :% 0 Ν Φ! + ;<<ΤΓ 5 + Ι % Φ;<<ΣΓ! 0 % 0 % 80 : 0 # ) > % + 0 / 0 % 0 % 1 Η 0 + % Μ Ν %> 0 ) 0 0 % / # 0, + % % + # 1 # # % % ) 8# : 0 % # 0 0 % # ) ) > Φ % Γ 0 % %# % & 0 % %, 0 0 / 0 %# # ) 0 0 % Η / :% 0 ) 1 Η / 0( % # + # 0 ) 0 %# : / 0 % > 0, 0 ) Φ# 8 % ΓΑ % > 0, 0 0 Φ % 0 Χ 0 % 8 % / # ) ΓΑ % ) Κ Η %# Φ + ;<<ΤΓ # 0 ) ) % ) ) 5 = ; : / 0 % 1 # %,) % # 80 : 0 %# ( % 0 %# ) %# #, Φ + ;<<ΤΓ
62 +Τ,.&+)3+ Ο Ι 1+ 0 % + % 80 : 0 Ι Λ 0 # + / # %# % %, 0 % ) # 0,# 1 0 % + 0 % % # 80 : 0 0 % 0 % % 1 0 / % # 1 % # # 0 % % 6Τ &+ 4= +. 7+)% 1+ # % % + % 80 : 0.! + # % % > % 8 # 0 %# / % 0 % 0 0 # 1 + % 0 % % # # 0 ) + # # 0 % # 1 ) 1 % # 0 0 # 0 >& + 0 % 0 %# % % # Τ 7.). > % 0 0 % % ( 0 % 0 % 0 + / # ) # 0 % 0 % % 0 %# ) % 0 > # % 0 ( 0 % % 0 % 0,Τ %.,+,. 0 > # 0 # % % # 0 + / # #Η 0 ( 0 % 0 % 0 0 % # 1 ) 1 # 0 # 0 0 ( 0 % # % % % # 0 % % # 0 # 1 % 0 0 % 0 % :% 0 + # %# Λ 0 % Η # : % 8 % Ι Λ 0 # % % + # %# Λ 0 # # 0 # 0 0 > ) ) % >) ) ) % >) ) ) % / 1 0 # % 0 %# % 0 # 0 Η 1 % # # 0 Φ + ;<<ΤΓ.Τ )2%&#+3Λ.. %)Β. #.) % % Η ( 0 % 1+ # % % + % 80 : 0 # 0 % Η + #
63 % % 0 Η 1 0 % % % Η > %# ( % 8 1 ) # % % / # % 0 % % Η 0 %# ) 0 ) >) + 0 % % Η + 8# % # 0 ),) % ) %# ) 80 : 0 φ Φ Γ 0 % 0 ( 0 % % % 0 # 0, 0 + % 0 : 0 %# Λ 0 % # 80 : 0 1 Η 2Τ. %+ > # 0 # % %. 1 + / 0 %# ( 1 0 % 0 # 0 + % ) %& ( + % 0 % 0 % % % # #,0 Κ # 0 # ) ) % / % % %. + % :% 0 # > % : % ( + # 0 ) ) % ) =Τ &%. % # 0 1 / % ) % % # 0 0 % + 0 # 0 / % ) % # 0 + # 0 # + # 0 0 % 0 % 0 # 0 0 3% 0 & 0 1 > % # 0 % Η + / 1 # 0 %# 0 % # % # 0 + & + % 0 : 0 + # %, 0 %# # 1 + # ) + ) %# ( %# % %> 0 ) Η % ( ΒΤ. 17 +,% Σ & & 0 # + # 0 80 : 0 + Κ # % % # 1 # % ),),) % # # % # > 0 1 Η ) % 0 / ) # # ) # % Η ) ) % 1
64 ) ( Φ;<<ΡΓ+ 1 Η % # 0 # + % # ) % ) % % + 80 : 0
65 8 % > 0 0 Χ ) %> % 0 % Χ ) + # 0 % ( + 0 Χ 0 Η 0 + # % 0 ( 0 % ΦΙ 9 + ;<<ΠΓ %+ 0 #, 0 ) % + # # # / + # # & ) % + 0 % / % / + / ) /Ω: 0 0 % 0 / = = 7 ( )! #! #! % & #! # 8Φ %,.. Κ1 + ) 5 ) Φ;<<;Γ / % % % % %# % 0, 0 Χ ) % ) %+ # ) Χ ) + ),) # 0,# 1 # ) ) %# 0 % 0 0! 1 % # / 0 ) + # % % 0 ) 5 ) Φ;<<;Γ # / 0 ) ) % % % # >& 0 0 % / # # / # % )> % + 0 ) Γ # / 0 % ) 0 % # 0 ) 0 %# + 0 % + : , 0 + Γ
66 0 + / + # Φ= Γ 0 ) 0 8 % / > % ) α Φ;<<=Γ 0 %# % / Μ 0 # % ) %#, 0 0 %# % % + 0 % 0 # Χ % + 0 > Ν % 0 + γ Φ= Γ 0 % / Μ 0 % # ) / ) ) ) ( % % Ν 0 + % % # / 0 % + ) 5 ) Φ;<<ΠΓ ) 0 % % 0 ) 0 %# 0 % + : , 0 # + % ) 0 %# # / + # % ( % % Η # Κ # / 8Φ % 17+35% +70%. +#% &+ 0( Φ= Γ / % # # % 0 Χ # %# / > ) # % Χ ) # 0, 0 % / (> 0 8 % % # # # ) >) % ( # # + # %# ) + 0 # / 0 # 0 # 0 % + Β Φ;<<;Γ+ % # 1 1 Η % # # % % 0 Χ % 0 # # % / % % 1& 0 > # / % # > 0 ) >) 0 ( % Η # # + # # Χ ) + ) & 1 Η ) 0 :% 0 Φ Γ 2 % : + / 0 %# ( + % ) 1 / ) 0 % %! % 80 : 0 / % % 80 : 0 + # / 1 Η ) % Φ! + ;<< Γ % Κ % + #, # %# ) % # / # #! # %, # Φ;<<ΤΓ+ / %
67 #, 0 > % 0 / 0 % # 0 Φ Γ 0 % / %# # % # 0 % # 0! # 1 #2 0 % 1 %# ) 0 %+ %# / # 0 # % # / 0 / ;+ Χ 0 & / % ;<<Σ # 1 Κ! % / % ;<< # 1 ( % ; 7 %# / ) # &. + %, 5? Φ Ι5 Γ 0 0 % > % 1 #! # / ;<<Ρ ;<<Ρ ;<<Ρ ;<<Σ 8Φ8 ) &1#.) %,. %7. +,.,+,% 0 % 1 0 > + / + 0( Φ= Γ+ % 0 > Χ> 8 % % 0 # % / ) + %+ 0 0 > # % # / > 0 % Φ # Γ 0 0 #: 0 0 % + # 0 + / Θ # % # 0,#! + 1 # Ξ Φ;<<ΠΓ 0 % / +! Φ;<=<Γ+ / # /
68 Θ 7 0,#! 0 % /.Κ1 %,% & ) %,+ = = %# 0 ) 1 0 % % 0 % 0 % # 0 Ψ = ; %# 0 8# 0 Η 0 Χ ) 0 0 # # # 0 ) ) + % 0 % ),) % % % 0 Ψ = Θ %# / # % 0 % # 0 0 ) %# Ψ ; = %# 0 + > 0 ), Κ # ) Ψ ; ; %# # % ) ( 0 % 0 %# : 0 > 1 Ψ ; Θ %# 1 % # 0 0 % % 0 % Ψ Θ = %# # / # # 0 # % 0 % ) 0 0 % 0 Ψ Θ ; Ξ> % 0 % # 0 / # %# ) %# Α Θ Θ %# ) # 1 0 Ψ Θ Τ Ξ> ), 0 % % 0 %# % ) 1 0 Ψ Μ & ) Ν % Ο &+,1Ι & +. &+ 4= +.#.&#% %.&+ %)+ Μ & ) Ν % Ο 7 )Β+#.) %,+ &=+) Ι+35% Π &+ 4= + 8Μ & ) Ν % Ο &+) 2%&#+& + &+ 4= +.# +&.2+,. %,% ;Μ & ) Ν % Ο %)0.&.& + &+ 4= +.# &%. % %) Ν)1%.Κ1 %,% Κ1. &. %),.# Π. Κ1 + % % # ) > 1 Ψ / % 0 ),) / % % ) # 0 Ψ % 0 # ) %# % Ψ % 0 ) # 0,# > η # % 80 : 0 η 0 ) # # Ψ % ) > 1 + / # + # ) ) # 0 % Ψ %. + 0,# , 0 0 % 0 Κ ( Ψ. 0 % #,) 1 % 0 % 0 # # ( Ψ % %# ( # ( 0 + % % % %# ( Ψ % % + 0 ( 0 % 0 ) % % 0 0 % %# ( 0 80 : 0 Ψ Τ = %# % # Χ ) % # 1 0 ) 0 Ψ ) % / # % # # Ψ Τ ; %# ) # 0 % Φ% % Γ+ 0 % 1 # ( % / # 0 # : 0 % Χ ) 1 0 %# ) % Α % ) 1 Ψ Τ Θ %# ) ) % / % ) %# ( # 0 0 % # 1 %,) 1 Ψ 1 + ) ) ) % >) Ψ Τ Τ %# ) ) % % > / % %# % # 1 1 Ψ 0 ) # % > 0 # ) # 0 # # > 0 # % # 1 %# ( Ψ % 0 %# ( %# % 0 Η 0 > %# ( 1 Ψ % 0 % 1 # ) 0 0 # % ) 1 0 % # Ψ <Μ & ) Ν % Ο %6 7 Ι+35%,+ 1,+)3+ %& #. %,+,.&+)3+ ϑ Π = 0 ) 1 5 % Φ ) Γ 0 % # 0 % 8 0 ) % + / %# ( > # #, % # 0 Ψ Π ; / # # >) # %# % 5 % % ) ) % % # % 0 %, # 0 Ψ Π Θ Ξ ) % 1 / # 0 # / / % # # # 0 5 Ψ Π Τ! ) ) % % ) # % % % 0 Ψ! # / % % # + 0 % 1 # :8 0 0 Χ ) 1 Ψ 0 # 0 # % % 1 ( # :8 0 0 Χ ) % 0 ) ) % 0 0 > # :8 Ψ % % % 0 % 1 0 ) >) Κ 0 ) + Κ ) Κ 80 : 0 %# ( Ψ % %# % ) 1 Ψ % / % # # 0 ) Φ! ;<< Γ
