Crystal Structure Descriptions, 2 nd edition
|
|
- Τρίτωνος Παπαντωνίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 Crystal Structure Descriptions, 2 nd edition In this appendix, most of the crystal structure types introduced in the main text are formally described by means of their chemical formulas, StrukturBericht symbols, space groups, lattice parameters, special atom positions, etc. In addition, examples of actual compounds with these structures are given, along with their lattice parameters. All lattice parameters are stated in nm. Structure types are listed in the order in which they appear in the text, and are sequentially numbered. Most of the structural data in this appendix was extracted from the following sources: P. Villars, Pearson s Handbook Desk Edition, ASM International, Materials Park, OH (1997); R.W.G. Wyckoff, Crystal Structures, John Wiley, New York (1963); C.S. Hurlbut and C. Klein, Manual of Mineralogy, 9th Edition, John Wiley and Sons, New York (1977). When consulting the tables on the following pages, one must be aware of the fact that many compounds can have multiple crystal structures; it is always a good idea to consult the original sources listed above (and others) to verify that the correct structure is obtained. In particular, the examples of structures of a given structure type will often include metastable structures, or high temperature/high pressure phases; we refer the reader to the original sources for those details. Furthermore, atom coordinates provided in this appendix have been used with the sole purpose of creating structure visualizations; this means that sites with partial occupancy will show up in a structure drawing as fully occupied sites. The reader who wishes to compute x-ray powder patterns for any of these structures should consult the original citations to make sure that all site occupancies are properly accounted for. The compound names for intermetallics are listed in the same convention as in Pearson s lists, namely an alphabetical ranking of all the elements in the compound, except for the prototype chemical formulas, for which we follow the list by J. Lima de Faria (J. Lima de Faria, Structural Classification and Notation, Chapter 1 in Intermetallic Compounds, Vol. 3, edited by J.H. Westbrook and R.L. Fleischer, John Wiley and Sons, New York (2002)). For instance, BiF 3 is the prototype for the D0 3 structure, which has Mg 3 Pr and AlFe 3 as example compounds; note that the elements are listed alphabetically, so that the AB 3 compound is sometimes written as B 3 A. The only exception will be when the conventional prototype name is not in alphabetical order, for instance ZnS, in which case we do not change the order to SZn. The present version of this structures appendix was completed on June 16, 2013; updates containing corrections will be posted as needed.
2 2 Table A.0. Alphabetical list of all prototype structures described in this appendix, along with the page number on which the complete description can be found. Note that for compounds, constituent elements are ranked alphabetically. If you know the structure number, then the page number is obtained simply by adding 2. Prototype Page Prototype Page Prototype Page AgBa 2 Ca 3 Cu 4 O CaTiO 3 49 β-mn 28 AlCu 2 Mn 11 CaSiO 3 82 NaAlSi 2 O 6 83 α-al-mn-si 44 CdI 2 51 Na 4 Al 3 Si 3 O 12 CO 89 Al 3 Nb 10 Ni 9 40 C 6 H NaCl 9 Al 2 O 3 48 CsCl 12 Nd 2 CuO 4 60 Al 2 SiO 5 (Kyanite) 79 CO 2 99 NiAs 17 Al 2 SiO 5 (Sillimanite) 80 Co 5 Cr 2 Mo 3 42 Ni 3 Sn 18 Al 2 Si 2 O 5 (OH) 4 86 CrFe 38 PbBi 2 Nb 2 O 9 54 Al 3 Ti 30 Cr 3 Si 31 Cr 9 Mo 21 Ni Al 2 Zr 3 33 CuFeS 2 15 γ-se 23 Al 3 Zr 4 32 Cu 3 α-sio 2 87 As 22 Cu 2 Mg 34 β-sio 2 88 AuCu 6 Fe 2 B 46 β-sn 20 AuCu 3 7 Fe 3 C 45 Sr 8 Ga 16 Ge B 2 CoW 2 37 α-feo(oh) 93 Sr 33 Bi 24+δ Al 48 O δ 2 91 BaFe 12 O β-feo(oh,cl) 94 Ti 2 CS 56 Ba 1 x K x BiO 3 58 γ-feo(oh) 95 TiO 2 52 BaPb 1 x Bi x O 3 57 Fe 23 Zr 6 47 TlBa 2 CuO 5 70 (Ba,Sr)CuO 4 75 α-ga 26 TlBa 2 CaCu 2 O 7 71 Be 3 Al 2 Si 6 O α-hg 25 TlBa 2 Ca 2 Cu 3 O 9 72 BiF 3 10 H 2 O(I h ) 97 TlBa 2 Ca 3 Cu 4 O Bi 2 Sr 2 CuO 6+x 62 H 2 O(I c ) 98 Tl 2 Ba 2 CuO 6+x 66 Bi 2 Sr 2 CaCu 2 O 8+x 63 In 21 Tl 2 Ba 2 CaCu 2 O 8+x 67 Bi 2 Sr 2 Ca 2 Cu 3 O 10+x 64 KFe 3 (SO 4 ) 2 (OH) 6 96 Tl 2 Ba 2 Ca 2 Cu 3 O 10+x 68 Bi 2 Sr 2 Ca 3 Cu 4 O 12+x 65 α-la 19 Tl 2 Ba 2 Ca 3 Cu 4 O 12+x 69 C 8 La 2 CuO 4 59 α-u 29 C-graphite 24 Mg 5 W 4 Ca 2 (Al,Fe)Al 2 Si 3 O 13 H 81 MgAl 2 O 4 50 W 6 Fe 7 39 CaAl 2 Si 4 O 12 6H 2 O 90 Mg 32 (Al,Zn) 49 ) 43 YBa 2 Cu 3 O 7 x 61 CaF 2 14 MgNi 2 36 ZnS(zinc-blende) 13 Ca 3 Fe 2 Si 3 O Mg 2 SiO 4 76 ZnS(wurtzite) 16 CaMgSi 2 O 6 92 MgZn 2 35 ZnWO 4 55 Ca 2 Mg 5 (Si 8 O 22 )(OH) 3 85 α-mn 27 ZrSiO 4 78
3 3 Structure 1 Prototype: Cu SBS/PS: A1/cF4 SG # 225: Fm 3m (O 5 h ) Lattice complex: 4a(0,0,0) Element a Element a Element a Element a Cu Ag Au Al Ni Pd Pt Pb Table A.1. Representative elements for Structure 1. Pearson s tables list 485 intermetallic compounds (mostly solid solutions) with this structure type.
4 4 Structure 2 Prototype: W SBS/PS: A2/cI2 SG # 229: Im 3m (O 9 h ) Lattice complex: 2a(0,0,0) Element a Element a W Fe Cr Mo Ta Ba Table A.2. Representative elements for Structure 2. Pearson s tables list 333 intermetallic compounds (mostly solid solutions) with this structure type.
5 5 Structure 3 Prototype: Mg SBS/PS: A3/hP2 SG # 194: P6 3 /mmc (D 4 6h ) Lattice complex: 2d( 2 3, 1 3, 4 1) Compound a c c a Compound a c c a Mg Be Zn Cd Ti Zr Ru Os Re Sm Table A.3. Representative elements for Structure 3. Pearson s tables list 120 intermetallic compounds (mostly solid solutions) with this structure type.
6 6 Structure 4 Prototype: AuCu SBS/PS: L1 0 /tp4 (or tp4 with centered cell) SG # 123: P4/mmm (D 1 4h ) Lattice complex: 2e(0, 1 2, 1 2 ); 1a(0,0,0) and 1c( 1 2, 1 2,0) Compound a c c a Compound a c c a AuCu AgTi AlTi CoPt CrPd FePd MnNi PtZn Table A.4. Representative compounds for Structure 4. Pearson s tables list 97 intermetallic compounds with this structure type.
