Types and Logics. Programming Languages CS442. David Toman. School of Computer Science University of Waterloo
|
|
- Οκυροη Ασπασία Χατζηιωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Types and Logics Programming Languages CS442 David Toman School of Computer Science University of Waterloo David Toman (University of Waterloo) Types and Logics 1 / 20
2 Curry-Howard Isomorphism Idea types = formulæ programs = proofs Implication fragment of Propositional Logic and Simply-typed λ-calculus: π {x : θ} T : θ π λx.t : θ θ ( I) π T 1 : θ θ π T 2 : θ ( E) π (T 1 T 2 ) : θ What is the role of the β-rule? simplification of proofs! Simplification of proofs = cut elimination David Toman (University of Waterloo) Types and Logics 2 / 20
3 Conjunction Similar for the (, ) fragment: π T 1 : θ 1 π T 2 : θ 2 ( I) π T 1, T 2 : θ 1 θ 2 π T : θ 1 θ 2 π (pr 1 T ) : θ 1 ( E 1 ) we can now can prove, e.g., π T : θ 1 θ 2 π (pr 2 T ) : θ 2 ( E 2 ) ((A B) C) (A (B C)) Idea Conjunctions = Pairs David Toman (University of Waterloo) Types and Logics 3 / 20
4 Disjunction Can we use disjunction? π T : θ 1 π inr T : θ 1 θ 2 ( I 1 ) π T : θ 2 π inr T : θ 1 θ 2 ( I 2 ) π T : θ 1 θ 2 π T 1 : θ 1 θ π T 2 : θ 2 θ E π case T of inl(x) : (T 1 x) inr(x) : (T 2 x) : θ this is the canonical way of dealing with the inl and inr should be tagged by the disjunction. Idea Disjunctions = Variants David Toman (University of Waterloo) Types and Logics 4 / 20
5 What Happened to Negation? Is there any use for negation? not really (for program construction) can be introduced in the logic weak negation via a constant for false ( ): θ θ this only allows intuitionistic proofs there is a witness for every valid formula not true in classical logic ( θ θ) David Toman (University of Waterloo) Types and Logics 5 / 20
6 Type Variables and Quantification Idea We extend the grammar for types with type variables τ ::= ι τ τ α what do the free variables α stand for? only closed terms are valid types! we need quantifiers: τ ::= ι τ τ α α.τ α.τ ( α.τ universal type α.τ existential type) David Toman (University of Waterloo) Types and Logics 6 / 20
7 Universal Types Idea A universal type can be specialized by substituting a type for the quantified variable How is such a substitution manifested in a program/proof? similar to abstraction/application except this time the actual parameter is a type π, α T : τ π Λα.T : α.τ ( I) π T : α.τ π (T τ ) : [τ /α]τ ( E) needs a generalization of type assignments David Toman (University of Waterloo) Types and Logics 7 / 20
8 System F [Girard 1972] What is this good for? a clean way to understand complex types Definition (System F) Syntax: terms (T ) and types (τ): Reductions: T ::= x λx.t (T T ) Λα.T (T τ) τ ::= α τ τ α.τ (λx.t T ) [T /x]t (Λα.T τ) [τ/α]t David Toman (University of Waterloo) Types and Logics 8 / 20
9 How good is F? polymorphic identity: Λα.λx : α.x : α.α α unlike simply typed λ-calculus, it can type λx.(x x): λx : α.α α. (x α.α α x) : ( α.α α) ( α.α α) can it assign a type to Ω? NO! we can still prove strong normalization David Toman (University of Waterloo) Types and Logics 9 / 20
10 Church-style Encodings Idea We encode standard data types using Church-style terms and still assign types in system F Booleans: true = Λα.λx : α.λy : α.x : α.α α α false = Λα.λx : α.λy : α.y : α.α α α if = λb : α.α α α.λx : α.λy.α.(b α x y) : α not = λb : α.α α α.λβ.λt : β.λf : β.(b β f t) : ( α.α α α) ( α.α α α) David Toman (University of Waterloo) Types and Logics 10 / 20
11 Encoding of Products Pairs: pair = λx : α.λy : β.λγ.λz : α β γ.(z x y) : α β ( γ.α β γ) proj 1 = λp : Pair.(p α (λx : α.λy : β.x)) : α proj 2 = λp : Pair.(p β (λx : α.λy : β.y)) : β Reductions: proj 1 (pair u v) = (Λγ.λz : γ α β.z u v) α (λx : α.λy : β.x) = (λz : α β α.z u v) (λx : α.λy : β.x) = (λx : α.λy : β.x) u v = (λy : β.u) v = u David Toman (University of Waterloo) Types and Logics 11 / 20
12 Encoding of Natural Numbers Natural Numbers (Church numerals): Nat = α.α (α α) α Iterator: zero = Λα.λz : α.λs : α α.x succ = λn : Nat.Λα.λz : α.λs : α α.(s (n α z s)) iter = λn : Nat.λu : β.λv : β β.(n β u v) David Toman (University of Waterloo) Types and Logics 12 / 20
13 Encoding of Polymorphic Lists, Trees,... Lists (of β s): List(β) = α.α (β α α) α Binary Trees (β s in nodes and γ s in leaves): BinTree(β, γ) = α.(γ α) (β α α α) α Trees of branching type β: β-tree = α.α ((β α) α) α David Toman (University of Waterloo) Types and Logics 13 / 20
14 Existential Types What does α.τ stand for? Idea Allow to hide the type used e.g., in an implementation types used locally in modules/classes How do elements of α.τ look like? {τ, T } : α.τ if T : [τ /α]τ the type τ is hidden from users of α.τ David Toman (University of Waterloo) Types and Logics 14 / 20
15 Example (ML-like modules) We want a counter module with signature: Count. Count, Count Nat, Count Count with operations zero, get, and inc and we can have an implementation: {Nat, 0, λx.x, λx.x + 1 } {NatList, nil, λx.length x, λx.0 :: x } Given a counter c we would like to be able to write: (Pr 2 c)((pr 3 c)(pr1 1 c)) = 1 : Nat we need to associate the implementation with the type idea (fictional syntax!): open T : β.τ as{α, x} in T David Toman (University of Waterloo) Types and Logics 15 / 20
16 Typing Rules and Reductions Typing rules: π T : [τ /α]τ π {τ, T } : α.τ ( I) π T : α.τ π {α, x : τ} T : τ π open T as{α, x} in T : τ ( E) Reduction: (open T as{α, x} in T ) {τ, T } [τ/α, T /x]t David Toman (University of Waterloo) Types and Logics 16 / 20
17 Coding α.τ as an Universal Type the existential type α.τ can be coded: α.τ = β.( α.τ β) β operations (T : [θ/α]τ ): {θ, T } = Λβ.λx : α.τ β.x θ T open T 1 as{α, x} in T 2 : τ = T 1 τ (Λα.λx : τ.t 2 ) reduction: open{θ, T } as{α, x} in T : τ = (Λβ.λx : α.τ β.x θ T ) τ (Λα.λx : τ.t ) = (λx : α.τ τ.x θ T ) (Λα.λx : τ.t ) = (Λα.λx : τ.t ) θ T = [θ/α, T /x]t David Toman (University of Waterloo) Types and Logics 17 / 20
18 Types as Parameters and Kinds So far we can pass types as parameters to terms what would happen if we parametrized types themselves? Idea Add a level of kinds: K ::= K K ( is a proper type) Now type (functions) can be applied on types: Pair is now properly a type constructor... similarly List :, BinTree :, etc. We can construct System F ω (, ) polymorphism (in addition to (, ) in System F) still strongly normalizing Can we repeat the construction again? no: adding 3rd level = inconsistent (logical) system David Toman (University of Waterloo) Types and Logics 18 / 20
19 (Almost) Dependent Types OK is there (, ) polymorphism (and what would that be?) Idea Parametrize types by values. for example λx : Nat : Nat n array[n] of Nat true dependent types are proper (saturated) types! and the above is a type constructor (so a coercion is needed) David Toman (University of Waterloo) Types and Logics 19 / 20
20 Summary (Intuitionistic) Logics give natural explanations of many (if not most) constructs in programming languages differences = variant syntax Several surprising results: provable termination for powerful languages (F ω ) Basis for industry-strength languages: SML/NJ, Haskell polymorphic extensions of JAVA David Toman (University of Waterloo) Types and Logics 20 / 20
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
About these lecture notes. Simply Typed λ-calculus. Types
About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Proving with Computer Assistance Lecture 2. Herman Geuvers
Proving with Computer Assistance Lecture 2 Herman Geuvers 1 Typed λ calculus as the basis for a Proof Assistant (e.g. Coq) λ-term program proof type specification formula Integrated system for proving
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Introduction to Type Theory February 2008 Alpha Lernet Summer School Piriapolis, Uruguay. Herman Geuvers Nijmegen & Eindhoven, NL
Introduction to Type Theory February 2008 Alpha Lernet Summer School Piriapolis, Uruguay Herman Geuvers Nijmegen & Eindhoven, NL Lecture 3: Polymorphic Type Theory: Full polymorphism and ML style polymorphism
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Foundations of Computer Science ENGR 3520 Fall 2013 Thursday, Nov 21, 2013
Foundations of Computer Science Lecture Notes ENGR 3520 Fall 2013 Thursday, Nov 21, 2013 λ-calculus λ-terms. A λ-term is either: A variable x, y, z,... λx.m M N (M) (where x is a variable and M a λ-term)
T λx. (λy. x) F λx. (λy. y) if λpca. pca
#,, - Class 32: Computability in Theory and Practice Menu Lambda Calculus Review Computability in Theory and Practice Learning to Count CS50: Computer Science University of Virginia Computer Science David
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Type Theory and Coq. Herman Geuvers. Principal Types and Type Checking
Type Theory and Coq Herman Geuvers Principal Types and Type Checking 1 Overview of todays lecture Simple Type Theory à la Curry (versus Simple Type Theory à la Church) Principal Types algorithm Type checking
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;
λρ-calculus Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences,
The λ-calculus. Lecturer: John Wickerson. Phil Wadler
The λ-calculus Lecturer: John Wickerson Phil Wadler A tiny bit of Java expr ::= expr + expr expr < expr x n block ::= cmd { cmd... cmd } cmd ::= expr; if(cmd) block else block; if(cmd) block; try{cmd}
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Introduction to Type Theory February 2008 Alpha Lernet Summer School Piriapolis, Uruguay. Herman Geuvers Nijmegen & Eindhoven, NL
Introduction to Type Theory February 2008 Alpha Lernet Summer School Piriapolis, Uruguay Herman Geuvers Nijmegen & Eindhoven, NL Lecture 1: Introduction, Overview, Simple Type Theory 1 Types and sets Types
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
LAP 2013 Problems in formulating the consecution calculus of contraction less relevant logics
LAP 2013 Problems in formulating the consecution calculus of contraction less relevant logics Mirjana Ilić, Branislav Boričić Faculty of Economics, Belgrade, Serbia mirjanailic@ekof.bg.ac.rs boricic@ekof.bg.ac.rs
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
CS-XXX: Graduate Programming Languages. Lecture 27 Higher-Order Polymorphism. Matthew Fluet 2012
CS-XXX: Graduate Programming Languages Lecture 27 Higher-Order Polymorphism Matthew Fluet 2012 Looking back, looking forward Have defined System F. Metatheory (what properties does it have) What (else)
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Formal Semantics. 1 Type Logic
Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Χρειάζεται να φέρω μαζί μου τα πρωτότυπα έγγραφα ή τα αντίγραφα; Asking if you need to provide the original documents or copies Ποια είναι τα κριτήρια
- University Θα ήθελα να εγγραφώ σε πανεπιστήμιο. Stating that you want to enroll Θα ήθελα να γραφτώ για. Stating that you want to apply for a course ένα προπτυχιακό ένα μεταπτυχιακό ένα διδακτορικό πλήρους
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Finitary proof systems for Kozen s µ
Finitary proof systems for Kozen s µ Bahareh Afshari Graham Leigh TU Wien University of Gothenburg homc & cdps 16, Singapore 1 / 17 Modal µ-calculus Syntax: p p φ ψ φ ψ φ φ x µx φ νx φ Semantics: For Kripke
Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
ΕΙΣΑΓΩΓΗ ΣΤΟN ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΟN ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Εμβέλεια Μεταβλητών Εμβέλεια = το τμήμα του προγράμματος στο οποίο έχει ισχύ ή είναι ορατή η μεταβλητή.
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.
Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Iterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=