69 =Γ! % # 0 % % + # %# + # 0 % % /Ω: 0 + % 0 # > 0 / % # 0,#! Α ;Γ 0 %# 0 % 8# ) Α ΘΓ! ) & ) # > / Χ ( % 0 %# Α! Α ΤΓ ΠΓ 0 & % # # 0,#! ) 1 : 0 Α ΕΓ! % 0 0 % > # # 0 0 # 0,#! # # / %# % :% % ) 0 ( % 0 + / + : % 5 0 % % 0 % % # # + 0 & 0 % # # # Κ 4 % # 0 # # / 5 # & / # # 0,#! Ψ 0 # > 0 / # % # 0,#! + % 0 / 0 / ;+ % 8 # % % # #! # 0 ) Φ =Γ + ϑ+,. %) 1+35% <Ζ % = 7! 8. & 35% % ) 0 # > 0 0 Χ ) : 0 0 / # > 0 % % ) # Κ / Η 0 0,#! 0 Χ ) : 0 0 / # > 0 +.),.# + +7=1#+ / Η 0 0,#! 0 Χ ) : 0 0 / # > 0 +.),.# + 0:& + / Η 0 0,#! 0 Χ ) : 0 0 / # > 0 +.),.# + #+ %& + / Η 0 0,#! 0 Χ ) : 0 0 / # > 0 +.),.# + Κ1+. ;<Ζ % Τ<Ζ Ε<Ζ 5 % Σ<Ζ ι % %,+ / Η 0 0,#! =<<Ζ 80! #! Φ;<=<Γ 0 Χ ) : 0 0 / # > 0 +.),.# + %,+ + / Η 0 0,#! 8Φ; &+ +#.) %,%,+,%
70 0 % % / &/ ) + 1 # % 80 # 1 Η 0> % 0 0 Φ = / ΘΓ 0 0 % ) 1 Φ;<<ΠΓ+ # / / ) 0 / (> % ) % Χ + + % ), 0 0 >) % Χ ) Χ ) Χ / # % % 2% # 0 > 0 # 0 # / / ) / % 0 0, 0 # / % 0 # 0,#! + # & / Η % # Ξ Φ;<<ΠΓ % 0 # 0,# + / % % % 0 % # % 0 > Φ Σ+ + =<+ == =;Γ 0 # % 0,) %# Λ 0 > # % # 0 ) / # 0,# + 0 % Ξ Φ;<<ΠΓ % )Λ 0 # / # 0 ) # 0,# 0 # Τ<Ζ % # 0,# 0 & # % % =<<Ζ # 0,# % / % 0 % )Λ 0 0 # Θ<Ζ % 0 % % % 0 # % % =<<Ζ % % / % 0,) )Λ 0 0 # # Κ / # 0,# + % # % % % 1 =<<Ζ
71 .Κ1 %,% Υ Ρ Τ 1. 5%,% & ) Ν %.&&.&%Υ <Τ & ) Ν %,+ Ο Χ+ 7+). %& %)Υ Τ + %&.,. +):7. &+,135%,..&&.&% Υ <Τ ς &+,1Ι & + &+ 4= +.#.&#%.&+ %)+ 1+7 % )Ν0.7,..).), #.) %,% 21) %):& %.# &.7+35% Π. &+ 4= + 2%+,+Σ. % # %& () +,% 2+ %& +&+ +.),.& + Κ1. 5% Γ 0 % % # ) > 1 Ψ Γ / % 0 ),) / % % ) # 0 Ψ 0Γ 0 % 0 # ) %# % Ψ Γ 0 % 0 ) # 0,# > Κ # % 80 : 0 η 0 ) # # Ψ =Γ 0 ) % % 0 % 0 % # 0 ;Γ 0 8# 0 Η 0 Χ ) 0 0 # # # 0 ) ) + % 0 % ),) % % % 0 ΘΓ & 0 / # % 0 % # 0 0 ) %# Τ<Ζ Θ<Ζ Θ<Ζ.7+35%.Κ1 %,% Ω & ) Ν %,+! Σ 7! > 7 =Υ 0,# & 1 % % # 0! #! Φ;<=<Γ+ Ξ Φ;<<ΠΓ 9 # Φ;<<<Γ.Κ1 %,% Υ Ρ Τ 1. 5%,% & ) Ν %.&&.&%Υ <Τ & ) Ν %,+ ΟΧ+ 7+). %& %)Υ Τ + %&.,. +):7. &+,135%,..&&.&%Υ <Τ Μ & ) Ν % Ο 7 )Β+#.) %,+ &=+) Ι+35% Π &+ 4= % )Ν0.7,. +7 )Β+#.) %,+ %&=+) Ι+35% 0 +),% & +& ).&= + 0%7 +,+ +&+ + # 7.#.) +35%,+. &+ 4= + 2%+,+Σ. % # %& () +,% 2+ %& +&+ +.),.& + Κ1. 5% 0Γ. 0 % #,) 1 Γ % ) > 1 + / # + # ) ) # 0 % Ψ 0Γ 0 % 1 # ( % % Χ ) 1 Γ %. + 0,# , 0 0 % 0 Κ ( Ψ =Γ %# 0 + > 0 ), Κ # ) Ψ ;Γ %# # % ) ( 0 % 0 %# : 0 > 1 Ψ ΘΓ %# 1 % # 0 0 % % 0 % Ψ Θ<Ζ Τ<Ζ Θ<Ζ.7+35%.Κ1 %,% Ω & ) Ν %,+! 7! > 7 ;Υ 0,# & ( 1 Κ! #! Φ;<=<Γ+ Ξ Φ;<<ΠΓ 9 # Φ;<<<Γ
72 .Κ1 %,% Υ Ρ Τ 1. 5%,% & ) Ν %.&&.&%Υ <Τ & ) Ν %,+ ΟΧ+ 7+). %& %)Υ Τ + %&.,. +):7. &+,135%,..&&.&%Υ <Τ 8Μ & ) Ν % Ο &+) 2%&#+& + &+ 4= +.# +&.2+,. %,% %,%,..#.)Β% ), 0, ,+.# ), +,%&.,.,%6&+,%,+. &+ 4= + %&=+) Ι+ %)+7Σ. % # %& () +,% 2+ %& +&+ +.),.& + Κ1. 5% Γ % 0 % 0 # # ( Ψ Γ % %# ( # ( 0 + % % % %# ( Ψ 0Γ % % + 0 ( 0 % 0 ) % % 0 0 % %# ( 0 80 : 0 Ψ =Γ %# # / # # 0 # % 0 % ) 0 0 % 0 Ψ ;Γ Ξ> % 0 % # 0 / # %# ) %# Α ΘΓ %# 0 0 ) # Ψ ΤΓ Ξ> ), 0 % % 0 %# % 0 0 ) 1 0 Ψ ;<Ζ ;<Ζ Θ<Ζ Θ<Ζ.7+35%.Κ1 %,% Ω & ) Ν %,+! =< 7! > 7 ΘΥ 0,# & % %! #! Φ;<=<Γ+ Ξ Φ;<<ΠΓ 9 # Φ;<<<Γ
73 .Κ1 %,% Υ Ρ Τ 1. 5%,% & ) Ν %.&&.&%Υ <Τ & ) Ν %,+ ΟΧ+ 7+). %& %)Υ Τ + %&.,. +):7. &+,135%,..&&.&%Υ <Τ ;Μ & ) Ν % Ο %)0.&.& + &+ 4= +.# &%. % %) Ν)1% &%. %.&#. % #%) %&+#.) %,% &%=&. %.# &.7+35% Π. &+ 4= + 2%+,+. + +,%35%,. +3Λ. %&&. 0+ ).. :& + Σ. % # %& () +,% 2+ %& +&+ +.),.& + Κ1. 5% Γ % # 1 ) % / # % # # Ψ Γ % ) 1 Ψ 0Γ % ) %# ( # ) ) ) % >) Ψ Γ % %# % # 1 1 Ψ 0 ) # 0 # # > 0 # % # 1 Γ % 0 %# ( %# % 0 Η 0 > %# ( 1 Ψ Γ % 0 % 1 # ) 0 0 # % ) 1 0 % # Ψ =Γ %# % # Χ ) 0 ) 0 Ψ ;Γ %# ) # 0 % Φ% % Γ+ / # 0 # : 0 0 %# ) % Α ΘΓ %# ) ) % / % # 1 %,) 1 Ψ ΤΓ %# ) ) % % > / # % > 0 # ) %# ( Ψ ;<Ζ Τ<Ζ ;<Ζ ;<Ζ.7+35%.Κ1 %,% Ω & ) Ν %,+! == 7! > 7 ΤΥ 0,# & ) % 0,! #! Φ;<=<Γ+ Ξ Φ;<<ΠΓ 9 # Φ;<<<Γ
74 .Κ1 %,% Υ Ρ Τ 1. 5%,% & ) Ν %.&&.&%Υ <Τ & ) Ν %,+ ΟΧ+ 7+). %& %)Υ Τ + %&.,. +):7. &+,135%,..&&.&%Υ <Τ <Μ & ) Ν % Ο %6 7 Ι+35%,+ 1,+)3+ %& #. %,+,.&+)3+ ϑ % )Ν0.7,. #%6 7 Ι+35%,+,.&+)3+ 0%7 +,+ +&+ % 1. %,+. &+ 4= +Σ. % # %& () +,% 2+ %& +&+ +.),.& + Κ1. 5% Γ % % # + 0 % 1 # :8 0 0 Χ ) 1 Ψ Γ 0 # 0 # % % 1 ( # :8 0 0 Χ ) 0Γ % ) ) % 0 0 > # :8 Ψ Γ % % % 0 % 1 0 ) >) Κ0 ) + Κ ) Κ 80 : 0 %# ( Ψ Γ % %# % ) 1 Ψ =Γ 0 ) 1 5 % Φ ) Γ 0 % # 0 % 8 0 ) % + / %# ( > # #, % # 0 Ψ ;Γ / # # >) # %# % 5 % % ) ) % % # % 0 %, # 0 Ψ ΘΓ Ξ ) % 1 / # 0 # / / % # # # 0 5 Ψ ΘΓ! ) ) % % ) # % % % 0 Ψ ;<Ζ Θ<Ζ Θ<Ζ ;<Ζ.7+35%.Κ1 %,% Ω & ) Ν %,+! =; 7! > 7 ΠΥ 0,# & 1 # % Ι 8 0 )! #! Φ;<=<Γ+ Ξ Φ;<<ΠΓ 9 # Φ;<<<Γ % + # % > / % # 8 % + % % 0 # # 0 # 0,# + 0 %,) %# Λ 0 0 %+ % 9 # Φ;<<<Γ % / 8 % / / %# % 1 Η ) ) % 0 % :8 % 0 # 0,# 0 %, # 0 # Φ =ΘΓ %+ # 0,# % / 0 0 % # % ) # =Σ / :% 0 % 0 % 0 % # ;Θ+ % 1 =<<
75 ! # 9 # Φ;<<<Γ 0,#! 7 9 # Φ;<<<Γ 7 %# Λ 0 # 0,# =Γ ) 8 0 >) 0 / 1 0 0( % 0 / Κ ) # ;Γ 0 Κ % # % + / # ), ΘΓ 0 Κ 0 0 ΤΓ 0Β > % % 0 # 0 # & % 0 % 0 : 0 # 0 0 # 1 =ϕ & 1 % % # 0 ;Υ 0,# 7 ( 1 Κ ΘΥ 0,# 7 % % ΤΥ 0,# 7 ) % # 0 0, ΠΥ 0,# 7 % 1 # % Ι 8 0 ) =Σ ;Θ =Σ ;Θ =Σ % +7 =<<! =Θ 7! # 9 # Φ;<<<Γ 6 0,#!! # 9 # Φ;<<<Γ %! Φ =Γ % Ξ Φ Σ+ + =<+ == =;Γ+ 0, % # ( # 0 % Η Φ #: 0 Γ
76 ; % ( 0 %# %# / % + 0 #, # # 0 # # 0 # 0 + % Η + 8, # 0 ) # Κ! 0 # 0 :% 0 ;Φ +&+.& Ι+35%,+ &=+) Ι+3Λ. # ( 1 # + # % ;<<Σ+ % 0 3 % 0 # + # 1 + / (> ΣΤ ) # # 0 # ) % % = ;Τ % 1 % = Θ + 1 # 1 # # # 0 %# ΦΘ Ε<< # # # Γ = Π<+ 0 ) # 0 %# # Χ ) ) % # 0 0 # # # # # + / % % ) %# + # # # 5 % # / 0 0 > 5 ( # 1 % ;<<=+ 1 0 % ( # % 8# 0 1 # / % + # # # 0 > % % 5 ( % % 1 +. % % ) Φ5 Γ 0 % ) 0 % 0 % %# # 1 0 % % 0 + # # 0 # # %# % 0 ) + ) ) 0 % 0 0 # 0 # % % ( # # % ( + ) % # 0 # 0 8# 0 ) 0 0 ) 0 % + % # 0 + ) # / 0 0 : # ) + % % ) + % ( / # + % 0 + # 0 # ) + 0, % Η ( +
77 % # ) % > % + % ( 0,) # # Χ % Θ ΠΠΤ 0 Φ 1 ;<<ΡΓ 0 % 0 # Ι + / <+=Ζ + =ΘΖ :% # & &% + ; Ζ # 0 %# 0 %# + Π=+ΡΖ % 0 %# 0 %# + ΕΖ % 0 %# <+;Ζ % % 0 %# ;Θ > Π Θ<< 0 1 / % % ) + % + %# 1 0 ) + + % ) % 0 + ( Η 1 0 %# # ) % 0 # # 0 # % % # 0 0 : 0 % # # # 0 > 0 0 % 0 % + / 0 0 : # # % 0 0, 0 0 %% ) 0 % # Κ 8# % # 0 # 0 # / % 0 0 % 0 # + 0 %# Γ % % >) %# ;<=ΠΑ Γ ) ) # 0 % + # # % 0 0 # Α 0Γ 0 3% % Α Γ %# % 0 % 0 0 % 0! + 0 1Α Γ 1 % ( %# # ( % 0 ) 0 0 # # Κ 0 # = Π<+ 0 %# % % ( & ) ) % ) 0 0 # + ) ) % # # # + # % # # 0 0 ) % % + % 0 % # / ) % 0 0 % # % # # =<<Ζ # 1 % 0 0 % 0 0! # % 1 % =Τ<<<= + % = Π! # % %# % 0 0 ( 0 # % ;<<=
78 % 0 + # Χ % 0 %# % 5 ;<<Τ # ;<<Π 0 # %.5 Φ! Γ 0 0 Φ Χ % 0 Γ # % > + ) # % # # Φ;<<ΣΓ+ 0 % 0 0 # & %#,) 1 ) +) )6 7) Ι5 % %# % % > Χ 0 # %, # %> + % + 0 % % %,,/ + 0 % %, Φ0 % # 1 +ΡΖ + ΖΓ % ;;+Π Β % / ;<<Ε %# 0 # ΤΠ ΣΣΕ %,,/ + 0 # ΤΠΠ ΠΕ= %, + % 0 ( %# % % ) % % κ ; ΘΤ= Τ<< <<<+<< %, % 8 0 Χ # 1 # 0 Η % Ι ) 0 # 1 % 0 % : # 0 # % % % # ) / / 80 ) % # % 0 8 Φ ΠΖΓ %, 5? Φ Ι5 Γ+ # % ;<<Ρ+ % 0 %# ( 0 # 0( + % = ΣΠ+ % 0,# >+ % 0. & %# (. 0 ΦΠ=ΖΓ 7 7 ## % 1 % % Ι ΦΤ ΖΓ 0 0 %# Χ # +! + 0 % # %, # 5 Β 0 # + % ) # : + % # 0 # 0 0 % # %, 5 + % % 0 + >+ =;λ % % % % ( # Φ2 8Γ 0 0 % # 0 + # 0 # % % 0 # 0 # 0 %# 8# # + ) Φ ) Γ 0 + # % % Η + 1 # % 0!0! Η ) % % 0 / 0 & %
79 ( Ι5 0, = ΘΠΕ Φ%?;<<ΡΓ %# # Ι + / Θ+Ε;Ζ # & + =Θ+ΕΡΖ # + Ρ;+ ΡΖ % +ΡΤΖ % % %# 0 0 % ΣΘ< # ) ) ) % ) ) 0 # + % + %# 1 + % 0 # % # % % % % ) 1 % 0 0 % ΘΕ ( % % Χ Σ ( + 0 # ΠΤΖ ( %# 0 ( 0 0 % # / % / # 1+ # 0 # 0 # / # % # 0 # ) / # % % % / 1 % 13 Φ 8 Γ % # 0 0 Φ %, Γ+ ( + %& # # # + # % %# + %# + 0 ) # Κ 0 % ) 1 ( 0 0 / Η 0 <<<=+ =Τ<<=+ Ξ =Σ<<= Σ<<<+ # % / + % # 0 # 0 # 0 7 Χ % 0 %# % %# # Γ # = 7 # # % Η 0 > # ) % # ) % 0 % Φ 0 ) 0 0 > ΓΑ Γ # ; # (?5 + / 0 > # ) % + 8 ),) # % % 0 0 8# 0 ) # % 1 Ο Α 0Γ # Θ 7? ) % # 0 + Χ ) % % > 0 : 0 Χ ) + 1 % 0 % 0 # ) % 0 Γ # Τ 7 # # Χ % % %# 0 # ) Η & # &0( ) 0 % + 0 % 0 + > + 2 # 0 +
80 % + % % 0 Η 0 % 0 % = Ε< % %# % %# ( %# # 0 % + 0 # 0, 5 8 % % ) 0 % ;<<Ρ % ) # # ) ) # ) Η # # # %# 0 % # # ( % + 0 # 0 % ( + 0 ) # 0 0 % 0 # ) ) % %# ) 0 % 1 # ( % ( %# 0 %# # ΣΡ< %# =Τ< # ( 0 0 # # 8 0 % # Η + 0 %# % %+ 0 Χ 0 %# : / % 0 0 %# ) 0( ) # # % % # 0 0 ) 0 / ( # % 0 # & Κ 0 % 0 0 Η ) # 0 % # + %# # % Χ % % 80 : %# # > 0 ) # / Η ) 0 ( 0 % #2 0 # 0 Χ % 0 %# % + (> % Θ< + % 0 % + / % # 0 + / 0 %# # / # % 0 & Χ ) ( % + % % ) % % 0 % ;<<Θ % 0 0 % 5 % ;<<Π %# % % % %# % %# % % # 0 %# ( % ) 0 0 % > 1 # 0 % + / % 9. 0 > % # + / #
81 0 # # 0 %# % 0 0 % + / > Χ # / 0 % + ) 0 ;<<Ρ+ % / 0 % %# 0 # + 0 % = ΠΘ+ ) Ι ;<<Τ+ # 8 0 ) # 5 0 % %# % )> > + 0 %# 8# > # % ) # 0 % # >) # # % # ) % % % # Η 0 % %# + ) + %# Η 8# Η # ) % % % # ) ) # ( 0 % 0 %# # =< Π; %# + / # ;;Ζ % 0 + / ;<Π %# % : ) 0 % 7 # ) + ;<Π : ) 0 % 7 Ι, 0 + Θ=; : ) 0 % 7 + <; : ) 0 % 7 /,% 0! 1 + Θ;; : ) 0 % 7 Β % 0 1 Ε + 0 % + #, 0 1 / ) % # + 0 ( % + ) ) % ) # Κ 0 # # 0 0 % 0 0 # 0 % 0 % # # 0 Χ % 0 + / % 5 ;<<= # 0 # 0 % > 0 % % Η % 0 %# ) + 0 ) % # ) + % 0 % % %
! #! % # % + ( (.! / 0 + ( (. & (&(&)) +,
! #! %! # % & (&(&)) +, + ( (.! / 0 + ( (. ! # % & % ( % ) +,% +. & / 0 1% 2 % 3 3 %4 5 6 0 # 71 % 0 1% 8% 9 : ;% 5 < =./,;/;% % 8% 9 /,%%1 % 5 % 8% 9 > >. & 3.,% + % + % % 8% 9!?!. & 3 2 6.,% + % % 6>
ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΙΙ
University of Athens Pedagogical Department P.Ε. Science, Technology and Environment Section / Laboratory 13a Navarinou str, Athens, GR-10680 Πανεπιστήμιο Αθηνών Παιδαγωγικό Τμήμα Δ.Ε. Τομέας / Εργαστήριο
) (+ 89 / >9691 /) 01)> 59 )2 >9691 /) (=12) (=12) 2 1< /. )1,9 Ε 1(Χ(,)2 /,.96 Β ) 2 8=,. Ι
! # % & & # () + (,.)/ 01)0)2,34 2 # ) (.,5)2678,()2 9: 695 1/9/ # ) /,3;) ( 22,(,. # 9=.)6)8,9 ).19/,3;) )., 8? (,9 # =,596? (,92678,(92 # % & % 6
) 0 ) 2 & 2 & 0 + 6! ) & & & & & ), Γ , Γ 8 (?. Κ Ε 7 ) ) Μ & 7 Ν & & 0 7 & & Γ 7 & & 7 & Ν 2 & Γ Γ ( & & ) Η ++. Ε Ο 9 8 ) 8& & ) & Ε
#! % & ( + ),./! +./+., ( ( 1 #23 + + ), 1 (453.+ 6.+ 6, 7 1 89 3.! :.! :, 1 (453.. / 2 ; ? Α 7 ; Β / / 4 > (? / / ) 8 Χ :/. ++.. +. : 6 : ) )4 ) ) ( 4 )Φ 7 % 6 : : +.. ++. ) & & & & ), Γ, Γ 8 (?.
!! % 4 4 4 4 %,!,! %
! %! & () +)!,!. / % %! 0 1!!! 2!! %!! %!! % %!. 3!!!!!! 4 4 4 4 % & 5) /!! % 6!! 7!! 8 % 8! %.! & 9)!! 7,!,! %. 6! !! %!.!! 6!! 6 :! %!! ;!!! %!!! %! %!!!! 0< 1.!!!?
Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ
Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ H π ι κ ρ ή α λ ή θ ε ι α ε ί ν α ι ό τ ι κ α ι σ τ ο π α ρ ε λ θ ό ν κ α ι σ τ ο π α ρ ό ν κ α ι σ τ ο μ έ λ λ ο ν π ο λ ύ λ ί γ ο ι α ν α κ ά λ υ ψ α ν, α ν α
ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ
ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ 09.00 -.00 5 ZE MI WA 0 0 0 9 0,95 9 ΑΓ ΓΕ ΠΑ 0 0 0 0 0 0 95 ΑΔ ΡΟ ΙΩ 0 0 0 0 0 0 97 ΑΙ ΚΩ ΠΑ 0 0 0 0 0 0 5 507 ΑΛ ΕΥ ΤΖ 0 0 0 0 0 0 6 99 ΑΝ ΟΡ ΚΩ 7 5 0 0 0,65 7 95 ΑΝ ΙΩ ΟΡ 9 9 9 6
! # % &! () +,./ % 0 1 % % % 4 5 / 6##7,+ 84,8, 0 %,, 9 :,9,
! # &! () +,./ 0 1 2 3 3 4 5 / 6##7,+ 84,8, 0,, 9 :,9, ; ! # # & (#) #+#+, #,# +./, /,+0 ++,#1./ 2 3(4,#,#1 + (5+ + /,# 61(#)(! # & () +#,)#. /& #()012#3 42 5,6 7 89:+ 8) ;. ) 7? ) 4# = 8 Α#2 278&
! # % &! ( )! % +,.! / 0 1 )2 3
! !! # % &! ( )! % +,.! / 0 1 )2 3 ) 4 5! 5 ) 6 2 2 ) 2 3 #! 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 83 % ) 1
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
ΟΡΙΣΙΚΟΝΠΙΝ Κ ΝΚ Σ Σ ΞΗΝΤΠΟΦΗΦΙΧΝΝ ΚΠ Ι ΤΣΧΝΝΣΗΝ8βςΝΦ ΗΝΤΛΟΠΟΙΗΗΝΣΧΝΝΠ Ν ΡΜ ΙΟΝΝβ,ΝΣΟΝΠΛ ΙΙΟΝΣΗΝΠΡΟΚΛΗΗΝΜ Ν Ρ.ΝΠΡΧΣ.μΝΦ4Ν-Νβλθ7Ν/Ν0θ-0β-β01η
ΟΡΙΣΙΚΟΝΠΙΝ Κ ΝΚ Σ Σ ΞΗΝΤΠΟΦΗΦΙΧΝΝ ΚΠ Ι ΤΣΧΝΝΣΗΝ8βςΝΦ ΗΝΤΛΟΠΟΙΗΗΝΣΧΝΝΠ Ν ΡΜ ΙΟΝΝβ,ΝΣΟΝΠΛ ΙΙΟΝΣΗΝΠΡΟΚΛΗΗΝΜ Ν Ρ.ΝΠΡΧΣ.μΝΦ4Ν-Νβλθ7Ν/Ν0θ-0β-β01η ΠΡΟΟΥΗ: ο Π 4έγέι Φ α α π α α οπο αφ ο ο απ υπο φ ου πα υ ου
! # ## %% & % (() ((+
!! #! #!% ## %% & % (() ((+ ! # & ( ) +,./,0 ! # % & ( ) % ( # +,,,. /! ( 0) 0 # 0 1,,2,. 3, 00 4 # + 5 6 7. 1, 00 + 5 6 3 7 )7 8 7 7 0,, 7 )7 8 7 )7 8 7 0 + 7 )7 8 0 (( 7 7 )7 8 :5 1, # 7 )7 8 + 70
! % & % & ( ) +,+ 1 + 2 & %!4 % / % 5
! #! % & % &( ) +,+.+)! / &+! / 0 ) &+ 12+! )+& &/. 3 %&)+&2+! 1 +2&%!4%/ %5 (!% 67,+.! %+,8+% 5 & +% #&)) +++&9+% :;&+! & +)) +< %(+%%=)) +%> 1 / 73? % & 10+&(/ 5? 0%)&%& % 7%%&(% (+% 0 (+% + %+72% 0
ΔΙΑΣΥΝΔΕΔΕΜΕΝΑ Φ/Β ΣΥΣΤΗΜΑΤΑ
ΔΙΑΣΥΝΔΕΔΕΜΕΝΑ Φ/Β ΣΥΣΤΗΜΑΤΑ 1. Sunvalue technologies Βριλήσσια Αττικής 11,88 kwp 17/07/08 2008 2. Κλαουδάτος Ενεργειακή ΑΕ Μυρίκη1 99,9 kwp 17/06/09 2009 3. Κλαουδάτος Ενεργειακή ΑΕ Μυρίκη2 20 kwp 09/09/09
! # %& & ( )# ( % )# & (( +,. % % & / ) % 0112
! # %& & ( )# ( % )# & (( +,. % % & / ) % 0112 ! # %& & ( )# ( % )# & (( +,. % % & / ) % 0112 ! # % & & ( # ) ( # # # # ( # +,. + / + 0 1 2 3 # 4 5 + 6 1 % +. 4 / 7 +4/ # # 8 6 8 868. 9 : 3 + 3 2 # # %
2 (4! ((2 (5 /! / Β ;! + %ΧΑ + ((5 % # &
!! # % & # () %# + (, # &,. /01 2 23 () 0 &. 04 3 23 (5 6787%.9 : ; 3!.&6< # (5 2!.& 6 < # ( )!.&+ < # 0= 1 # (= 2 23 0( >? / #.Α( 2= 0( 4 /
ΕΡΓΑΖΟΜΕΝΟΙ ΜΕΤΑΛΛΕΙΩΝ, ΛΙΓΝΙΤΩΡΥΧΕΙΩΝ & ΟΡΥΧΕΙΩΝ ΟΛΗΣ ΤΗΣ ΧΩΡΑΣ
ΚΑΤΗΓΟΡΙΑ 1. (Βλέπε περιγραφή της κατηγορίας στο κείµενο της Σ.Σ.Ε.) 0-3 1.060,99 0,00 106,10 1.060,99 1.167,09 180,37 127,32 3-6 1.060,99 53,05 106,10 1.114,04 1.220,14 180,37 127,32 6-9 1.060,99 106,10
! # % &#% ( ) +, + + % %. +, + + / 0 % 1 # 1 +
!! # % &#% ( ) +, + + % %. +, + + / 0 % 1 # 1 + 2 ( 1 3 4 3 + 3 ) ( & + % + + 3 5675+ 859 + +! & # % +, + + % %., + + / 0 7+ ) 5+ 8+ % :+ % 9+ %; (
Θ+!& ;/7!127# 7 % :!+9. + %#56 /+.!/;65+! 3# 76. +!+ % 2&/ :2!,Γ 0 :9#+ #2:.2 #+Ι 7#+.&/ #2:.2 / /&7 + < & /!! Ω 6. Α./& /&7 + 622#. 6!
! # %!! #!#%& ()! +,.! + /!#012!!# )3 # #4 +!#567 8%+#%/!,917#,.! + 9: %# ;:/%&. + # 9/ = 2>3/!#012!!# )3 #? +.:;/7/&7 + Α./&Β# 7. +;# 2/># 7 ΧΧ67< %#+ΧΧ #+.#17/+/ #
6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.
6< 7 4) ==4>)? ) >) )Α< = > 6< 7 )= )6 >) 7 7 ) ) ) ; + ; # % & () 4 5 6 & 7 8 9 & :,% 3+ ;;7 8 )+, (! # % & % ( )! +, % & &. /0 121, 3 &./012 34,51 65 57.8,57 9,(% #85% :;
Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου
18/05/2019 Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου / Ιερές Μονές Η μο νή του Με γά λου Με τε ώ ρου δι α μόρ φω σε μί α σει ρά α πό πε ρι κα λείς μου σεια κούς χώ ρους, για την α
Livro Eletrônico. Aula 00. Português p/ MAPA (nível superior) Professor: Fernando Pestana DEMO
Livro Eletrônico Aula 00 Português p/ MAPA (nível superior) Professor: Fernando Pestana ! # % & # ( ) % +, #,...!/!. #0 1 234 567! 8!!! 99999999!!! : #! 5 ;! < ; =! #! >& %!!!?! % Α # & Β : >&! < # ;!!!!
ε Ξ Ξ Ξ τε ξ Υ Ξ ΕΤ ξ ΞΞ ΞΓ ξξ Ξ Η ΞΞξ Ξ Τ ξ Φ Φ Εβ ε Γ ι ε ι Ψ λ Ρ ε η Ξ Τ Τ π ψ Γ ι ι ε τ τ μ Ι μ κ τ μ Ξ ηψ ιφ γ ιι Φ Φ ξθ ρ ι Φι ι γ κ τ ετ ε φ τ
ξ Υ ΕΤ ξ Γ ξ Η ξ Τ ξ Φ Φ Εβ Γ Ψ λ Ρ Τ Τ π ψ Γ μ Ι μ κ μ ψ φ Φ Φ ξθ ρ Φ κ φ ζ Ρ ξ Γ α ξ ζ π Γ μ Ι ξ Ι Ψ ξ ΤΗ β α Τ ξ ζ ξ κ Τ Φ θ Ψ Η Η μξ Τ ωφ ψ φ ζ π ξ ζ π ζ κ μ κ Φ μ ψ λ λ ψ μ ζ Υ ξ Φ Φ ΦΦ ω ξ Φ Φ ξ
2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5
3 Μ ή ν υ μ α Π ρ ό ε δ ρ ο υ Δ ι ο ι κ η τ ι κ ο ύ Σ υ μ β ο υ λ ί ο υ 4 Μ ή ν υ μ α Γ ε ν ι κ ο ύ Δ ι ε υ θ υ ν τ ή 5 Ό ρ α μ α κ α ι Σ τ ρ α τ η γ ι κ ή 6 Ε κ π ρ ο σ ώ π η σ η κ α ι Σ υ ν ε ρ γ α σ
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ Κατάρτιση, πιστοποίηση και συμβουλευτική με στόχο την ενδυνάμωση των δεξιοτήτων άνεργων νέων 18-24 ετών σε ειδικότητες του
ΦΛ 1 ηυτζ ετφθ Rυ Μ ϖ : πφ ι υ ϖ. υθ Rυ Μ ΦΗ πφ υ ΦΝ ϖ : 1. Τ Τ Φ ΤβΦ± υψ±ψ± Ν χ ϖ. 3. Τ Τ πνϖ ς Φ ΕυΓ Γ. ΔΦΤ Rυ Λ πφ ± νϕχ ϖ.
NOTES NOTES πη ϖ ΦΦΗ υ θ Ν ± 000,52 R πrυ Τ ) υτ RυΦΤ Φ Ψ Κ( 5 RρΦ ς ΔΛ Τ Τ 5 RρΦ ς πρ Τ 01 RρΦ ς υτ η ) Ξυϖ Τ ( 1 Rρ 9 π Μ ΤΦ ρ βϖr 000,02 R π Μ υφrϖ 000,02 R ΦΗ υ Τ ι 8 RρΦ ς πφ ΦΤ Τ± ΦΛ1: π "ΔΦΤ ϖ "
8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7
! # % & ( # ) ( +,,. # ( # / 0 1 2 4 5! 6 7 8 9 9 8 : ; 5 ? Α Β Χ 2Δ Β Β Φ Γ Β Η Ι? ϑ = Α? Χ Χ Ι? ϑ Β Χ Κ Χ 2 Λ Κ >? Λ Μ Λ Χ Φ Κ?Χ Φ 5+Χ Α2?2= 2 Β Η Ν Γ > ϑβ Ο?Β Β Φ Γ Π Λ > Κ? Λ Α? Χ?ΠΛ
JEAN-CHARLES BLATZ 02XD34455 01RE52755
ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096
οονιοοοιοοξ :ιοι ` ιι>ριιχιοι ι
Β! 0πρ Φ % Γ Α φ! 888 Α ΣΩΤ ; : Τ Υ : Σ! 8 % π? ) π Τ #Υ 8 :πα6 Θ $%Φ? Α πβ ΑΦΑΣΣΥ ρ Σ : Α: ρρ ρ ; π 5 8σ: % ; : ρ ρ ( θ; σ π Βθ6 ρ:0 π; 6:Ζ 880 66 π ρρ% :;ρ Θ% : Ω ρ ρσ πρω80!βφ0% ππ : σ : 06ρθ 265 :
! #! # % &# # #!&! #!& #! # # % &# # ( ) +,.. / 0 / 1,&#
! #! # % &# # #!&! #!& #! # # % &# # ( ) +,.. / 0 / 1,&# 0 223334 #&4+ #4 12 &# 2!.. 2 ! #! # % &# # # &!!,! # #5#!&!! #!,+#,%! # #! #! &#! #! 223334 #&4+ #4 12 &# 2!.. 2 #,&% 3# +# + &% %! #!& # 4 6 #
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::
# %&! () +,).)/01! # % & # 29! 567 &8 7 2(,34 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ΓΗΙϑΚΛΜ9 ΑΒΧ 6&8 5 Ε! Χ&! &5Φ2(? /; 2)ΝΟ
Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ
Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 1 9 η Ο κ τ ω β ρ ί ο υ 1 9 9 6 Π ρ ό λ ο γ ο ς Τ ο π ρ ώ τ ο α ι ρ ε
ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Χαλάνδρι, 6 Σεπτεμβρίου 2016 ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΧΑΛΑΝΔΡΙΟΥ ΔΙΕΥΘΥΝΣΗ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ
ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Χαλάνδρι, 6 Σεπτεμβρίου 2016 ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΧΑΛΑΝΔΡΙΟΥ ΔΙΕΥΘΥΝΣΗ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ Αρμόδια : Σούτη Φωτεινή Δ/νση : Οιδίποδος 8 & Πρωτέως 20, Πάτημα Χαλανδρίου Ταχ.
< ; = >! # %& # ( )%!) +, & % &#. &/ %) 012& #1%)%& 30%1% &0%&# 4) ) 5.&0 + %.6.!7 %& #4&81)71#.) &9 &:&#) % 0#!91% ;
! # %& #( )%!) +,& % &#. &/%) 012& #1%)%& 30%1% &0%) ) 5.&0 + %.6.!7 %&81)71#.)&9 &:&#)% 0#!91% ; 0 ( ):1))4 &#&0.)%))! # %& #( )%!) +, & % &#. &/ %) 012& #1%)%& 30%1% &0%&# 4) ) 5.&0 + %.6.!7
,. # # & # /# # & # /# & & 0 # /# # & # 1 ) 2# ) 3% ) 4 5 % #6 5 78 9 4 6 & 3 C 449-2008 ) +:;7 <5;97 ;79<=;8 ) +:;7> = <;<5;97 ;79<=;8 ) 4 6
! # % &! (# ) % +,. # # & # /# # & # /# & & 0 # /# # & # 1 ) 2# ) 3%) 45 % #6 5 78 9 4 6 &3 C 449-2008 )+:;7
# % # & () +,, + + %../ & 0 )
! # % # & () +,, + + %../ & 0 ) 1 # %& () ()+(, ).)/0 + 1,0 1)2( +, 22)+( 034 2( +(&),)5)1 43)+( 6.),0+/ +,%.0(0+/ 7011 8 9.)4.(6.(&)::; () 6?,>2 (0 + Α+05). 0(Β 6Χ +, + >10 Ε+)11 Α+05).
Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes
Aula 00 Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes ! # # % & () ++,. /0,1 234,5 0 6 +7+,/ /894,5 8 5 8,045, :4 50,8,59;/0 8,04 + 8 097,4 8,0?5 4 59 8,045, :4 50,8,
των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09
των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ
ΚΕΝΤΡΟ ΜΕΡΙΜΝΑΣ ΚΑΙ ΑΛΛΗΛΕΓΓΥΗΣ ΔΗΜΟΥ ΚΟΜΟΤΗΝΗΣ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΓΓΡΑΦΩΝ ΒΡΕΦΟΝΗΠΙΑΚΩΝ ΣΤΑΘΜΩΝ Α ΒΡΕΦΟΝΗΠΙΑΚΟΣ ΒΡΕΦΙΚΟ ΤΜΗΜΑ
ΚΕΝΤΡΟ ΜΕΡΙΜΝΑΣ ΚΑΙ ΑΛΛΗΛΕΓΓΥΗΣ ΔΗΜΟΥ ΚΟΜΟΤΗΝΗΣ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΓΓΡΑΦΩΝ ΒΡΕΦΟΝΗΠΙΑΚΩΝ ΣΤΑΘΜΩΝ Α ΒΡΕΦΟΝΗΠΙΑΚΟΣ ΒΡΕΦΙΚΟ ΤΜΗΜΑ Γ. ΖΑΡΙΦΗ 1 ΤΗΛ:25310-84656 ΕΣΠΑ 1 Γ. Γ. Γ 215,41 2 Ξ. Ζ. Χ 173,83 3 Μ. Δ. Κ 155,34
ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο
Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο
# % & % ( ) + ),, .//0
! # % & % ( ) + ),,.//0 & 1 2 1 (, %, (, %, 3 4 ( 5 ( 6 (! ) 1 % % 1 (, %, 3 5.7, 4.//0 2 3 (, %, 6 8, ) %, 6 +!8!! 6 6, 9 ) 6 & : 6 + # ; 8 , %? 6 6 77Α, 5 9 Β
# %& ( ) % #+&#%,#. + # ( % # /001
! # %& ( ) % #+&#%,#. + # ( % # /001 ! # % &! ( ) + +,%,.. + / 0 % 1 / % + + 2 + 3, + 4 & + 5 5/ % / 6 / ( 7899:;8998 899 78999=5 / %) / 5 4 4 / 5 /, + / / 2 /, % +, / 5 +? 5 + 5 + 5 4 5 7 Α = / %,
!! # % & % % () % +,# % ) ) %.) /01/.) ) 2 3 % 4 % 5# 6 3 3
!! # % & % % () % +,# % ) ) %.) /01/.) ) 2 3 % 4 % 5# 6 3 3 %,.7 6 8 74 %. ) ) % 4 4.8 % 7. () 9 %. 3 :. % 4 6 ; ) ; %.% 8 < % )#= %.) #!! )#= > #.% < + 4. # 4. 7?5 %9 3 3 %.7 4 # 3 % 4 % 5# =6 3 3 < ;
Ο Απ λλων αλαμαρι αν ρ εται στην εθνικ κατηυ ρ α γυναικι ν
Ω α μ Ξ Π ΦΑ ΡΚΩ Ν Ξ Π Γ Τ κνκ Γ μ Ν ψ ο Ω Ω κ ρ Θ Κ ΓΩ Γ Μ ΡΥ χ κ φ Θ Γ Α Ν Ω Γ Π Βθ Ω Π Ν Ω Ν Κ γρ Π Ρ Ρ γ γ Γ Ρ Π Π Φ ΠΡ Φ Γ ΠΕΡ ν ν α Ε μο αν ρ ετα σ ν Γ εθνκ κατγορ α νρ ν ΔΡΩ ΡΔ Τ Μ Γ ΥΡ Χ Ρ Τθ Ρ
Κατηγορία χειρουργικής. Χρονική κατάταξη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 18-10-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Κωδικός Τμήμα Ημέρα & ώρα θεράποντα Χαρακτηρι σμός σημειώματ Κατηγορία
! # % & ( % # ) # + +, / / + % ) +
! # ! # % & ( % # ) # + +,,. / / + % ) + 0 1223 444444444444444444444444444 ( 6 3 99291 5 2?9=3 322 5 2?9=3 333 5 4 Α % 5 +++ 5 7 8 : ; 31 22 /0 ! # % & ( # )) +, +,+. / / 4 0 1 2 3 2 + ( 5 3 4,.
! # %# %# & &! ( # # )
! # %# %# & &! ( # #) +, ./ / / 0(12 / /301/ / 01 1 4 5./ ) 4 4)/ 5.06 137897:; 3 3 0 / 0 54 0 4 04 / 5( /( 5 / 9+ & & 8 # 4? # #Α +, # 0? & &! ( #?) Β Χ # # 4 Ε # +# & 6. # Φ# & 60 #=#>! #
! # %&& () ( ) +,! # ) ) &...
! # %&& () ( ) +,! # ) ) &... ! # %& (! ) /01 2#,,( 0 3 1 456 7!! +, # (! () 83, 9: 1, ;;1 ? 2 + /. )).Α.7% %&&!!!.)# )& Β&Χ:Χ& 1& ). ! +!)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))>
ΠΡΑΚΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑΤΙΚΗΣ ΕΓΓΡΑΦΗΣ ΒΡΕΦΩΝ-ΝΗΠΙΩΝ ΚΑΙ ΕΞΕΤΑΣΗΣ ΕΝΣΤΑΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Χαλάνδρι, 0 Σεπτεμβρίου 06 ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΧΑΛΑΝΔΡΙΟΥ ΔΙΕΥΘΥΝΣΗ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ Αρμόδια : Σούτη Φωτεινή Δ/νση : Οιδίποδος 8 & Πρωτέως 0, Πάτημα Χαλανδρίου Ταχ. Κωδ. : 8 Τηλέφωνα
ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε
ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε. 2 0 1 9 Κλ ά δο ς θερ µ ι κώ ν τη λ εκα τ ευθυ νό µ εν ω ν α υ το κι νή τω ν. Υπ εύ θυνο ς Κ λ ά δ ο υ Ζωτιαδης Κωστας bo d @ e l - m e. gr
! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4
! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8
! # % ) + +, #./ )
! # % & ( ) + +, #./0. 1 + 2 + 2 5 2 3 40. ) 6 1+ + + 7 ! # % (% ) + # #, %. / 0 # 1 2, 3 4 5 6 3 7 00 5 8, 6 8 3 9 0: 5.;, 6 #! #, 8, 3 04 5 6 < ; = >!? >, 3? 5! # % & ( Α! 1 6, 3 7 2 Α0 : 6 Β Χ Α :,
Κ Α Τ Α Σ Τ Α Τ Ι Κ Ο
Κ Α Τ Α Σ Τ Α Τ Ι Κ Ο Κ Ε Φ Α Λ Α Ι Α Α. Σ Υ Σ Τ Α Σ Η - Ε Π Ω Ν Υ Μ Ι Α - Ε Δ Ρ Α - Δ Ι Α Ρ Κ Ε Ι Α Β. Μ Ε Λ Η Τ Ο Υ Σ Υ Ν Δ Ε Σ Μ Ο Υ Γ. Ο Ρ Γ Α Ν Α Δ Ι Ο Ι Κ Η Σ Η Σ Δ. Π Ο Ρ Ο Ι Τ Ο Υ Σ Υ Ν Δ Ε Σ Μ
BHMA 1+ ΛΥΣΕΙΣ. Υλικό / Κόψε ένα κοµµάτι που δέχεται διπλή επίθεση: Β
BHMA 1+ ΛΥΣΕΙΣ Υλικό / Κόψε ένα κοµµάτι που δέχεται διπλή επίθεση: A 1) 1. Ιεxδ5 2) 1. Ιδ5xζ6 (1. Αβ2xζ6 γ6xδ5) 1.... η7xζ6 2. Αβ2xζ6 3) 1. Βζ3xβ7 4) 1. Ιε4xδ6 (1. Πδ1xδ6 ζ5xε4) 5) 1. Ιε4xζ6+ (1. Αβ2xζ6
! # # % & () # + (,. # # %%% # & ( % &
!! # # % & () # + (,. # # %%% # & ( % & !! # %& ( ) % + +,../ 0 ! # 10230../4 & 5 / 6 6 00 ( 00 0 7 8 00 0 0 + 9! + 8 00 0 +! ( 8 0 0 :! ; 0< + + 9 0= ((!. 0 6 >!. 0 0? 6 >. 0 Α. 0 : + 6 > 0 0 : 0 + 0
+, + #. / & ##! 1! 1! & #, / !!! #%3 1! 89&3 %! 1 69! 1!! 0!!! ()! )! ):0 3 & #, /1 2 1! ):0 < = +, + >
! # % & ## ( ) +, + #. / & ##!! )!! (! 0!! 1! 1! 2 1 3 & #, / 2 4 5 1! )!!! ) 1 1! 1 1!!! 46 7 1 #%3 1! 89&3 %! 1 69! 1!! 0!!! ()! )!! 1 ):0 3 & #, /1 2 1! 1 46 1 1 ):0! 8; < < = +, + > 6 #. & ## 6 >!
κατάταξη ασθενούς εξέτασης ιατρού ιατρού πράξης περιστατικού χειρουργείου ού χειρουργείου αξης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 13-9-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Νέα χρονική κατάταξη Τμήμα Χαρακτηρισμ ός Κατηγορία Χρονική Προτεινόμενη
«Π ς το οιητι ά, ς το ια ιστο ία:
ΜΑ: «Πα ή ιος Μαθη ι ός ια ω ισ ός η ιο ι ής αφής ης ι ής α α ίας σό η ας ω Φύ ω...φ. αι ο ο ίο Παι ίας, Έ ας αι ησ ά ω Π.Π.. «Π ς το οιητι ά, ς το ια ιστο ία: έχ ι φύ ο η α ιά;» Η ι ή α α ία σό ας ύ....
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 3ο (Ζ, Θ, Η, Κ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 3ο (Ζ, Θ, Η, Κ,) ΤΓΓΡΑΦΔΙ
ι λ γεται τετραγωνικη ρ ζα εν Θετικ αριθμ α και πι υμβ λ ζεται αυτη και τραιτεζι με ΔΓ Δ ην πλευρ ΔΓ
ι λ γεται τετραγωνικ ρ ζα εν Θετικ αριθμ α και πι υμβ λ ζεται αυτ Ποι αριθμ νομ ζεται ρρτ Πι ρ ζ νται ι πραγματικ αριθμ Θ ια ι λ γεται μ τ ν μια ξε α γων α ω ε ρθ γων υτριγι ν υ ι Μγεται εφαπτ μι μια οξε
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 7ο (Σ, Τ, Φ, Υ, Φ,Φ Χ, Πά) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 7ο (Σ, Τ,
Η λίστα τω ν υποψη φίω ν στα ψη φοδέλτια τη ς Ενω ση ς Κ εντρώω ν:
Με πρόσωπα από το Ελληνικό Κοινωνικό Κίνημα και τον Θεσμό (πολιτικό κόμμα), κατεβαίνει στις εκλογές της 25ης Ιανουαρίου η Ένωση Κεντρώων του Βασίλη Λεβέντη. Η λίστα τω ν υποψη φίω ν στα ψη φοδέλτια τη
Βήµα 1 - Λύσεις ασκήσεων
Βήµα 1 - Λύσεις ασκήσεων Σκακιέρα / Ονόµασε τα τετράγωνα: Α 1) ζ3 α8 γ6 2) η8 ε7 γ3 3) η4 δ5 γ2 4) γ5 θ5 β2 5) ε3 δ6 β7 6) δ4 ζ5 γ2 7) ζ6 β1 δ5 8) δ8 η4 ε6 9) η5 β4 γ6 10) ζ4 ε6 β7 11) γ3 θ5 ε2 12) ζ7
ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 30-8-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Κωδικός ασθενούς 230719-256-ΚΚ 260619-446-ΒΓ 260619-013-ΒΖ 240519-499-ΟΒ
Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ
ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα
1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28
/ 12 # % &! (! & )! (+,.). / 0
/ 12! # % &! (! & )! (+,.). / 0 ! # % & % ( ) ( % + (, % #. # #. / 0 # 1, % # ) 2,# 3 3 % # # 0/4# (# 0, # % 3 5 6 ( 5 7 % 7 % 7 % # % 7 % 7 7 7 % 8 9 : # 7 # ; 7 % % 7 # 7 # % < 7 7 7 %. # 8 # 7 # % )
#4 5 ) 7 9!! : 3 ;# #! 3 % )# : #+ #! 4!, ϑ :, + 3!! Χ, # ΚΛ Χ ; Ν : : + ) Χ : %! + Χ :,! + Χ, Ο 3,, + #! : ) 2! : + ( 4! Θ!! 4 ) /#! %!
! ## %& !! # % (! )! +,, / 0 %,2!, # 3 % # #4 5 ) 7 9!! : 3 ;# #! 3 % ;# # )!, =>=?!# +! ) %, #, + Β ; Χ 4 Ε >ΓΗΙ =>?Η! )# : #+ #! 4!, ϑ :, + 3!! Χ, # ΚΛ Χ ; Ν : : + 4 %, % #, Ε # ) Χ :, #, %#! 4 # :+
ΟΙΚΟΛΟΓΙΚΗΝ ΡΧΙΣ ΚΣΟΝΙΚΗ ΧΟΝ ΡΟ Ν ΗΜΗΣΡΙΟ Ν
ΟΙΚΟΛΟΓΙΚΗΝ ΡΧΙΣ ΚΣΟΝΙΚΗ ΠΣΤΧΙ ΚΗΝ ΡΓ Ι ΝΣΩΝ:Ν Ι ΟΤΝΜ Γ ΛΗΝΗΝ ΧΟΝ ΡΟ Ν ΗΜΗΣΡΙΟ Ν Λ ΜΠΡΟΤΝ Λ Ξ Ν ΡΟ Ι ΣΟΡΙΚΗΝ Ν ΡΟΜΗ Ν Ν Ω ΙΜ ΝΠΗΓ Ν Ν ΡΓ Ι ΚΟΠΟ,Ν ΣΟΧΟΙΝΚ ΙΝ ΡΧ Ν ΙΟΚΛΙΜ ΣΙΚΗ Ν ΡΧΙΣ ΚΣΟΝΙΚΗ Μ κθ σλκ δκεζδηα
!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,
!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,! 454 454 6 7 #! 89 : 3 ; &< 4 =>> ; &4 + ! #!!! % & ( ) ) + + ) 3 +, +. 0 1 2. # 0! 3 2 &!.. 4 3 5! 6., 7!.! 8 7 9 : 0 & 8 % &6 0 9 ( 6! ;
ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ
τ. Ε. I. Ν-λ ε λ λ λ ς : ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ ΕΙΣΗΓΗΤΗΣ; MIX. ΠΙΠΙΛΙΑΓΚΟΠΟΥΛΟΣ
51. υχν ς υ ν Ν Χ Γ. Α. Ηϖ ΦΧ ϕrϖπ ς ΤΘ Α Τ. Β. Ηϖ ΦΧ ϕrϖθ Τ Ν ΦΧ υ ±ϖν ΤΘ ϖτ ± ΤΧ ϖ νrπ ±υ Σ ΗΤ Ν Φ ν ΞΛ Φ Τ.
NOTES ϕϖ Μ ±ηκ ΦΗ Φ Δ υ Τ Φ Γ Φ ΧΓ ΞΤϑ Φ ϕi νυρφϖπ ς π νϖ Φ Φβρϖ Ψ ς ν.. υχν ς υ ν Ν Χ Γ ΤΧ Rυ Τ Φ ϖλ. ρ Δ Τ ϖ πτ Σ Τ ϖγ Γ Ν πrυφϑ υτ ϖγϒ Ν ΤΦΤ ϕυ ΕΨ Τ Χ ρφ Μ. υ Λ πφ ι υ υ ΦΓ ϖ ρυϖ πrυφϑ υτ ϖγ. Ψ ΦΓ R
Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς
9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1
εριφέρεια εσσαλίας αζδεϋμ πσζ δμ εαδ οδεδ ηοτμ Πλοβζάηα α εαδ πλοοπ δεϋμ»
Η Η Η Ο ΑΤ Α εριφέρει εσσλίς ΗΜ ΡΙ Αμ «Ο οηϋμ ημ τ λ ημ δμ Θ ζδεϋμ σζ δμ εδ οδεδ ηοτμ Πλοβζάη εδ λοο δεϋμ»,βγ βί1γ Η Η Η Ο ΑΤ Α εριφέρει εσσλίς «Κ φ ο Θ -Σ» η η ο ώ Πό ω Π ο ημ Γ ω Π ο, Πο ό Μηχή ό, MSc,
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 16ς (Φ, Χ, (ό)) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 16ς (Φ, Χ, (ό))
13a Navarinou str, Athens, GR e_site: Ναυαρίνου 13α, Αθήνα, e_site:
University of Athens Pedagogical Department P.Ε. Science, Technology and Environment Laboratory 13a Navarinou str, Athens, GR-10680 e_site: http://micro-kosmos.uoa.gr Director: Prof. George Kalkanis Πανεπιστήμιο
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 12ς (Π, (ίς- )) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 12ς (Π, (ίς- )) ΣΥΓΓΡΑΦΕΙΣ
ΑΔΑ: 6ΓΜΒ465ΦΘ3-8ΔΗ. α ούσι, 26/06/2015 Α / 26917/ ς. αθ ός Ασφα ίας: -----
INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.06.26 12:33:38 EEST Reason: Location: Athens ΑΔΑ: 6ΓΜΒ465ΦΘ3-8ΔΗ Α Α, Α Α Α Α Ω Ω Ω Α Α Α Α Α Α.. Α Α Α & Ω..
ΠΟΛήΥΝ ΙΟΝ. Μ ΚήΝΙ ΝΤΝ 15054505 Λ ΥΟΤ ΙΛ ΙΟ ΙΧ Φ ΓΛΤΚ ΡΙ Μ Υ ΝΙΚΧΝΝΠΛ ΡΟΦΟΡΙΚ ΝΣ..ΝΧΚ Λ ΨΝ
Κ δ. Υπο ηφ. 1ο Γ Λ ο Πτο αΐ ας(λ0%) Επώ υ ο Ό ο α Ό. Πατ ό Ό. Μητ ό Σ ο Επιτυ α Ίδ υ α 15054502 ΚΡΙΣΙ ΟΤ Ρ Ψ ΛΙ Μ Λ ΓΡΟΝΟΜΧΝΝΤΝΣΟΠΟΓΡ ΦΧΝΝΜ Υ ΝΙΚΧΝΝΧΘ ΛΟΝΙΚ Ψ ΠΘ 15054478 Λ Ξ Ν ΡΙ ΟΤ ΙΛΙΚ ΙΛ ΙΟ Θ Ν Ι
ΰεΪλ δα βζ ε λκηαΰθβ δεϊ ετηα α, α κπκέα ι εδθκτθ απσ ηέα φπ δθά πβΰά εαδ εδθκτθ αδ υγτΰλαηηα πλκμ σζ μ δμ εα υγτθ δμ.
1 Φ ΙΚΟ ΦΩ Σκ φπμ (σππμ Ϊζζπ κζσεζβλβ β βζ ε λκηΰθβ δεά ε δθκίκζέ) έθδ ΰεΪλ δ βζ ε λκηΰθβ δεϊ ετη, κπκέ ι εδθκτθ πσ ηέ φπ δθά πβΰά εδ εδθκτθ δ υγτΰληη πλκμ σζ μ δμ ε υγτθ δμ. Οδ υθάγ δμ φπ δθϋμ πβΰϋμ (π.ξ.
Κατηγορία χειρουργικής πράξης. Χρονική κατάταξη περιστατικού Β.18 ΠΕΡΙΟΧΗ ΑΝΩΤΕΡΟΥ ΠΕΠΤΙΚΟΥ Β.25 ΕΝΔΟΚΡΙΝΕΙΣ ΑΔΕΝΕΣ. (1) μέχρι 2 εβδομάδες 24/5/2019
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ.-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 24-5-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Κωδικός ασθενούς Ημέρα & ώρα εξέτασης Τμήμα θεράποντα ιατρού Χαρακτηρισ
των εργαζοµένων στα εργοστάσια και εργαστήρια Κοπής και Επεξεργασίας Μαρµάρων όλης της χώρας
των εργαζοµένων στα εργοστάσια και εργαστήρια Κοπής και Επεξεργασίας Μαρµάρων όλης της χώρας K63R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) TΩΩN EPΓAZOMENΩΩN ΣTA ΕΡ ΓO ΣΤΑ ΣΙΑ ΚΑΙ ΕΡ ΓΑ ΣΤΗ ΡΙΑ ΚO
Ε P. POINT. α ία (13/11/2008) SLIDE 1
Ε Ε Α Α Η Ε P. POINT ΕΔ : Εφ Θ φ. Ε φ Γ 25 Θ. Θ 2007-2013. Η φ φ φ ΒΕΗ (13/11/2008) SLIDE 1 φ. Η ΕΕ. SLIDE 2. φ 1 φ . Θ. Ε.Ε. -. -. SLIDE 4Ο5 φ Ε 2000/60 SLIDE 3 Η φ 2 SLIDE 6. SLIDE 7. & Θ φ. SLIDE 9-10.
των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10
των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 2 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΕ
των Oι κο δό µων συ νερ γεί ων O32R09
των Oι κο δό µων µο νί µων συ νερ γεί ων O32R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ OΙ ΚO Δ O ΜΩΩΝ ΜO ΝΙ ΜΩΩΝ ΣY ΝΕΡ ΓΕΙ ΩΩΝ ΒΙ O ΜΗ ΧΑ ΝΙ ΩΩΝ - ΒΙ O ΤΕ ΧΝΙ ΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ
ω, 28/02/ SYMV
Η Γ Γ ω, 28/02/2014 14SYMV001926033 2014-03-17 ΔΓ ΗΕ υα α Φ: 278.656,50 πα α π Δ Η Η ΓΗ Ω Ω Η Θ Η Η ΗΕ εis 372838 πα αα Δαα α πααε, υα α α υπα Έ-υπα α φα πυ. o αα α, 28/02/2014 α ααυ, α αφα απυα α. απυα
Κ ΤΠ ΠΑΣΡΑ. 4ο Γ Λ ΠΑΣΡΑ ΑΓΩΓΗ ΣΑ ΙΟ ΡΟΜΙΑ ESCAPE. χοζδεό έτος 2014-15
Κ ΤΠ ΠΑΣΡΑ 4 Γ Λ ΠΑΣΡΑ ΑΓΩΓΗ ΣΑ ΙΟ ΡΟΜΙΑ Ε π Κπ υ ό Π όγ ESCAPE ή γ ω ό υ 1 χζδεό έτ 2014-15 1 Σ : Σ Ά Χ ΛΙ ΝΚΟ Ν ΝΝ ΩΡΟΤΝΚΩΝ Σ ΝΣΙΝ ΓΚ Μ Ρ ΝΜ ΡΘ ΓΚΟΛΦΙΝΟΠΟΤΛΟΤΝΜ ΡΙ Θ Ο ΩΡΙ ΟΤΝΓ ΩΡΓΙ Κ Ρ ΓΙ ΝΝ ΝΚ ΛΛΟΠ
ήσ ς Creative Commons.
π ά π υ Μά ά Τ υ 2 Α ά Ν ύ Π Τεχ γ Επ ω Ά ι ς ό ι ι ό ι ό ήσ ς Creative Commons ήσης ό ι ι σ ά ι ς ι ι ι ό ι ό, ό ς ι ό ς, ό ι ι σ ά ύ ά ις ήσ ς, ά ι ήσ ς φέ ι ώς 2 η ό ηση ό ι ι ι ό ι όέ ι θ ίσ ι ύ έ
ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ
ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη
Λ θβγδ Λτστη 1 Ρνβηδσ οδθ κ Β θσνκ θηψψ ψηνµδ Ρθκ
ωσδθµ κ Ο θσηδρ Κδ χ Λ µ φδθ % Ρνκδ Αννϕθτµµδθ Ρνβη σ Φ µ θ κδ Ρ Νθηφηµ σνθ % Ρδθυηβδθρ Τµηνµδ χη Α µβγδ Ησ κη µδ Ρ ο Ρϖ ο Βντµσδθο θσξ Ρνβη σ Φ µ θ κδ Ρ Σ ακδ νε Βνµσδµσρ Ο φδ 0 Βτθθδµσ Οδθηνχ Χηρσθηατσηνµ
Ω Α Ο Ω - Α (2.000..-148.. Ο Ο Ω ΑΪ Α Ο Α Ο Α (148..-313.. Ο Ο Α Ο Α Ο Α (313-1430) Ο Ο Ο Ω Α Α Ο (1430-1912) Ω Α Ο (1912)
σ ι ή Α Ω (2.000..-148. Ο Ο Α έ ι / ισ ι έ Ο Ω - Α Ο ί ι Α.) Ω ΑΪ Α Ο Α Ο Α (148..-313.. Α Α Ο Ο Α Ο Ο Ο Ω Α Ω Α Ο Α Ο Α (313-1430) ΑΟ (1430-1912) Α Ο (1912) Α Ω Α Ο Ω - Α.. Ο Α Α...-148 ιί ή ι ί ώ ισ
POWER SERVICE ΥΠΗΡΕΣΙΑ ΣΥΝΤΗΡΗΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ. Power Service σε "τιμή πακέτου"!
Κ θ φί ω& ω ώ Α ί χ ηδ & π ω ηψ ύ ύ Έ χ φά ά δ Κ θ ω & ξ ω ά δ Δω ά άβ η ί χ ώ ζ ώ η Α ΥΠΗΡΕΣΙΑ ΣΥΝΤΗΡΗΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ Τηφω πωί η πίψη ί ηη χώ Κθ φίω & ωώ Αίχη δ & πωη ψύ ύ Έχ φά άδ Κθ ω & ξω άδ Δωά
1 3 0 ι οί 1 : : 0 Γνω ί ρ ο ζ τ ν ς α το ι Δ δ α ίκτυο: υ Δ ν τ α τ ό τ η ες κ ι α Ο έ φ η Ο ι ή : Δ ρ ς α Β β μ κ α ς ά,κ θ α η τ
Ηρί θ έ: ΡΟΓΡ ΙΙΤΥΟΟ - ΥΝΤΟΤΗΤ & ΓΙ 10:30 10:45 Χρί 10:45 11:00 Γρίζ ί: Οφέλ Ο λ: ρ Β β, θγ λρφρ Ξέρ φέλ ββ 1 2 Φ βρρί 2012 1 ρί ί 1 0:30 ρ 11:15 11:30 Ο έφβ ρ ρ Λ λ I nternet; λγ ί Ο λ: Χρφρ ργ, θγ λρφρ
,, &6 % )7) 8559
! # # %& () +,. / /0 1 2 0 3,,. 4 5. &6 % )7) 8559 ( 7(6, ( ( ( (6 & () ( ()()& : # %& ()( &+,) (../0%1.(& 2.& 3124&5,3 (6 7,8& 9)3,) (: ; 3 5). 413,)5& ?()%& 3),/ ; 8&;;)&.6> < )3,))(
ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 9-9-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Κωδικός ασθενούς 090719-804-ΜΔ 030719-847-ΠΧ 260619-821-ΣΔ 310719-824-ΤΕ
των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11
των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ ΦΡO ΝΤΙ ΣΤΗ ΡΙ ΩΩΝ ΞΕ ΝΩΩΝ ΓΛΩΩΣ ΣΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.
! # % #! # & (! )!! & # # &! # +,!& #. # # & / 0!& # / 12 2 # 3 # 2 ,!& 4556
! # % #! # & (! )!! & # # &! # +,!& #. # # & / 0!& # / 12 2 # 3 # 2,!& 4556 ! # % #! # & (! )!! & # # &! # +,!& #. # # & / 0!& # / 12 2 # 3 # 2,!& 4556 ! ! # % &! ( ) &! # + #, ). / # %# # 0!. 1) 1 /,
ΚΑΤΑΛΟΓΟΣ ΙΑΤΡΙΚΟΥ ΕΠΙΚΟΥΡΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΑΝΑ ΕΙΔΙΚΟΤΗΤΑ της 4ης Υγειονομικής Περιφέρειας Μακεδονίας και Θράκης
ΚΑΤΑΛΟΓΟΣ ΙΑΤΡΙΚΟΥ ΕΠΙΚΟΥΡΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΑΝΑ ΕΙΔΙΚΟΤΗΤΑ της 4ης Υγειονομικής Περιφέρειας Μακεδονίας και Θράκης Α/Α ΗΜΕΡΟΜΗΝΙΑ ΑΡ. ΕΠΙΛΟΓΗ ΦΟΡΕΑ ΓΙΑ ΕΠΙΛΟΓΗ ΦΟΡΕΑ ΓΙΑ ΚΤΗΣΗΣ ΕΞΕΙΔΙΚΕΥΣΗ/ΕΜΠΕΙΡΙ ΠΡΩΤ ΗΜΕΡ.
ΠΡΩΣ ΘΛΗΜ ΝSUPERLEAGUE ΟΠ Π UEFA CHAMPIONS LEAGUE *
ΑΰκλΪακθ αμ δ δ άλδκ δαλε έαμ κ φέζαγζκμ ια φαζέα δ βθ παλαεκζκτγβ β σζπθ πθ θ σμ Ϋ λαμ αΰυθπθ κ ΰάπ κ «Γ. Καλαρ εϊεβμ», κδ κπκέκδ αθϋλχκθ αδ κυζϊχδ κθ έεκ δ πϋθ (25). ΠΡΩΣ ΘΛΗΜ ΝSUPERLEAGUE ΟΠ Π UEFA
. / )!! )! +! ) + 4
!! # % & ( ) ) +!,. / )!! )! +! 0 1!+! 2 3. 4 ) + 4! 5! # 6!, / / +! + 7 % + +!! 8 9! : #!! 5!.! ; %! %!! 8:! 0 9 + 8 9 < 4 4 + ) + ;= > ) 5! +! < : + 5 +!! + 1! ; 2! +! + / #!!! + 5 + < + # = ;!+ 1 0