7 7 Structure 5 Prototype: AuCu 3 SBS/PS: L1 2 /cp4 SG # 221: Pm 3m (O 1 h ) Lattice complex: 1a(0,0,0); 3c(0, 1 2, 1 2 ) Compound a Compound a Compound a Compound a AuCu AgPt AlNi TiZn AlPt Al 3 Er Al 3 U Pd 3 Y Table A.5. Representative compounds for Structure 5. Pearson s tables list 436 intermetallic compounds with this structure type.
8 8 Structure 6 Prototype: C (diamond) SBS/PS: A4/cF8 SG # 227: Fd 3m (O 7 h ) Lattice complex: 8a(0,0,0) Element a Element a C Si Ge α-sn Table A.6. Representative elements for Structure 6. Pearson s tables list 16 intermetallic compounds with this structure type.
9 9 Structure 7 Prototype: NaCl (rock salt) SBS/PS: B1/cF8 SG # 225: Fm 3m (O 5 h ) Lattice complex: 4a(0,0,0); 4b( 2 1, 1 2, 2 1) Compound a Compound a Compound a NaCl MgO FeO MgS BaSe CaTe LiF BrNa TiN Table A.7. Representative compounds for Structure 7. Pearson s tables list 799 intermetallic compounds with this structure type.
10 10 Structure 8 Prototype: BiF 3 SBS/PS: D0 3 /cf16 SG # 225: Fm 3m (O 5 h ) Lattice complex: 4a(0,0,0); 4b( 1 2, 1 2, 1 2 ) and 8c( 1 4, 1 4, 1 4 ) Compound a Compound a Compound a BiF BiLi Cd 3 Pr CeMg Cu 3 Sb Fe 3 Si Mg 3 Pr AlFe Mn 3 Si Table A.8. Representative compounds for Structure 8. Pearson s tables consider both D0 3 and L2 1 structure types under the BiF 3 prototype, and list 394 intermetallic compounds with this structure type.
11 11 Structure 9 Prototype: AlCu 2 Mn (Heusler) SBS/PS: L2 1 /cf16 SG # 225: Fm 3m (O 5 h ) Lattice complex: 8c( 4 1, 1 4, 4 1); 4a(0,0,0); 4b( 2 1, 1 2, 2 1) Compound a Compound a Compound a AlCu 2 Mn Cu 2 MnSb Cu 2 FeSn AlCu 2 Hf AlNi 2 Ti GaMnNi 2 0.xxxx Co 2 MnSn AlCo 2 Nb AlCo 2 Ta Table A.9. Representative compounds for Structure 9. Pearson s tables consider both D0 3 and L2 1 structure types under the BiF 3 prototype, and list 394 intermetallic compounds with this structure type.
12 12 Structure 10 Prototype: CsCl SBS/PS: B2/cP2 SG # 221: Pm 3m (O 1 h ) Lattice complex: 1a(0,0,0); 1b( 2 1, 2 1, 1 2 ) Compound a Compound a Compound a Compound a CsCl BrCs AlCo AgMg CoTi CuZn FeTi NiTi Table A.10. Representative compounds for Structure 10. Pearson s tables list 461 intermetallic compounds with this structure type.
13 13 Structure 11 Prototype: ZnS (zinc-blende) SBS/PS: B3/cF8 SG # 216: F 43m (Td 2) Lattice complex: 4a(0,0,0); 4c( 4 1, 4 1, 1 4 ) Compound a Compound a Compound a Compound a ZnS AlP BeSe SeZn TeZn GaP AsGa GaSb InP CdTe AlAs Table A.11. Representative compounds for Structure 11. Pearson s tables list 247 intermetallic compounds with this structure type.
14 14 Structure 12 Prototype: CaF 2 (fluorite) SBS/PS: C1/cF12 SG # 225: Fm 3m (O 5 h ) Lattice complex: 4a(0,0,0); 8c( 4 1, 4 1, 4 1) Compound a Compound a Compound a CaF F 2 Sr BaCl O 2 Pb O 2 U Li 2 O Na 2 Se K 2 S ORb Table A.12. Representative compounds for Structure 12. Pearson s tables list 137 intermetallic compounds with this structure type.
15 15 Structure 13 Prototype: CuFeS 2 (chalcopyrite) SBS/PS: E1 1 /ti16 SG # 122: I 42d (D 12 2d ) Lattice complex: 4a(0,0,0); 4b(0,0, 2 1); 8d(x, 1 4, 8 1) with x = 1 4 Compound a c Compound a c CuFeS AgAlTe AlCuSe CdGeP Table A.13. Representative compounds for Structure 13. Pearson s tables list 132 intermetallic compounds with this structure type.
16 16 Structure 14 Prototype: ZnS(wurtzite) SBS/PS: B4/hP4 SG # 186: P6 3 mc (C6v 4 ) Lattice complex: 2b( 1 3, 2 3,z) with z = 0; 2b( 1 3, 2 3 z) with z = 3 8 Compound a c Compound a c ZnO ZnS BP GaN Table A.14. Representative compounds for Structure 14. Pearson s tables list 86 intermetallic compounds with this structure type.
17 17 Structure 15 Prototype: NiAs SBS/PS: B8 1 /hp4 SG # 194: P6 3 mmc (D 4 6h ) Lattice complex: 2a(0,0,0); 2c( 3 1, 3 2, 1 4 ) Compound a c Compound a c NiAs AuSe NbSb CrS Table A.15. Representative compounds for Structure 15. Pearson s tables list 217 intermetallic compounds with this structure type.
18 18 Structure 16 Prototype: Ni 3 Sn SBS/PS: D0 19 /hp8 SG # 194: P6 3 mmc (D 4 6h ) Lattice complex: 2c( 1 3, 2 3, 1 4 ); 6h(x,2x, 1 4 ) with x = 5 6 Compound a c Compound a c Ni 3 Sn Fe 3 Ga InTi Al 3 Sm Table A.16. Representative compounds for Structure 16. Pearson s tables list 106 intermetallic compounds with this structure type.
19 19 Structure 17 Prototype: α-la SBS/PS: A3 /hp4 SG # 194: P6 3 mmc (D 4 6h ) Lattice complex: 2a(0,0,0) and 2c( 3 1, 3 2, 1 4 ) Compound a c Compound a c α-la Nd Gd Sm Table A.17. Representative compounds for Structure 17. Pearson s tables list 34 intermetallic compounds with this structure type.
20 20 Structure 18 Prototype: β-sn SBS/PS: A5/tI4 SG # 141: I4 1 /amd (D 19 4h ) Lattice complex: 4a(0,0,0) with origin (1) offset (0, 4 1, 1 8 ) from the center of symmetry Compound a c Compound a c β-sn Ge Table A.18. Representative compounds for Structure 18. Pearson s tables list 20 intermetallic compounds with this structure type.
21 21 Structure 19 Prototype: In SBS/PS: A6/tI2 SG # 139: I4/mmm (D 17 4h ) Lattice complex: 2a(0,0,0) Compound a c Compound a c In Pa Table A.19. Representative compounds for Structure 19. Pearson s tables list 28 intermetallic compounds with this structure type.
22 22 Structure 20 Prototype: As SBS/PS: A7/hR2 SG # 166: R 3m (D 5 3d ) Lattice complex: 6c(0,0,z) with z = Compound a c Compound a c As Bi Table A.20. Representative compounds for Structure 20. Pearson s tables list 21 intermetallic compounds with this structure type.
23 23 Structure 21 Prototype: γ-se SBS/PS: A8/hP3 SG # 152: P (D 4 3 ) Lattice complex: 3a(0.7364,0, 3 1) Compound a c Compound a c Se Te Table A.21. Representative compounds for Structure 21.
24 24 Structure 22 Prototype: C-graphite SBS/PS: A9/hP4 SG # 194: P6 3 mmc (D 4 6h ) Lattice parameters: a = , c = Lattice complex: 2b(0,0, 4 1), 2c( 1 3, 3 2, 1 4 ).
25 25 Structure 23 Prototype: α-hg SBS/PS: A10/hR1 SG # 166: R 3m (D 5 3d ) Lattice parameters: a = , c = Lattice complex: 1a(0,0,0)
26 26 Structure 24 Prototype: α-ga SBS/PS: A10/oC8 SG # 64: Cmca (D 18 2h ) Lattice parameters: a = , b = , c = Lattice complex: 8 f (0,y,z) with y = and z =
27 27 Structure 25 Prototype: α-mn SBS/PS: A12/cI58 SG # 217: I 43m (T 3 d ) Lattice parameters: a = Lattice complex: 2a(0,0,0), 8c(x,x,x) with x = 0.317, 24g(x,x,z) with (x,z)= (0.356,0.42) and (0.089,0.278).
28 28 Structure 26 Prototype: β-mn SBS/PS: A13/cP20 SG # 213: P (O 7 ) Lattice parameters: a = Lattice complex: 8c(x,x,x), x = ; and 12d( 1 8,y,y ) with y =
29 29 Structure 27 Prototype: α-u SBS/PS: A20/oC4 SG # 63: Cmcm (D 17 2h ) Lattice parameters: a = , b = , c = Lattice complex: 4c(0,y, 1 4 ) with y =
30 30 Structure 28 Prototype: Al 3 Ti SBS/PS: D0 22 /ti8 SG # 139: I4/mmm (D 17 4h ) Lattice complex: 2a(0,0,0); 2b(0,0, 2 1) and 4d(0, 1 2, 4 1) Compound a c Compound a c Al 3 Ti Al 3 Ta Al 3 Hf Ga 3 Ta Pt 3 V Pd 3 V Table A.22. Representative compounds for Structure 28. Pearson s tables list 44 intermetallic compounds with this structure type.
31 31 Structure 29 Prototype: Cr 3 Si SBS/PS: A15/cP8 SG # 223: Pm 3n (O 3 h ) Lattice complex: 2a(0,0,0); 6c( 4 1,0, 1 2 ) Compound a Compound a Cr 3 Si AuZr GeMo IrTi CoV Mo 3 Os BiNb Re 7 V Ti 4 Tl Nb 38 Si 24 V Table A.23. Representative compounds for Structure 29. The compounds with stoichiometry deviating from the nominal A 3 B composition typically have defect arrangements (vacancies) accommodating the deviation. Pearson s tables list 213 intermetallic compounds with this structure type.
32 32 Structure 30 Prototype: Al 3 Zr 4 SBS/PS: /hp7 SG # 174: P 6 (C3h 1 ) Lattice complex: 1b(0,0, 1 2 ), 1 f ( 2 3, 1 3, 1 2 ) and 2h( 1 3, 2 3, 4 1 ); 3 j( 1 3, 6!,0) Compound a c Compound a c Al 3 Zr Al 40 Nb 10 Zr Al 3 Hf Al 33 Cu 10 Zr Table A.24. Representative compounds for Structure 30. Pearson s tables list 4 intermetallic compounds with this structure type.
33 33 Structure 31 Prototype: Al 2 Zr 3 SBS/PS: /tp20 SG # 136: P4 2 /mnm (D 14 4h ) Lattice complex: 4d(0, 2 1, 1 4 ), 4 f (x,x,0) with x = 0.34 and 4g(x, x,0) with x = 0.20; 8 j(x,x,z) with x = 1 8 and z = Compound a c Compound a c Al 2 Zr Al 2 Dy Ga 2 Gd Li 2 Sr Al 2 Y Ce 3 Ga Table A.25. Representative compounds for Structure 31. Pearson s tables list 17 intermetallic compounds with this structure type.
34 34 Structure 32 Prototype: Cu 2 Mg (Laves Phase) SBS/PS: C15/cF24 SG # 227: Fd 3m (O 7 h ) Lattice complex: 16d( 8 5, 5 8, 5 8 ); 8a(0,0,0) Compound a Compound a Compound a Cu 2 Mg Be 2 Ta CaNi DyMn EuPt Fe 2 Tb Li 2 Pt Mg 2 Sn Mg 2 Si Table A.26. Representative compounds for Structure 32. Pearson s tables list 1476 intermetallic compounds (many solid solutions) with this structure type.
35 35 Structure 33 Prototype: MgZn 2 (Laves Phase) SBS/PS: C14/hP12 SG # 194: P6 3 /mmc (D 4 6h ) Lattice complex: 4 f ( 1 3, 2 3,z) with z = ; 2a(0,0,0) and 6h(x,2x, 4 1 ) with x = Compound a c Compound a c MgZn Al 2 Hf BeV Cu 2 Yb Co 2 Nb Mn 3 SiW Table A.27. Representative compounds for Structure 33. Pearson s tables list 497 intermetallic compounds (many solid solutions) with this structure type.
36 36 Structure 34 Prototype: MgNi 2 (Laves Phase) SBS/PS: C36/hP24 SG # 194: P6 3 /mmc (D 4 6h ) Lattice complex: 4e(0,0,z) with z = 0.094; 4 f ( 1 3, 2 3,z) with z = 0.844; 4 f ( 3 1, 3 2,z) with z = 0.125; 6g( 1 2,0,0); 6h( 1 6, 1 3, 1 4 ) Compound a c Compound a c MgNi EuNi HfZn Cr 2 Ti HfMn Cr 2 Zr Table A.28. Representative compounds for Structure 34. Pearson s tables list 40 intermetallic compounds (many solid solutions) with this structure type.
37 37 Structure 35 Prototype: B 2 CoW 2 SBS/PS: /oi10 SG # 71: Immm (D 25 2h ) Lattice complex: 2a(0,0,0); 4 f (x, 2 1,0) with x = 0.205; 4h(0,y, 1 2 ) with y = 0.30 Compound a b c B 2 CoW AlGd 2 Ni B 2 NiW Cs 2 PtTe Table A.29. Representative compounds for Structure 35. Pearson s tables list 27 intermetallic compounds with this structure type.
38 38 Structure 36 Prototype: CrFe (σ Phase) SBS/PS: D8 b /tp30 SG # 136: P4 2 /mnm (D 14 4h ) Lattice complex: M1 (metal atom 2a(0,0,0); 4 f (x,x,0) with x = ; 8i(x,y,0) with x = and y = ; 8i(x,y,0) with x = and y = ; 4 j(x,x,z) with x = and z = Compound a c Compound a c CrFe FeV FeMo Mn 2 Mo PdTa U Table A.30. Representative compounds for Structure 36. Pearson s tables list 84 intermetallic compounds with this structure type.
39 39 Structure 37 Prototype: W 6 Fe 7 (µ Phase) SBS/PS: D8 5 /hr13 SG # 166: R 3m (D 5 3d ) Lattice complex: hexagonal reference frame; 3a(0, 0, 0) and 18h(x, x, z) with x = and z = 0.257; 6c(0,0,z) with z = 0.167, z = 0.346, z = Compound a c Compound a c W 6 Fe Co 7 Nb Mn 6 Si Ta 6 Zn Al 3 Nb 5 Ni CuNiTa Table A.31. Representative compounds for Structure 37. Pearson s tables list 36 intermetallic compounds with this structure type.
40 40 Structure 38 Prototype: Al 3 Nb 10 Ni 9 (M Phase) SBS/PS: /op52 SG # 62: Pnma (D 16 2h ) Lattice parameters: a = , b = , c = nm Lattice complex: 4c(x, 1 4,z) with (x,z) equal to (0.0593,0.8506), (0.2996, ), (0.5242, ), (0.6164, ), (0.0144, ), and (0.8388, ); Al and Ni are in solid solution on the following sites: 4c(x, 1 4,z) with (x, z) equal to (0.0714, ), (0.3255, ), and (0.8168, ), and 8d(x, y, z) with (x, y, z) equal to (0.1118, , ) and (0.2550, , )
41 41 Structure 39 Prototype: Cr 9 Mo 21 Ni 20 (P Phase) SBS/PS: /op56 SG # 62: Pnma (D 16 2h ) Lattice parameters: a = , b = , c = nm Lattice complex: the metal atoms are distributed over the following sites: 4c(x, 4 1,z) with (x,z) equal to (0.1134,0.0737), (0.2547,0.1363), (0.1578, ), (0.1819, ), (0.3253, ), (0.4536, ), (0.4047, ), (0.0780, ), (0.3650, ), and (0.0355, ); and 8d(x, y, z) with (x, y, z) equal to (0.5375, , ) and (0.2883, , ).
42 42 Structure 40 Prototype: Co 5 Cr 2 Mo 3 (R Phase) SBS/PS: /hr53 SG # 148: R 3 (C3i 2 ) Lattice parameters: a = , c = nm Lattice complex: the metal atoms are distributed over the following sites: 3b(0,0, 2 1 ); 6c(0,0,z) with z equal to and ; 18 f (x,y,z) with (x, y, z) equal to (0.0509, , ), (0.0212, , ), (0.2250, , ), (0.1759, , ), (0.1132, , ), (0.0330, , ), (0.1596, , ), and (0.2671, , )
43 43 Structure 41 Prototype: Mg 32 (Al,Zn) 49 ) SBS/PS: /ci162 SG # 204: Im 3 (Th 5) Lattice complex: 2a(0,0,0); 24g(0,y,z) with y = and z = ; 24g(0,y,z) with y = and z = ; 48h(x,y,z) with y = 0.168, z = and z = ; 16 f (x,x,x) with x = ; 24g(0,y,z) with y = and z = ; 12e(x,0, 1 2 ) with x = ; 12e(x,0, 1 2 ) with x = Compound a Mg 32 (Al,Zn) Table A.32. Representative compound for Structure 41.
44 44 Structure 42 Prototype: α-al-mn-si SBS/PS: /cp138 SG # 200: Pm 3 (Th 1) Lattice complex: 12 j(y,z,0) with y = , z = ; 12k(y,z, 1 2 ) with y = , z = ; 6e(x,0,0); with x = ; 6h(x, 1 2, 1 2 ) with x = ; 6 f (x,0, 2 1 ) with x = ; 12 j(y,z,0) with y = and z = ; 12k(y,z, 2 1 ) with y = and z = 0.399; 12 j(y,z,0) with y = , z = ; 12k(y,z, 1 2 ) with y = , z = ; 24l(x,y,z) with x = , y = , z = 0.298; 24l(x,y,z) with x = , y = , z = Compound a α-al-mn-si Table A.33. Representative compound for Structure 42.
45 45 Structure 43 Prototype: Fe 3 C SBS/PS: /op16 SG # 62: Pnma (D 16 2h ) Lattice complex: 2c(x, 4 1,z) with x = and z = 0.837; and 8d(x,y,z) with x = 0.181,z = 0.063, and z = 0.337; 2c(x, 4 1,z) with x = and z = Compound a b c Fe 3 C Table A.34. Representative compound for Structure 43.
46 46 Structure 44 Prototype: Fe 2 B SBS/PS: /ti12 SG # 140: I4/mcm (D 18 4h ) Lattice complex: 8h(x, x,0) with x = ; and 4a(0,0, 1 4 ). Compound a c Fe 2 B Table A.35. Representative compound for Structure 44.
47 47 Structure 45 Prototype: Fe 23 Zr 6 SBS/PS: /cf116 SG # 225: Fm 3m (O 5 h ) Lattice complex: 4b( 2 1, 1 2, 1 2 ); and 24d(0, 4 1, 4 1 ); and 32 f (x,x,x) with x = and x = 0.178; 24e(x,0,0) with x = Compound a Mn 23 Zr Fe 23 Zr Table A.36. Representative compounds for Structure 45.
48 48 Structure 46 Prototype: Al 2 O 3 SBS/PS: D5 1 /hr30 SG # 167: R 3c (D 3d 6 ) Lattice complex: Al@ 12c(0,0,z) with z = ; and O@ 18e(x,0, 1 4 ) with x = ; Compound a c Al 2 O Table A.37. Structural data for corundum: Structure 46.
49 49 Structure 47 Prototype: CaTiO 3 SBS/PS: E2 1 /cp5 SG # 221: Pm 3m (O 1 h ) Lattice complex: Ti@ 1b( 1 2, 1 2, 1 2 ); and O@ 3d( 1 2, 1 2,0); and Ca@ 1a(0,0,0). Compound a CaTiO MgSiO Table A.38. Structural data for Structure 47.
50 50 Structure 48 Prototype: MgAl 2 O 4 SBS/PS: H1 1 /cf56 SG # 227: Fd3m (O 7 h ) Lattice complex: Mg@ 8a( 8 1, 1 8, 8 1); and Al@ 16d( 1 2, 1 2, 2 1 ); and O@ 32e(x, x, x) with x = Compound a Compound a MgAl 2 O ZnAl 2 O Fe 3 O (Zn,Mn,Fe)(Fe,Mn) 2 O FeCr 2 O Table A.39. Structural data for Structure 48.
51 51 Structure 49 Prototype: CdI 2 SBS/PS: C6/hP5 SG # 164: P 3m1 (D 3 3d ) Lattice parameters: a = , c = Lattice complex: Cd@ 1a(0,0,0); and I@ 2d( 3 1, 2 3,z) with z =
52 52 Structure 50 Prototype: TiO 2 SBS/PS: C4/tP6 SG # 136: P4 2 /mnm (D 4h 14 ) Lattice complex: Ti@ 2a(0, 0, 0); and O@ 4 f (x, x, 0) with x = Compound a c TiO Table A.40. Structural data for Structure 50.
53 53 Structure 51 Prototype: BaFe 12 O 19 SBS/PS: /hp64 SG # 194: P6 3 /mmc (D 4 6h ) Lattice complex: Ba@ 2d( 3 2, 1 3, 4 1); Fe@ 2a(0,0,0); 2b(0,0, 1 4 ); 4 f ( 1 3, 2 3,z) with z = ; 12k(x, 2x, z) with x = and z = 0.108; O@ 4e(0, 0, z) with z = 0.150; 4 f ( 1 3, 2 3,z) with z = 0.05; 6h(x,2x, 1 4 ) with x = 0.5; 12k(x,2x,z) with (x,z) = (0.167,0.050) and (0.5,0.150). Compound a c BaFe 12 O Ba 0.68 K 0.31 Ti 0.68 Fe 5.93 Mg 0.69 (Cr,Mn,Ni) 0.34 O 19 (Haggertyite) Table A.41. Structural data for Structure 51.
54 54 Structure 52 Prototype: PbBi 2 Nb 2 O 9 SBS/PS: /oa56 SG # 36: A2 1 am (C 12 2v ) Lattice complex: Pb@ 4a( 4 1,y, 1 2 ) with y = ; Bi@ 8b(x,y,z) with y = , y = and z = ; Nb@ 8b(x,y,z) with x = , y = and z = ; O@ 4a(x,y,0) with x = and y = ; 8b(x,y,z) with (x,y,z) = (0.3034,y = ,z = ), (0.5236,0.4977,0.2473); (0.5283, 0.027, ), and (0.5967, , ) Compound a b c PbBi 2 Nb 2 O Table A.42. Structural data for Structure 52.
55 55 Structure 53 Prototype: ZnWO 4 SBS/PS: /mp12 SG # 13: P2/c (C 2h 4 ) Lattice complex: Zn@ 2 f ( 1 2,y, 1 4 ) with y = 0.674; W@ 2e(0,y, 1 4 ) with y = ; O@ 4g(x, y, z) with (x, y, z) = (0.22, 0.11, 0.95) and (0.26, 0.38, 0.39). Compound a b c β ZnWO Table A.43. Structural data for Structure 53.
56 56 Structure 54 Prototype: Ti 2 CS SBS/PS: /hp8 SG # 194: P6 3 /mmc (D 4 6h ) Lattice complex: Ti@ 4e(0,0,z) with z = 0.1; C@ 2a(0,0,0); S@ 2d( 3 1, 2 3, 4 3). Compound a c Ti 2 CS Table A.44. Structural data for Structure 54.
57 57 Structure 55 Prototype: BaPb 1 x Bi x O 3 (0.05 < x < 0.30) SBS/PS: /ti5 SG # 140: I4/mcm (D 18 4h ) Lattice parameters: a = 0.605, c = Lattice complex: Pb,Bi@ 4b(0, ); Ba@ 4c(0,0,0); O@ 4d(0, 1 2,0) and 8e( 1 4, 4 1, 4 1);
58 58 Structure 56 Prototype: Ba 1 x K x BiO 3 (0.37 < x < 0.5) SBS/PS: /cp5 SG # 221: Pm3m (O h 1 ) Lattice parameters: a = Lattice complex: Bi@ 1a(0.5,0.5,0.5); Ba@ 1b(0,0,0); O@ 3d(0.5,0.5,0);
59 59 Structure 57 Prototype: La 2 CuO 4 SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: La@ xx(0, 0, z) with z = ; Cu@ xx(0, 0, 0); O@ xx(0, 2 1,0) and xx(0,0,z) with z =
60 60 Structure 58 Prototype: Nd 2 CuO 4 SBS/PS: /ti5 SG # 139: I4/mmm (D 4h 17 ) Lattice parameters: a = 0.395, c = Lattice complex: Nd@ xx(0, 0, z) with z = ; Cu@ xx(0, 0, 0); O@ xx(0, 1 2,0) and xx(0, 1 2, 1 4 ).
61 61 Structure 59 Prototype: YBa 2 Cu 3 O 7 x SBS/PS: /ti5 SG # 47: I4/mmm (D 17 4h ) Lattice parameters: a = , b = , c = Lattice complex: Y@ 1h( 1 2, 2 1, 1 2 ); Ba@ 2t( 1 2, 1 2,z) with z = ; Cu@ 1a(0,0,0) and 2t( 2 1, 1 2,z) with z = ; O@ 1e(0, 2 1,0), 2s( 2 1,0,z) with z = and 2r(0, 1 2,z) with z =
62 62 Structure 60 Prototype: Bi 2 Sr 2 CuO 6+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Bi@ xx( 2 1, 2 1,z) with z = 0.202; Sr@ xx(0,0,z) with z = 0.083; Cu@ xx( 1 2, 2 1,0); O@ xx(0, 2 1,0); xx( 1 2, 1 2,z) with z = and z =
63 63 Structure 61 Prototype: Bi 2 Sr 2 CaCu 2 O 8+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Bi@ xx( 1 2, 2 1,z) with z = ; Ca@ xx(0,0,0); Sr@ xx(0,0,z) with z = ; Cu@ xx( 2 1, 1 2,z) with z = 0.054; O@ xx(0, 1 2,z) with z = ; xx( 1 2, 2 1,z) with z = ; xx(x, 1 2,z) with x = and z =
64 64 Structure 62 Prototype: Bi 2 Sr 2 Ca 2 Cu 3 O 10+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = 3.70 Lattice complex: Bi@ xx( 2 1, 1 2,z) with z = 0.22; Ca@ xx(0,0,z) with z = 0.046; Sr@ xx(0,0,z) with z = 0.144; Cu@ xx( 2 1, 1 2,0); xx( 1 2, 2 1,z) with z = 0.089; O@ xx( 2 1,0,0); xx( 2 1, 2 1,z) with z = and z = ; xx( 2 1,0,z) with z =
65 65 Structure 63 Prototype: Bi 2 Sr 2 Ca 3 Cu 4 O 12+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Bi@ xx( 2 1, 2 1,z) with z = 0.224; Ca@ xx(0,0,0); xx(0,0,z) with z = 0.076; Sr@ xx(0,0,z) with z = 0.138; Cu@ xx( 2 1, 2 1,z) with z = and z = 0.136; O@ xx( 1 2, 2 1,z) with z = and z = 0.268; xx( 1 2,0,z) with z = and z =
66 66 Structure 64 Prototype: Tl 2 Ba 2 CuO 6+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Tl@ xx( 1 2, 2 1,z) with z = 0.202; Ba@ xx(0,0,z) with z = 0.083; Cu@ xx( 1 2, 2 1,0); O@ xx(0, 2 1,0); xx( 1 2, 1 2,z) with z = and z =
67 67 Structure 65 Prototype: Tl 2 Ba 2 CaCu 2 O 8+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Tl@ xx( 1 2, 2 1,z) with z = ; Ca@ xx(0,0,0); Ba@ xx(0,0,z) with z = ; Cu@ xx( 2 1, 1 2,z) with z = 0.054; O@ xx(0, 1 2,z) with z = ; xx( 1 2, 2 1,z) with z = ; xx(x, 1 2,z) with x = and z =
68 68 Structure 66 Prototype: Tl 2 Ba 2 Ca 2 Cu 3 O 10+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Tl@ xx( 1 2, 1 2,z) with z = 0.22; Ca@ xx(0,0,z) with z = 0.046; Ba@ xx(0,0,z) with z = 0.144; Cu@ xx( 2 1, 2 1,0); xx( 1 2, 2 1,z) with z = 0.089; O@ xx( 1 2,0,0); xx( 2 1, 2 1,z) with z = and z = ; xx( 2 1,0,z) with z =
69 69 Structure 67 Prototype: Tl 2 Ba 2 Ca 3 Cu 4 O 12+x SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Tl@ xx( 2 1, 1 2,z) with z = 0.224; Ca@ xx(0,0,0); xx(0,0,z) with z = 0.076; Ba@ xx(0,0,z) with z = 0.138; Cu@ xx( 1 2, 1 2,z) with z = and z = 0.136; O@ xx( 1 2, 2 1,z) with z = and z = 0.268; xx( 1 2,0,z) with z = and z =
70 70 Structure 68 Prototype: TlBa 2 CuO 5 SBS/PS: /ti5 SG # 123: P4/mmm (D 17 4h ) Lattice parameters: a = 0.385, c = Lattice complex: Tl@ xx( 2 1, 1 2,0); Ba@ xx(0,0,z) with z = 0.298; Cu@ xx( 2 1, 1 2, 2 1); O@ xx(0,0,0); xx(0, 2 1, 1 2 ); xx( 1 2, 1 2,z) with z =
71 71 Structure 69 Prototype: TlBa 2 CaCu 2 O 7 SBS/PS: /ti5 SG # 123: P4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Tl@ xx(0,0,0); Ba@ xx( 2 1, 1 2,z) with z = ; Ca@ xx( 2 1, 1 2, 1 2 ); Cu@ xx(0,0,z) with z = ; O@ xx( 2 1, 1 2,0); xx(0,0,z) with z = 0.164; xx( 1 2,0,z) with z =
72 72 Structure 70 Prototype: TlBa 2 Ca 2 Cu 3 O 9 SBS/PS: /ti5 SG # 123: P4/mmm (D 17 4h ) Lattice parameters: a = , c = Lattice complex: Tl@ xx(0,0,0); Ba@ xx( 1 2, 1 2,z) with z = 0.176; Ca@ xx( 1 2, 1 2,z) with z = 0.397; Cu@ xx(0,0, 2 1 ); xx(0,0,z) with z = 0.302; O@ xx( 1 2, 1 2,0); xx(0, 2 1, 2 1); xx(0, 1 2,z) with z = 0.304; xx(0,0,z) with z =
73 73 Structure 71 Prototype: TlBa 2 Ca 3 Cu 4 O 11 SBS/PS: /ti5 SG # 139: I4/mmm (D 17 4h ) Lattice parameters: a = 0.385, c = Lattice complex: Tl@ xx(0,0,0); Ba@ xx( 2 1, 2 1,z) with z = 0.150; Ca@ xx( 1 2, 1 2, 1 2 ); xx( 2 1, 1 2,z) with z = ; Cu@ xx(0,0,z) with z = and z = ; O@ xx( 2 1, 1 2,0); xx(0,0,z) with z = 0.15; xx( 1 2,0,z) with z = and z =
74 74 Structure 72 Prototype: AgBa 2 Ca 3 Cu 4 O 10 SBS/PS: /ti5 SG # 83: P4/m (D 17 4h ) Lattice parameters: a = 0.386, c = 1.81 Lattice complex: Ag@ xx(0,0,0); Ba@ xx( 2 1, 1 2,z) with z = 0.883; Ca@ xx( 1 2, 1 2, 2 1); xx( 2 1, 1 2,z) with z = 0.677; Cu@ xx(0,0,0); xx(0,0,z) with z = and z = ; O@ xx( 2 1, 1 2,0); xx(0, 2 1,z) with z = and z = ; xx(0, 0, z) with z =
75 75 Structure 73 Prototype: (Ba,Sr)CuO 4 SBS/PS: /ti5 SG # 123: P4/mmm (D 4h 17 ) Lattice parameters: a = 0.393, c = Lattice complex: Ba,Sr@ xx( 1 2, 1 2, 1 2 ); Cu@ xx(0,0,0); O@ xx(0, 1 2,0).
76 76 Structure 74 Prototype: Forsterite: Mg 2 SiO 4 SBS/PS: S1 2 /op28 SG # 62: Pbnm (D 16 2h ) Lattice parameters: a = , b = , c = Lattice complex: Mg@ 4a(0,0,0); and 4c(x,y, 1 4 ) with x = and y = ; O@ 4c(x,y, 4 1) with x = and y = ; 4c(x,y, 1 4 ) with x = and y = ; 8d(x,y,z) with x = , y = and z = ; Si@ 4c(x,y, 1 4 ) with x = and y =
77 77 Structure 75 Prototype: Garnet: Ca 3 Fe 2 Si 3 O 12 SBS/PS: /ci160 SG # 230: Ia 3 (O 10 h ) Lattice parameters: a = Lattice complex: Ca@ 24c( 1 8,0, 1 4 ); Fe@ 16a(0,0,0); O@ 96h(x,y,z) with x = , y = and z = ; Si@ 24d( 8 3,0, 1 4 ).
78 78 Structure 76 Prototype: Zircon ZrSiO 4 SBS/PS: /ti24 SG # 141: I4 1 /amd (D 19 4h ) Lattice parameters: a = 0.661, c = Lattice complex: Zr@ 4a(0, 3 4, 8 1 ); O@ 16h(0,y,z) with y = and z = ; Si@ 4b(0, 1 4, 3 8 ).
79 79 Structure 77 Prototype: Kyanite Al 2 SiO 5 SBS/PS: /tp16 SG # 2: P 1 (C i 1 ) Lattice parameters: a = ,b = ,c = ,α = 89.99,β = ,γ = Lattice complex: Al@ 2i(x, y, z) with (x, y, z) = (0.3254, 0.704, ), (0.2974, , ), (0.0998, , ), and (0.112, , ); O@ 2i(x, y, z) with (x, y, z) = (0.1095, , ), (0.123, , ), (0.2747, , ), (0.2831, , ), (0.1084, 0.152, ), (0.1219, , ), (0.2822, , ), (0.2915, , ), (0.5008, , 0.244) and (0.5015, , ); Si@ 2i(x, y, z) with (x, y, z) = (0.2962, , ) and (0.291, , ).
80 80 Structure 78 Prototype: Sillimanite Al 2 SiO 5 SBS/PS: /op32 SG # 62: Pbnm (Orthorhombic) Lattice parameters: a = , b = , c = Lattice complex: Al@ 4a(0,0,0); and 4c(x,y, 1 4 ) with x = and y = ; O@ 4c(x,y, 3 4 ) with (x,y) = (0.3605,0.4094), (0.4763,0.0015) and (0.3569, ); 8d(x, y, z) with (x, y, z)= (0.2747, , ), (0.2831, , ) and (0.1252,0.223,0.5145); Si@ 4c(x,y, 3 4 ) with x = and y = ;
81 81 Structure 79 Prototype: Epidote Ca 2 (Al,Fe)Al 2 Si 3 O 13 H SBS/PS: /mp44 SG # 11: P2 1 /m (C 2 2h ) Lattice parameters: a = ,b = 0.564,c = ,β = Lattice complex: Ca@ 2e(x, 4 1,z) with (x,z) = (0.2438,0.849) and (0.3968,0.579); Al@ 2a(0,0,0); 2c(0,0, 2 1); Fe@ 2e(x, 1 4,z) with x = and z = ; O@ 4 f (x, y, z) with (x, y, z) = (0.2339, , 0.041), (0.304,0.9809,0.3554) and (0.7957,0.0152,0.3382); 2e(x, 1 4,z) with (x,z) = (0.0838, ), (0.0528, ), (0.5281, ) and (0.6265, 0.099), (0.9582,0.8529), (0.9317,0.5922) and (0.4836, ); Si@ 2e(x, 1 4,z) with (x,z) = (0.6604,0.9527), (0.8156,0.6811) and (0.6851, ).
82 82 Structure 80 Prototype: Wollastonite-1T CaSiO 3 SBS/PS: /tc40 SG # 2: C 1 (Triclinic) Lattice parameters: a = ,b = 1.107,c = ,α = 99.51,β = ,γ = Lattice complex: Ca@ 2i(x, y, z) with (x, y, z) = (0.0208, , ), (0.0171, , ) and (0.0144, , ); O@ 2i(x, y, z) with (0.1163, , ), (0.1169, , ), (0.1149, , ), (0.1239, , ), (0.123, , ), (0.1152, , ), (0.2211, , ), (0.182, , ) and (0.1872, , ); Si@ 2i(x, y, z) with (x, y, z) = (0.2265, , ), (0.2267, , ), and (0.2264, , ).
83 83 Structure 81 Prototype: Jadeite NaAlSi 2 O 6 SBS/PS: /hp40 SG # 15: C2/c (C 2h 6 ) Lattice parameters: a = ,b = ,c = ,β = Lattice complex: Al@ 4e(0,y, 1 4 ) with y = 0.094; Na@ 4e(0,y, 1 4 ) with y = ; O@ 8 f (x, y, z) with (x, y, z) = (0.109, , ), (0.3608,0.263,0.2929), and (0.3433,0.007,0.0058); Si@ 8 f (x,y,z) with x = , y = and z =
84 84 Structure 82 Prototype: Beryl Be 3 Al 2 Si 6 O 18 SBS/PS: /hp40 SG # 192: P6/mmc (D 2 6h ) Lattice complex: a = ,c = Al@ 4c( 2 3, 3 1, 4 1); Be@ 6 f ( 1 2,0, 1 4 ); Cs@ 2a(0,0, 1 4 ); Na@ 2b(0,0,0); O@ 12l(x,y,0) with x = and y = ; and 24m(x,y,z) with x = , y = and z = ; Si@ 12l(x, y, 0) with x = and y =
85 85 Structure 83 Prototype: Tremolite Ca 2 Mg 5 (Si 8 O 22 )(OH) 3 SBS/PS: /mc78 SG # 12: C3/m (C 3 2h ) Lattice complex: a = ,b = ,c = ,β = Ca@ 4h(0,y, 2 1 ) with y = ; H@ 4i(x,0,z) with x = and z = ; Mg@ 2a(0,0,0); 4h(0,y, 1 2 ) with y = ; 4g(0,y,0) with y = 0.177; Na@ 2b(0, 2 1,0); O@ 8 j(x,y,z) with (x,y,z) = (0.1114,0.0847,0.2182), (0.1187, , 0.725)1, (0.3642, , ), (0.3467, , ) and (0.3437, , 0.591); 4i(x, 0, z) with (x, z)= (0.338, ) and (0.1082,0.7154); Si@ 8 j(x,y,z) with (x,y,z) = (0.2799,0.0842,0.2974) and (0.2882, , ).
86 86 Structure 84 Prototype: Kaolinite Al 2 Si 2 O 5 (OH) 4 SBS/PS: /tc26 SG # 1: C1 (Triclinic) Lattice parameters: a = 0.514,b = 0.893,c = 0.737,α = 91.8,β = 104.5,γ = 90 Lattice complex: All atoms in 1a(x, y, z) positions: Al(0.502, 0.172, 0.003) and (0.002, 0.33, 0.002); O(0.754, 0.315, 0.155), (0.69, 0.004, 0.157), (0.791, 0.165, 0.482), (0.612, 0.12, 0.455) and (0.108, 0.058, 0.455); OH(0.778, 0.18, 0.14), (0.278, 0.32, 0.38), (0.316, 0.008, 0.136) and (0.248, 0.184, 0.155); Si(0.8, 0.322, 0.382) and (0.8, 0.0, 0.385).
87 87 Structure 85 Prototype: α-quartz SiO 2 SBS/PS: C8/hP9 SG # 154: P (D 3 6 ) Lattice parameters: a = , c = Lattice complex: O@ 6c(x,y,z) with x = , y =, and z = ; Si@ 3a(x,0,0) with x = ; origin offset by (0,0, 1 3 ).
88 88 Structure 86 Prototype: β-quartz SiO 2 SBS/PS: /hp9 SG # 171: P6 2 (C 4 6 ) Lattice parameters: a = , c = Lattice complex: O@ 6c(x, y, z) with x = , y = and z = ; Si@ 3a( 2 1 1,0,0); origin offset by (0,0, 3 ).
89 89 Structure 87 Prototype: Na 4 Al 3 Si 3 O 12 Cl SBS/PS: /cp9 SG # 218: P 43n (T 4 d ) Lattice parameters: a = Lattice complex: Al@ 6c( 1 4, 1 2,0); Cl@ 2a(0,0,0); Na@ 8e(x,x,x);with x = 0.175; O@ 24i(x,y,z) with x = 0.15, y = and z = 0.44; and Si@ 6c( 1 4, 2 1,0);
90 90 Structure 88 Prototype: CaAl 2 Si 4 O 12 6H 2 O SBS/PS: /hr74 SG # 166: R 3m (D 5 3d ) Lattice parameters: a = 0.937,α = Lattice complex: (dehydrated form) Ca@ 1a(0, 0, 0) with 0.6 site occupancy, 2c(x,x,x) with x = and 0.35 site occupancy, 12i(x,y,z) with x = 0.09, y = and z = 0.47 and 0.16 site occupancy; O@ 6 f (x, x,0) with x = 0.284, 6g(x, x,0.5) with x = 0.124, 6h(x,x,z) with x = and z = 0.878, 6c(0,0,z) with z = 0.255; Al,Si@ 12i(x,y,z) with x = 0.095, y = and z =
91 91 Structure 89 Prototype: Fullerenoid Oxide Sr 33 Bi 24+δ Al 48 O δ 2 SBS/PS: /cf1784 SG # 216: F 43m (T 2 d ) Lattice parameters: a = Lattice complex: Bi@ 16e(x, x, x) with x = 0.85; 48h(x, x, z) with (x,z) = (0.3,0.5932) and ( , ;occ.0.7); Sr@ 4c( 4 3, 4 1, 3 4 ); and 48h(x, x, z) with (x, z) = ( , ) and ( , ); 16e(x,x,x) with x = and x = 0.587; Al@ 48h(x,x,z) with (x,z) = (0.0468, ), (0.0895, ), (0.7942, ) and (0.4545, ); O@ 16e(x,x,z) with x = and z = ; 24 f (0,0,z) with z = ; 24g( 4 3, 4 3,z) with z = ; 48h(x,z,z) with x = and y = , 48h(x,x,z) with x = and z = 0.312; 48h(x,y,z) with (x,y,z) = (0.51, 0.49, 0.345; occ.0.5) and (0.331, 0.372, 0.628; occ.1/3); 48h(x, y, x) with (x, y) = (0.4047, ) and (0.796, 0.890; occ.0.6); 96i(x, y, z) with (x, y, z) = (0.0421, , ; occ.0.5), (0.1577, , ), (0.9, 0.826, ; occ.0.5) and (0.273, , ).
92 92 Structure 90 Prototype: Diopside CaMgSi 2 O 6 SBS/PS: /mp16 SG # 15: C2/c (C 2h 6 ) Lattice parameters: a = ,b = ,c = ,β = Lattice complex: Ca@ 4e(0,y, 1 4 ) with y = ; Mg@ 4e(0,y, 1 4 ) with y =.9082; Si@ 8 f (x,y,z) with x = ,y = ,z = ; 8 f (x,y,z) with x = ,y = ,z = , x = ,y = 0.25,z =.318, x = ,y = ,z =
93 93 Structure 91 Prototype: Goethite α-feo(oh) SBS/PS: /op40 SG # 62: Pnma (D 16 2h ) Lattice parameters: a = 0.995, b = 0.301, c = Lattice complex: Fe@ 4c(x, 4 1,z) with x = 0.145,z = 0.955; H@ 4c(x, 1 4,z) with x = 0.92,z = 0.62; O@ 4c(x, 1 4,z) with x = 0.801,z = 0.288, x = 0.947,z =
94 94 Structure 92 Prototype: Akaganeite β-feo(oh,cl) SBS/PS: /mp40 SG # 12: I2/m (C 3 2h ) Lattice parameters: a = 1.06,b = ,c = ,β = Lattice complex: Fe@ (0.858, 0.0, 0.341), (0.339, 0.0, 0.141); Cl@ (0, 0, 0); O@ (0.663, 0.0, 0.29), (0.657, 0.0, 0.03), (0.293, 0.0, 0.357), (0.039, 0.0, 0.332).
95 95 Structure 93 Prototype: Lepidocrocite γ-feo(oh) SBS/PS: /oc24 SG # 63: Bbmm (D 17 2h ) Lattice parameters: a = 1.24,b = 0.387,c = Lattice complex: Fe@ 0.822, 0.25, 0.0); O@ 0.21, 0.25, 0.0); OH@ 0.425, 0.25, 0.0.
96 96 Structure 94 Prototype: Jarosite KFe 3 (SO 4 ) 2 (OH) 6 SBS/PS: /R60 SG # 166: R 3m (D 3d 5 ) Lattice parameters: a = , c = (hexagonal axes) Lattice complex: Fe@ 9d(x, x,z) with x = ,z = ; S@ 6c(0,0,z) with z = ; O@ 6c(0,0,z) with z = ; O@ 18h(x, x,z) with x = 0.218,z = ; K@ 3a(0,0,0); OH@ 18h(x, x,z) with x = , z =
97 97 Structure 95 Prototype: Ice- I h H 2 O SBS/PS: /hp12 SG # 194: P6 3 /mmc (D 4 6h ) Lattice parameters: a = , c = Lattice complex: H@ 4 f ( 3 1, 3 2,z) with z = 0.173; 12k(x,2x,z) with x = and z = 0.024; 4 f ( 1 3, 2 3,z) with z =
98 98 Structure 96 Prototype: Ice- I c H 2 O SBS/PS: /cf24 SG # 227: Fd 3m (O 7 h ) Lattice parameters: a = Lattice complex: H@ 16c( 1 8, 1 8, 8 1 ); O@ 8a(0,0,0).
99 99 Structure 97 Prototype: CO 2 -Cubic SBS/PS: /cp12 SG # 205: Pa 3 (T 6 h ) Lattice parameters: a = Lattice complex: O@ 8c(x,x,x) with x = and x = ; C@ 4a(0,0,0).
100 100 Structure 98 Prototype: C 6 H 6 SBS/PS: /op48 SG # 61: Pbca (D 15 2h ) Lattice parameters: a = 0.744, b = 0.955, c = Lattice complex: All positions 8c(x, y, z): C@ ( , , ), ( , 0.046, ) and ( , , ); H@ ( , , ), ( , , ) and ( , , ).
101 101 Structure 99 Prototype: Sr 8 Ga 16 Ge 30 SBS/PS: /cp48 SG # 223: Pm 3n (O 3 h ) Lattice complex: a = Sr@ 2a(0,0,0); 24k(0,y,z) with y = and z = ; Ge,Ga@ 6c( 4 1,0, 2 1 ); 16i(x,x,x) with x = ; 24k(0,y,z) with y = and z =
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Διαβάστε περισσότεραEstimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Διαβάστε περισσότεραSUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Διαβάστε περισσότεραΝόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Διαβάστε περισσότεραTheoretical prediction and synthesis of (Cr 2/3 Zr 1/3 ) 2 AlC i-max phase
Supporting Information for: Figure Theoretical prediction and synthesis of (Cr 2/3 Zr 1/3 ) 2 AlC i-max phase Liugang Chen 1 *, Martin Dahlqvist 2, Thomas Lapauw 1,3, Bensu Tunca 1,3, Fei Wang 1, Jun Lu
Διαβάστε περισσότεραΤο άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Διαβάστε περισσότεραΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Διαβάστε περισσότεραΙ ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Διαβάστε περισσότεραΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
Διαβάστε περισσότερατροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Διαβάστε περισσότεραAppendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
Διαβάστε περισσότεραΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Διαβάστε περισσότεραNa/K (mole) A/CNK
Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA
Διαβάστε περισσότεραΑλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
Διαβάστε περισσότεραSample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C
0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02
Διαβάστε περισσότεραΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.
ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραMean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Διαβάστε περισσότεραBase Metal + Alloying Elements
2109101, 3 + (+ ) Base Metal + Alloying Elements (+ Impurities) = Fe + C + Mn + i + P + = Al + i + Mg + Cu + Fe = Fe + Cr + Ni + C; Cr > 13% 2 - / (, ) (Component)- (Phase)- Homogenous Distinct Portion
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραSupporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing
Διαβάστε περισσότεραΑναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
Διαβάστε περισσότεραΚεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων
Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ & Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΕΠΙΒΑΡΥΝΣΗ ΜΕ ΒΑΡΕΑ ΜΕΤΑΛΛΑ Ε ΑΦΩΝ ΤΗΣ
Διαβάστε περισσότεραΛιμνοποτάμιο Περιβάλλον και Οργανισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λιμνοποτάμιο Περιβάλλον και Οργανισμοί Ενότητα 14: Επίδραση ρύπανσης στα ψάρια Επίκ. Καθηγήτρια Δήμητρα Μπόμπορη Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραQuantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks
98 Scientific Note X : Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks Kimiko Seno and Yoichi Motoyoshi,**- +, +, ;,**. -,/ Abstract:
Διαβάστε περισσότεραΑτομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες
Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότεραŠ ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 2 Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 636 ˆ ˆ Šˆ Œ ˆŸ ˆŒˆ - Šˆ Œ Š ˆ ˆ 638 Š ˆ ˆ ˆ : ˆ ˆŸ 643 ˆ ˆ Šˆ Š 646 Œ ˆ Šˆ 652 Œ ˆ Šˆ Š ˆ -2 ˆ ˆ -2Œ 656 ˆ ˆ Šˆ Š œ Š ˆ Œ
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.
ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF
Διαβάστε περισσότεραInstruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE
ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE Θεωρητικό Μέρος REE και Περιοδικός Πίνακας H 1 Li 3 Na K Rb Cs Fr 11 19 37 55 87 Be Mg Ca Sr 4 12 20
Διαβάστε περισσότεραΜάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του
Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.
Διαβάστε περισσότεραpanagiotisathanasopoulos.gr
. Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραSection 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραSPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραSupporting Information
Supporting Information Prediction of Novel High-Pressure Structures of Magnesium Niobium Dihydride Chuanzhao Zhang,,, Guoliang Sun, Jingjing Wang, Cheng Lu,*,, Yuanyuan Jin, Xiaoyu Kuang,*, and Andreas
Διαβάστε περισσότεραΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΕΠΙΛΟΓΗ ΥΛΙΚΩΝ ΓΙΑ ΥΨΗΛΕΣ ΘΕΡΜΟΚΡΑΣΙΕΣ ΣΕ ΜΗΧΑΝΕΣ ΕΣΩΤΕΡΙΚΗΣ ΚΑΥΣΗΣ ΠΛΟΙΩΝ ΣΠΟΥΔΑΣΤΗΣ : ΜΙΧΑΛΗΣ ΠΑΠΑΔΟΥΛΗΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραParts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Διαβάστε περισσότεραΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν
Διαβάστε περισσότεραElectronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)
Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships in the Dugganite A 3 B 3 CD 2 O 14 Family (A = Sr, Ba or Pb; B = Mg or Zn; C = Te or W, and D = P or V) Hongwei Yu, Joshua Young,
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραΕργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Διαβάστε περισσότεραΑρχές Κρυσταλλοχημείας: Ιοντικές υποκαταστάσεις. Γεωχημεία (Υ4203) Χ. Στουραϊτη
Αρχές Κρυσταλλοχημείας: Ιοντικές υποκαταστάσεις Γεωχημεία (Υ4203) Χ. Στουραϊτη Υποκαταστάσεις μεταξύ κυρίων στοιχείων (στερεά διαλύματα) Υποκατάσταση Ιοντική Ακτίνα Ionic Radii (C.N.) Å Τύπος Fe +2
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραP Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï
P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)
ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραGalatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραElectronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) CPh 3 as a functional group in P-heterocyclic
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραDynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Διαβάστε περισσότερα1 s.e. 1 s.e. 1 s.e. 1 s.e. 1 s.e. 1 s.e.
Correlation U O/ Age (Ma) Age (Ma) Age (Ma) Age (Ma) Age (Ma) Age (Ma) 206Pb*/ 206Pb*/ 207Pb*/ 207Pb*/ 207Pb*/ 207Pb*/ of Concordia U U Th/ 206Pb/ 206Pb/ 207Pb/ 207Pb/ 207Pb/ 207Pb/ 238U 238U 235U 235U
Διαβάστε περισσότεραPartial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Διαβάστε περισσότεραCase 1: Original version of a bill available in only one language.
currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the
Διαβάστε περισσότεραDatabase of electron inelastic mean free path for elemental solids
Database of electron inelastic mean free path for elemental solids 1. Electron inelastic mean free path (IMFP) 2. Calculation method of electron inelastic mean free path 3. Figures for electron inelastic
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραΚεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα
Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν
Διαβάστε περισσότεραAssalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Διαβάστε περισσότεραΤμήμα Γεωτεχνολογίας & Περιβάλλοντος
Τμήμα Γεωτεχνολογίας & Περιβάλλοντος Ολιβινικά βιομηχανικά πετρώματα στο Βούρινο της υτικής Μακεδονίας Σπουδάστρια : Κουζέλη Ευλαμπία Επιβλέπων : Επίκ. Καθ. Ανδρέας Ιορδανίδης Γενικά χαρακτηριστικά του
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραAdvanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
Διαβάστε περισσότεραUDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότερα