Tree Transformations and Dependencies

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tree Transformations and Dependencies"

Transcript

1 Tree Transformations and Deendencies Andreas Maletti Institute for Natural Language Processing University of Stuttgart Nara Setember 6, 2011 A Maletti MOL

2 Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL

3 Warning! This won t be a regular survey talk A Maletti MOL

4 Warning! This won t be a regular survey talk Rather I want to show a useful techniue A Maletti MOL

5 Context-free Language Question How do you show that a language is not context-free? A Maletti MOL

6 Context-free Language Question How do you show that a language is not context-free? Answers uming lemma (BAR-HILLEL lemma) semi-linearity (PARIKH s theorem) A Maletti MOL

7 Context-free Language Hardly ever Let us assume that there is a CFG (long case distinction on the shae of its rules) Contradiction! A Maletti MOL

8 Tree Transformation Alication areas NLP XML rocessing syntax-directed semantics Examle t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 1 t 2 t 3 t 4 t n 3 t n 2 t n 1 t n A Maletti MOL

9 Tree Transducer Definition A formal model comuting a tree transformation A Maletti MOL

10 Tree Transducer Definition A formal model comuting a tree transformation Examle to-down or bottom-u tree transducer synchronous grammar (SCFG, STSG, STAG, etc) multi bottom-u tree transducer bimorhism A Maletti MOL

11 Tree Transducer Question How do you show that a tree transformation cannot be comuted by a class of tree transducers? A Maletti MOL

12 Tree Transducer Question How do you show that a tree transformation cannot be comuted by a class of tree transducers? Answers uming lemma (????) size and height deendencies domain and image roerties roerties under comosition (??) A Maletti MOL

13 Tree Transducer Question How do you show that a tree transformation cannot be comuted by a class of tree transducers? Tyical aroach Assume that it can be comuted Contradiction! A Maletti MOL

14 Examle t 1 t 2 t 3 t n 4 t n 3 t 2 t 1 t 4 t 3 t n 2 t n 3 t n 2 t n 1 t n t n 1 t n Question Can this tree transformation be comuted by a linear, nondeleting extended to-down tree transducer (XTOP)? A Maletti MOL

15 Examle t 1 t 2 t 3 t n 4 t n 3 t 2 t 1 t 4 t 3 t n 2 t n 3 t n 2 t n 1 t n t n 1 t n Question Can this tree transformation be comuted by a linear, nondeleting extended to-down tree transducer (XTOP)? Answer [Arnold, Dauchet 1982] No! (via indirect roof) A Maletti MOL

16 Another Examle γ γ t 1 t 2 t 3 t 1 t 2 t 3 Question Can this tree transformation be comuted by an XTOP? A Maletti MOL

17 Another Examle γ γ t 1 t 2 t 3 t 1 t 2 t 3 Question Can this tree transformation be comuted by an XTOP? Answer [, Graehl, Hokins, Knight 2009] No! (via indirect roof) A Maletti MOL

18 Yet Another Examle β β γ Question Can this tree transformation be comuted by an MBOT? β γ β γ γ A Maletti MOL

19 Yet Another Examle β β γ β β γ γ Question Can this tree transformation be comuted by an MBOT? MBOT linear, nondeleting multi bottom-u tree transducer γ A Maletti MOL

20 Yet Another Examle Question β β γ Can this tree transformation be comuted by an MBOT? β γ β γ MBOT linear, nondeleting multi bottom-u tree transducer γ Answer We ll know at the end A Maletti MOL

21 Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL

22 Extended To-down Tree Transducer Definition (XTOP) tule (Q, Σ,, I, R) Q: states Σ, : inut and outut symbols I Q: initial states [ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 1982] A Maletti MOL

23 Extended To-down Tree Transducer Definition (XTOP) tule (Q, Σ,, I, R) Q: states Σ, : inut and outut symbols I Q: initial states R T Σ (Q) Q T (Q): finite set of rules l and r are linear in Q var(l) = var(r) for every l r R [ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 1982] A Maletti MOL

24 Examle XTOP Examle XTOP (Q, Σ, Σ, {}, R) with Q = {,,, r} and Σ = {,,, } r r x x x x A Maletti MOL

25 Sentential Form L = {S S N N } A Maletti MOL

26 Sentential Form L = {S S N N } Definition (Sentential form) ξ, D, ζ T Σ (Q) L T (Q) such that v os(ξ) and w os(ζ) for every (v, w) D A Maletti MOL

27 Link Structure Definition rule l r R, ositions v, w N links v,w (l r) = {(vv, ww ) v os (l), w os (r)} Q A Maletti MOL

28 Link Structure Definition rule l r R, ositions v, w N links v,w (l r) = {(vv, ww ) v os (l), w os (r)} Q A Maletti MOL

29 Link Structure Definition rule l r R, ositions v, w N links v,w (l r) = {(vv, ww ) v os (l), w os (r)} Q A Maletti MOL

30 Derivation Definition ξ, D, ζ ξ[l] v, D links v,w (l r), ζ[r] w if rule l r R osition v os (ξ) osition w os (ζ) such that (v, w) D A Maletti MOL

31 Derivation Rules r r x x x x A Maletti MOL

32 Derivation Rules r r x x x x A Maletti MOL

33 Derivation Rules r r x x x x A Maletti MOL

34 Derivation Rules r r x x x x A Maletti MOL

35 Derivation Rules r r x x x x A Maletti MOL

36 Derivation Rules r r x x x x A Maletti MOL

37 Derivation Rules r r x x x x r r A Maletti MOL

38 Derivation Rules r r x x x x r r r r A Maletti MOL

39 Derivation Rules r r x x x x r r A Maletti MOL

40 Semantics of XTOP Definition the deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL

41 Semantics of XTOP Definition the deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL

42 Semantics of XTOP A Maletti MOL

43 Semantics of XTOP Examle D = {(ε, ε), (1, 1), (2, 2), (21, 21), (211, 211), (22, 221), (23, 222), (231, 2221), (232, 22221), (233, 22222)} A Maletti MOL

44 Semantics of XTOP Examle D = {(ε, ε), (1, 1), (2, 2), (21, 21), (211, 211), (22, 221), (23, 222), (231, 2221), (232, 22221), (233, 22222)} A Maletti MOL

45 Non-closure under Comosition t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 1 t 2 t 3 t 4 t n 3 t n 2 t 2 t 1 t 4 t 3 t n 2 t n 3 t n 1 t n t n 1 t n [ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 1982] A Maletti MOL

46 Secial Linking Structure Definition D L is inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D A Maletti MOL

47 Secial Linking Structure Definition D L is inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

48 Secial Linking Structure Definition D L is inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

49 Secial Linking Structure Definition D L is strictly inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D w 1 w 2 imlies v 1 v 2 v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

50 Secial Linking Structure Definition D L is strictly inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D w 1 w 2 imlies v 1 v 2 v v 1 w 1 w 2 v 2 w 1 w 2 A Maletti MOL

51 Deendencies Examle This linking structure is strictly (inut and outut) hierarchical A Maletti MOL

52 Deendencies v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

53 Deendencies v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

54 Deendencies v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

55 Deendencies v v 1 w 1 w 2 v 2 w 1 w 2 A Maletti MOL

56 Another Proerty Definition D L has bounded distance if k N such that D D if v, vw dom(d) with w > k, then w w with vw dom(d) w k Illustration: v > k vw A Maletti MOL

57 Another Proerty Definition D L has bounded distance if k N such that D D if v, vw dom(d) with w > k, then w w with vw dom(d) w k Illustration: k v vw vw A Maletti MOL

58 Another Proerty Definition D L has bounded distance if k N such that D D if v, vw dom(d) with w > k, then w w with vw dom(d) w k (symmetric roerty for range) A Maletti MOL

59 Bounded Distance Examle inut side: bounded by 1 outut side: bounded by 2 A Maletti MOL

60 Main Result Theorem The deendencies comuted by an XTOP are: strictly (inut and outut) hierarchical bounded distance A Maletti MOL

61 Comatibility Definition ξ, D, ζ is comatible with ξ, D, ζ if D D A Maletti MOL

62 Comatibility Definition ξ, D, ζ is comatible with ξ, D, ζ if D D set L is comatible with L if for all ξ, _, ζ L (some comutation) exists ξ, D, ζ L (imlemented comutation) exists comatible ξ, D, ζ L (comatible comutation) A Maletti MOL

63 Comatibility Illustration Some comutation A Maletti MOL

64 Comatibility Illustration Imlemented comutation A Maletti MOL

65 Comatibility Illustration Comatible comutation A Maletti MOL

66 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL

67 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n use boundedness A Maletti MOL

68 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n use boundedness A Maletti MOL

69 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL

70 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

71 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

72 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

73 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

74 Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n Theorem The deendencies above are incomatible with any XTOP A Maletti MOL

75 A First Instance t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t 4 t 3 t n 2 t n 3 t n 2 t n 1 t n t n 1 t n Theorem (ARNOLD, DAUCHET 1982) The transformation above cannot be comuted by any XTOP A Maletti MOL

76 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 A Maletti MOL

77 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 A Maletti MOL

78 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 use boundedness A Maletti MOL

79 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 use boundedness A Maletti MOL

80 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL

81 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 Theorem The deendencies above are incomatible with any XTOP A Maletti MOL

82 A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 Theorem (, GRAEHL, HOPKINS, KNIGHT 2009) The transformation above cannot be comuted by any XTOP A Maletti MOL

83 Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL

84 Extended Multi Bottom-u Tree Transducer Definition (MBOT) tule (Q, Σ,, I, R) Q: ranked alhabet of states Σ, : inut and outut symbols I Q 1 : unary initial states A Maletti MOL

85 Extended Multi Bottom-u Tree Transducer Definition (MBOT) tule (Q, Σ,, I, R) Q: ranked alhabet of states Σ, : inut and outut symbols I Q 1 : unary initial states R T Σ (Q) Q T (Q) : finite set of rules l is linear in Q rk() = r var( r) var(l) for every (l,, r) R A Maletti MOL

86 Examle MBOT Examle (Q, Σ, Σ, {f }, R) with Q = { (2), (1), (1), r (1), f (1) } and Σ = {,,, } f x x x x r r A Maletti MOL

87 New Linking Structure Definition rule l r R, ositions v, w 1,, w n N w = w 1 w n with n = rk() links v, w (l r) = Q i=1 n {(vv, w i w i ) v os (l), w i os (r i )} A Maletti MOL

88 New Linking Structure Definition rule l r R, ositions v, w 1,, w n N w = w 1 w n with n = rk() links v, w (l r) = Q i=1 n {(vv, w i w i ) v os (l), w i os (r i )} Illustration: A Maletti MOL

89 New Linking Structure Definition rule l r R, ositions v, w 1,, w n N w = w 1 w n with n = rk() links v, w (l r) = Q i=1 n {(vv, w i w i ) v os (l), w i os (r i )} Illustration: A Maletti MOL

90 Derivation Definition ξ, D, ζ ξ[l] v, D links v, w (l r), ζ[ r] w if rule l r R with rk() = n osition v os (ξ) w = w 1 w n os (ζ) with w 1 w n {w 1,, w n } = {w (v, w) D} A Maletti MOL

91 Derivation Rules f x x x x r r A Maletti MOL

92 Derivation Rules f x x x x r r A Maletti MOL

93 Derivation Rules f x x x x r r A Maletti MOL

94 Derivation Rules f x x x x r r A Maletti MOL

95 Derivation Rules f x x x x r r A Maletti MOL

96 Derivation Rules f x x x x r r A Maletti MOL

97 Derivation Rules f x x x x r r A Maletti MOL

98 Derivation Rules f x x x x r r r r A Maletti MOL

99 Derivation Rules f x x x x r r r r A Maletti MOL

100 Semantics of MBOT Definition MBOT M comutes deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL

101 Semantics of MBOT Definition MBOT M comutes deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL

102 Semantics of MBOT Examle D = {(ε, ε), (1, 2), (2, 1), (2, 3), (21, 1), (211, 11), (22, 32), (23, 31), (23, 33), (231, 31), (232, 331), (233, 332)} A Maletti MOL

103 Semantics of MBOT A Maletti MOL

104 Semantics of MBOT Examle Above deendencies are inut hierarchical strictly outut hierarchical A Maletti MOL

105 Semantics of MBOT Examle Above deendencies are inut hierarchical but not strictly strictly outut hierarchical A Maletti MOL

106 Semantics of MBOT v v 1 w 1 w 2 v 2 w 1 w 2 A Maletti MOL

107 Main Result Theorem The deendencies comuted by an MBOT are: inut hierarchical strictly outut hierarchical bounded distance A Maletti MOL

108 Link Structure for the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL

109 Link Structure for the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL

110 Link Structure for the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n Theorem Above deendencies are comatible with an MBOT A Maletti MOL

111 Another MBOT Examle (Q, Σ,, {f }, R) with Q = { (3), (3), r (3), f (1) } Σ = {,, β, γ} and = Σ {} f β β γ r r r r r γ r r r r r A Maletti MOL

112 Another MBOT β β γ γ β β γ γ taken from Examle 45 of [RADMACHER: An automata theoretic aroach to the theory of rational tree relations TR AIB , RWTH Aachen, 2008] {( l (β m (γ n ())), ( l (), β m (), γ n ())) l, m, n N} A Maletti MOL

113 Another MBOT Theorem β β γ β β γ γ These inverse deendencies are not comatible with any MBOT (because the dislayed deendencies are not strictly inut hierarchical) v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 γ A Maletti MOL

114 Another MBOT Theorem β β γ β β γ γ These inverse deendencies are not comatible with any MBOT (because the dislayed deendencies are not strictly inut hierarchical) v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 γ Theorem This tree transformation cannot be comuted by any MBOT A Maletti MOL

115 Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL

116 Synchronous Tree-Seuence Substitution Grammar Definition (STSSG) tule (Q, Σ,, I, R) with Q: doubly ranked alhabet Σ, : inut and outut symbols I Q 1,1 : doubly unary initial states [ZHANG et al: A tree seuence alignment-based tree-to-tree translation model Proc ACL, 2008] A Maletti MOL

117 Synchronous Tree-Seuence Substitution Grammar Definition (STSSG) tule (Q, Σ,, I, R) with Q: doubly ranked alhabet Σ, : inut and outut symbols I Q 1,1 : doubly unary initial states R T Σ (Q) Q T (Q) : finite set of rules rk() = ( l, r ) for every ( l,, r) R [ZHANG et al: A tree seuence alignment-based tree-to-tree translation model Proc ACL, 2008] A Maletti MOL

118 Yet Another Linking Structure Definition rule l r R, ositions v 1,, v m, w 1,, w n N with rk() = (m, n) links v, w ( l r) = m n {(v j v j, w iw i ) v j os (l j ), w i os (r i )} Q j=1 i=1 where v = v 1 v m and w = w 1 w n A Maletti MOL

119 Derivation Definition if rule l ξ, D, ζ ξ[ l] v, D links v, w ( l r R r), ζ[ r] w v = v 1 v m os (ξ) and w = w 1 w n os (ζ) v 1 v m, w 1 w n, and rk() = (m, n) linked ositions {w 1,, w n } = m j=1 {w (v j, w) D} {v 1,, v m } = n i=1 {v (v, w i) D} A Maletti MOL

120 A Final Theorem β β γ β β γ γ Examle This transformation can be comuted by an STSSG (because it is an inverse MBOT) γ A Maletti MOL

121 A Final Theorem β β γ β β γ γ Examle This transformation can be comuted by an STSSG (because it is an inverse MBOT) γ A Maletti MOL

122 A Final Theorem β β γ β β γ γ Examle This transformation can be comuted by an STSSG (because it is an inverse MBOT) γ Theorem Deendencies comuted by STSSG are (inut and outut) hierarchical bounded distance A Maletti MOL

123 A Final Instance β γ γ β Theorem These deendencies are not comatible with any STSSG v 1 w 2 v 1 w 1 β γ β v 2 w 1 v 2 w 1 w 2 γ A Maletti MOL

124 A Final Instance γ Theorem γ These deendencies are not comatible with any STSSG β β v 1 w 2 v 1 w 1 β γ β v 2 w 1 Theorem v 2 w 1 w 2 γ This transformation cannot be comuted by any STSSG A Maletti MOL

125 Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical A Maletti MOL

126 Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical MBOT hierarchical strictly hierarchical A Maletti MOL

127 Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical MBOT hierarchical strictly hierarchical STSSG hierarchical hierarchical A Maletti MOL

128 Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical MBOT hierarchical strictly hierarchical STSSG hierarchical hierarchical STAG A Maletti MOL

129 That s all, folks! Thank you for your attention! A Maletti MOL

130 References ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 20, 1982 ENGELFRIET, LILIN, MALETTI: Extended multi bottom-u tree transducers Acta Inf 46, 2009 MALETTI, GRAEHL, HOPKINS, KNIGHT: The ower of extended to-down tree transducers SIAM J Comut 39, 2009 RADMACHER: An automata theoretic aroach to rational tree relations Proc SOFSEM 2008 RAOULT: Rational tree relations Bull Belg Math Soc Simon Stevin 4, 1997 ZHANG, JIANG, AW, LI, TAN, LI: A tree seuence alignment-based tree-to-tree translation model Proc ACL 2008 A Maletti MOL

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Formal Semantics. 1 Type Logic

Formal Semantics. 1 Type Logic Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

How to register an account with the Hellenic Community of Sheffield.

How to register an account with the Hellenic Community of Sheffield. How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

About these lecture notes. Simply Typed λ-calculus. Types

About these lecture notes. Simply Typed λ-calculus. Types About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 9: Inversion Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα