Asymmetric Transamination of α-keto Acids Catalyzed by. Chiral Pyridoxamines
|
|
- Ἀδράστεια Βιλαέτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Asymmetric Transamination of α-keto Acids Catalyzed by Chiral Pyridoxamines Xiaoyu Lan, Chuangan Tao, Xuliang Liu, Aina Zhang, Baoguo Zhao* The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai , P. R. China Supporting Information Table of Contents General methods S-2 Synthesis of compound 6 S-2 Synthesis of compound 7 S-5 Synthesis of compounds 8 S-7 Synthesis of compound 9 S-9 Synthesis of compounds 10 S-10 Synthesis of pyridoxamines 3d-f S-12 Synthesis of pyridoxamines 3a-c and 3g S-13 Representative procedure for the asymmetric transamination S-14 Characterization data S-15 The X-ray structure of compound (S,R)-8 S-24 S-1
2 General Methods. All commercially available reagents were used without further purification unless otherwise stated. Toluene and THF were freshly distilled from sodium-benzophenone under argon atmosphere. Dichloromethane was freshly distilled from CaH 2. Methanol was freshly distilled after refluxing with magnesium turnings. Column chromatography was performed on silica gel ( mesh). 1 H NMR spectra were recorded on a 400 or 600 MHz NMR spectrometer and 13 C NMR spectra were recorded on a 100 or 150 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. α-keto acids including 2-oxopentanoic acid (11b), 2-oxooctanoic acid (11c), 2-oxo-3-phenylpropanoic acid (11j), 4-methyl-2-oxovaleric acid (11l), and 2-oxopentanedioic acid (11o) were purchased commercially. α-keto acids including 4-(naphthalen-1-yl)-2-oxobutanoic acid (11a), 2-oxotridec-12-enoic acid (11e), 8-(benzyloxy)-2-oxooctanoic acid (11f), 4-mesityl-2-oxobutanoic acid (11h), 4-(2,3-dihydrobenzofuran-5-yl)-2-oxobutanoic acid (11i), 4-ethyl-2-oxohexanoic acid (11m), and 2-oxo-4,4-diphenylbutanoic acid (11n) were prepared by addition of appropriate Grignard reagents to diethyloxalate followed by hydrolysis with acid or base. 1,2 α-keto acids 2-oxodecanoic acid (11d) was prepared by addition of n-octylmagnesium bromide to mono-tert-butyloxalic acid-n-methoxy-n-methylamide followed by hydrolysis with acid. 3.4 α-keto acid 4-(biphenyl-2-yl)-2-oxobutanoic acid (11g) was prepared from 1,4-diacetylpiperazine-2,5-dione and 2-(biphenyl-2-yl)acetaldehyde by following literature procedure. 5 Procedure for Synthesis of Compound 6 (Scheme 2) S-2
3 (1) Synthesis of compound 5 Step a: To a 2-L round-bottom flask vial equipped with a stirrer bar were added glycine ethyl ester hydrochloride (100.0 g, mmol), dichloromethane (1000 ml), and dry Et 3 N (145.2 g, mmol). After the mixture was cooled to 0 C with ice bath, ethyl succinyl chloride (117.9 g, mmol) was added dropwise over 30 min. The reaction was allowed to warm up to room temperature and then stirred for 4 h. The reaction mixture was washed with H 2 O (300 ml) and saturated NaHCO 3 aqueous solution (300 ml 2), dried over anhydrous Na 2 SO 4, filtered, and concentrated to give a white solid. The solid was dried over P 2 O 5 in vaccum via oil pump to give the product 24 (160.7 g, 97%). 24: White solid; m.p o C; IR (KBr) 3321, 1748, 1734, 1655, 1552, 1212 cm -1 ; 1 H NMR (600 MHz, CDCl 3 ) δ 6.29 (s, 1H), 4.19 (q, J = 7.2 Hz, 2H ), 4.12 (q, J = 7.2 Hz, 2H), 4.00 (d, J = 4.8 Hz, 2H), 2.65 (t, J = 6.6 Hz, 2H), 2.54 (t, J = 6.6 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 172.7, 171.8, 169.8, 61.1, 60.4, 41.2, 30.3, 29.3, 13.93, 13.90; HRMS m/z Calcd. For C 10 H 18 NO 5 (M + H) + : ; Found: Step b: To a 2-L flame-dried, three-neck, round-bottom flask equipped with a stirrer bar and a reflux condenser was added trichloromethane (1000 ml). To the stirred trichloromethane were added phosphorus pentoxide (304 g, mmol) and a solution of compound 24 (160.0 g, 693 mmol) in trichloromethane (500 ml). After the mixture was stirred at reflux for 8 h, the solvent was immediately poured out. S-3
4 NaHCO 3 (250 g) was added and mixed together with the residue before the reaction mixture was cooled down. The purpose to introduce NaHCO 3 immediately is to prevent the unreacted P 2 O 5 to absorb moisture to form a whole sticky block. The mixed solid was slowly transferred to a container containing a stirred mixture of NaHCO 3 (250 g) and H 2 O (2000 ml) at 0 o C. After the reaction residue was completely dissolved, the mixture was extracted with ethyl acetate (1000 ml 3). The combined organic layers were dried over anhydrous Na 2 SO 4, filtered, concentrated via rotary evaporator under reduced pressure to give compound 5 as a colorless oil (120.0 g, 81%). 5: Colorless oil; IR (KBr) 1734, 1689, 1620, 1593, 1099 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) δ 5.88 (s, 1H), 4.08 (q, J = 7.2 Hz, 2H), 4.01 (q, J = 7.2 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 2.67 (t, J = 7.6 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H); HRMS m/z Calcd. For C 10 H 16 NO 4 (M + H) + : ; Found: (2) Synthesis of compound 6 To a 500 ml round-bottom flask equipped with a magnetic stirrer bar were added compound 5 (120.0 g, mmol) and diethyl maleate 4(97.0, mmol). The mixture was stirred at 140 C for 36 h. The reaction was completed as monitored by TLC. The mixture was purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 5:1) to give compound 6 as a light yellow solid (100.0 g, 52%). 6: Light yellow solid; m.p o C; IR (KBr) 3221, 1724, 1694, 1580, 1566, 1451, 1042 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) δ (s, 1H), 8.44 (s, 1H), (m, 4H), 4.12 (q, J = 7.2 Hz, 2H), 2.99 (t, J = 7.6 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), (m, 6H), 1.22 (t, J = 7.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 172.7, S-4
5 167.7, 167.2, 153.4, 146.9, 142.2, 126.9, 115.2, 63.0, 61.9, 60.3, 33.1, 29.6, 14.1, 14.0, 13.7; HRMS m/z Calcd. For C 16 H 22 NO 7 (M + H) + : ; Found: Procedure for Synthesis of Compound 7 (Scheme 2) Step a: To a dry 1-L round-bottom flask equipped with a magnetic stirrer bar were added compound 6 (47.0 g, mmol), KCO 3 (23.0 g, mmol), and dry acetonitrile (500 ml). After the mixture was stirred at 40 C for 10 min, benzyl bromide (23.8 g, mmol) was added dropwise over 30 min. After stirring at 40 C for 5 h, the mixture was filtered. The filtrate was concentrated via rotary evaporator under reduced pressure and purified by chromatography on silica gel (petroleum ether / ethyl acetate = 3:1) to give the product 25 as a yellow solid (54.0 g, 91%). 25: Yellow solid; m.p o C; IR (KBr) 1732, 1474, 1463, 1370, 1314, 1046 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) δ 8.37 (s, 1H), (m, 5H), 5.21 (s, 2H), (m, 4H), 4.11 (q, J = 7.2 Hz, 2H), 3.23 (t, J = 7.6 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 172.9, 165.9, 165.0, 151.3, 149.3, 137.4, 135.6, 131.3, 128.6, 128.3, 127.1, 125.3, 71.6, 62.0, 61.9, 60.3, 33.0, 30.5, 14.2, 14.0, 13.9; HRMS m/z Calcd. For C 23 H 28 NO 7 (M + H) + : ; Found: S-5
6 Step b: To a dry 1-L round-bottom flask equipped with a magnetic stirrer bar were added compound 25 (54.0 g, mmol) and dry toluene (500 ml). After the mixture was cooled to 0 o C with ice bath, lithium tert-butoxide (31.0 g, mmol) was added. The reaction was allowed to warm up to room temperature and stirred for 5 h at the temperature. After the reaction was completed as monitored by TLC, the reaction mixture was poured into HCl solution (1.0 M, 390 ml) at 0 o C and then extracted with ethyl acetate (400 ml 2). The combined organic layers were dried over anhydrous Na 2 SO 4, filtered, and concentrated via rotary evaporator under reduced pressure to give the product 26 as a white solid (47.2 g, 98%). 26: White solid; m.p o C; IR (KBr) 1734, 1637, 1566, 1369, 1309, 1150 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) For enol form (85%): δ 10.5 (s, 1H), 8.34 (s, 1H), (m, 5H), 5.23 (s, 2H), 4.46 (q, J = 7.2 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 3.55 (s, 2H), (m, 6H); For ketone form (15%): δ 8.59 (s, 1H), (m, 5H), 5.26 (s, 2H), 4.47 (q, J = 7.2 Hz, 2H), 4.24 (q, J = 7.2 Hz, 2H), 3.83 (dd, J = 8.4, 4.4 Hz, 1H), 3.62 (dd, J = 17.6, 4.4 Hz, 1H), 3.41 (dd, J = 17.6, 8.4 Hz, 1H), 1.37 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H); HRMS m/z Calcd. For C 21 H 22 NO 6 (M + H) + : ; Found: Step c: To a 1-L round-bottom flask equipped with a magnetic stirrer bar were added compound 26 (47.2 g, mmol), ethanol (500 ml), concentrated hydrochloric acid (53 ml), and trimethylchlorosilane (114.2 g, mmol). After stirring at reflux for 17 h, the mixture was submitted to filtration to give a red solid. The solid was dissolved in dichloromethane (500 ml). After the mixture was cooled to 0 o C with ice bath, H 2 O (500 ml) and sodium bicarbonate (32.0 g) were added. The mixture was allowed to warm up to room temperature, stirred for 1 h, and separated. The aqueous layer was extracted with dichloromethane (300 ml 2). The combined organic layers were dried over anhydrous Na 2 SO 4, filtered, and concentrated via rotary evaporator under reduced pressure to give the product 7 as a white solid (32.0 g, 84%). 7: White solid; m.p o C; IR (KBr) 1732, 1711, 1495, 1469, 1458 cm -1 ; 1 H S-6
7 NMR (400 MHz, CDCl 3 ) δ 8.56 (s, 1H), (m, 5H), 5.25 (s, 2H), 4.69 (q, J = 7.2 Hz, 2H), (m, 2H), (m, 2H), 1.37 (t, J = 7.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 202.7, 166.4, 163.8, 149.7, 143.2, 135.4, 128.6, 128.3, 127.2, 127.0, 126.5, 72.1, 62.2, 36.6, 27.8, 14.0; HRMS m/z Calcd. For C 18 H 18 NO 4 (M + H) + : ; Found: Procedure for Synthesis of Compounds 8 (Scheme 2) Step a: To a solution of compound 7 (10.0 g, 32.1 mmol) and (S)-(-)-tert-butylsulfinamide (38.9 g, mmol) in anhydrous THF (500 ml) was added Ti(OEt) 4 (73.0 g, mmol) under stirring. After stirring at reflux for 44 h, the reaction mixture was cooled to room temperature and then submitted to rotary evaporation to remove the THF solvent. To the residue was added ethyl acetate (800 ml). The mixture was slowly poured into a saturated NaHCO 3 solution (1000 ml) under rapid stirring, stirred overnight, and filtered via a pad of cotton. The organic layer was collected and concentrated via rotary evaporator under reduced pressure. To the residue was added H 2 O (500 ml). The mixture was stirred for 3 h and filtered to give a brown solid. The solid was further purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 1:1) to give compound 27 as a yellow solid (10.3 g, 77%). S-7
8 27: Yellow solid; m.p o C; [α] 25 D = (c 0.50, CH 3 OH); IR (KBr) 1739, 1614, 1565, 1489, 1308 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ), δ 8.46 (s, 1H), (m, 5H), 5.22 (s, 2H), 4.37 (q, J = 7.2 Hz, 2H), (m, H), (m, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.28 (s, 9H); 13 C NMR (100 MHz, CDCl 3 ) δ 179.5, 164.5, 162.9, 150.3, 141.4, 135.6, 128.8, 128.7, 128.5, 127.5, 127.3, 72.2, 62.0, 58.2, 31.5, 30.7, 22.5, 14.1; HRMS m/z Calcd. For C 22 H 27 N 2 O 4 S (M + H) + : ; Found: Step b: To a stirred mixture of compound 27 (10.0 g, 24.1 mmol) and anhydrous MeOH (100 ml) was slowly added NaBH 4 (2.7 g, 71.4 mmol) at -78 o C. The mixture was stirred at -78 o C for 30 min, warmed up to room temperature, and stirred for additional 3 h at room temperature, quenched with saturated NH 4 Cl solution under ice bath until no gas came out, concentrated via rotary evaporator under reduced pressure to remove CH 3 OH, and extracted with ethyl acetate (300 ml 2). The combined organic layers were dried over NaSO 4, filtered, concentrated, and purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 1:1) to give compound (S,S)-8 (R f = 0.3, petroleum ether / ethyl acetate = 1:1) (2.9 g, 29%) and (S,R)-8 (R f = 0.2, petroleum ether / ethyl acetate = 1:1) (5.2 g, 52%). The total yield of the two diastereomers is 84% based on compound 27. (S,S)-8:White solid; m.p o C; [α] 25 D = (c 1.0, CH 3 OH); IR (KBr) 3185, 1738, 1500, 1488 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) δ 8.29 (s, 1H), (m, 5H), 5.21 (d, J = 11.6 Hz, 1H), 5.17 (d, J = 11.6 Hz, 1H), (m, 1H), 4.43 (q, J = 7.2 Hz, 2H), 4.15 (s, 1H), (m, 1H), (m, 1H,), (m, 1H), (m, 1H), 1.35 (t, J = 7.2 Hz, 3H), 1.19 (s, 9H). (S,R)-8:White solid; m.p o C; [α] 25 D = (c 0.5, CH 3 OH); IR (KBr) 3092, 1733, 1480, 1462, 1302, 1067 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) δ 8.28 (s, 1H), (m, 5H,), 5.19 (d, J = 12.0 Hz, 1H), 5.14 (d, J = 12.0 Hz, 1H), (m, 1H), (m, 2H), 3.59 (d, J = 9.6 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.18 (s, 9H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.0, 157.9, 150.7, 137.2, 136.1, 134.9, 128.6, 128.2, S-8
9 127.8, 127.3, 72.0, 61.8, 59.7, 56.2, 33.6, 31.3, 22.6, 14.1; HRMS m/z Calcd. For C 22 H 29 N 2 O 4 S (M + H) + : ; Found: Synthesis of Compound 9 (Scheme 2) Step a: To a stirred solution of compound (S,R)-8 (5.2 g, 12.5 mmol) in anhydrous THF (100 ml) was slowly added LiAlH 4 (1.0 g, 26.4 mmol) at -78 o C. The mixture was stirred at -78 o C for 30 min, warmed up to room temperature, and then stirred at room temperature for additional 1 h. THF (100 ml) was added. The mixture was cooled down to 0 o C and then quenched by successive addition of water (1.0 ml) and aqueous sodium hydroxide solution (1.0 ml, 10% m/m). After stirring at room temperature for 1 h, the reaction mixture was filtered via a pad of celite. The filtrate was concentrated via rotary evaporation. To the residue were added ethyl acetate (20 ml) and petroleum ether (20 ml). The resulting mixture was stirred at room temperature for 30 min and then submitted to filtration to give the product 28 as a white solid (4.7 g, 99%). 28: White solid; m.p o C; [α] 25 D = (c 1.0, CH 3 OH); IR (KBr) 3378, 3066, 3036, 1483, 1373 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (s, 1H), (m, 5H), 5.17 (d, J = 11.6 Hz, 1H), 5.14 (d, J = 11.6 Hz, 1H), (m, 1H), 4.89 (dd, J = 13.6, 6.8 Hz, 1H), 4.76 (dd, J = 13.6, 5.6 Hz, 1H), 3.93 (d, J = 8.0 Hz, 1H), 3.84 (dd, J = 6.8, 5.6 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 1H), 1.20 (s, 9H); 13 C NMR (100 MHz, CDCl 3 ) δ 158.8, 153.5, 138.0, 137.8, 137.7, 135.6, 129.6, 129.1, 128.6, 72.4, 60.2, 57.2, 56.4, 33.8, 31.7, 23.1; HRMS m/z Calcd. For C 20 H 27 N 2 O 3 S (M + H) + : ; Found: S-9
10 Step b: To a 1-L round-bottom flask equipped with a magnetic stirrer bar were added compound 28 (2.0 g, 5.3 mmol) and HCl aqueous solution (400 ml, 6.0 M). The reaction was refluxed at 150 o C for 4 h and then concentrated via rotary evaporation under reduced pressure. To the residue was added dichloromethane (50 ml). After stirring at room temperature for 10 min, the mixture was filtered. The solid collected and dried in vacuum via oil pump to give the compound 9 as a white solid (1.3 g, 97%). 9: White solid; m.p o C; [α] 25 D = (c 0.50, CH 3 OH); IR (KBr) 3373, 3285, 3054, 1441, 1472, 1401, 1387 cm -1 ; 1 H NMR (600 MHz, DMSO-d 6 ) δ (s, 1H), 8.55 (s, 3H), 8.32 (s, 1H), (m, 1H), 4.87 (d, J = 17.4 Hz, 1H), 4.82 (d, J = 17.4 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 1H); 13 C NMR (100 MHz, DMSO-d 6 ) δ 151.9, 151.0, 145.9, 136.2, 126.3, 57.7, 52.2, 28.5, 27.8; HRMS m/z Calcd. For C 9 H 13 N 2 O 2 (M + H) + : ; Found: Procedures for the Synthesis of Compounds 10a-g using 10e (R = CH 2 NBocCH 3 ) as the representative example (Scheme 2) To a 100 ml round-bottom flask equipped with a magnetic stirrer bar were added compound 9 (3.86 g, 15.3 mmol) and carboxylic acid 29e (2.27 g, 12.0 mmol), Et 3 N S-10
11 (4.86 g, 48.0 mmol), and dry dimethylformamide (35 ml). After the mixture was stirred at room temperature for 30 min, ethyl cyanoglyoxalate-2-oxime (1.7 g, 12.0 mmol) was added. The resulting mixture was stirred at room temperature for another 30 min, then N-(3-dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride (EDCI) (3.4 g, 17.7 mmol) was added in one portion. The reaction mixture was stirred at room temperature for 4 h and then concentrated via rotary evaporation under reduced pressure. The residue was submitted to flash chromatography on silica gel (dichloromethane / methanol = 10:1) to give compound 10e as a white solid (2.2 g, 52%). 10e: White solid; m.p o C; [α] 25 D = 23.6 (c 0.50, CH 3 OH); IR (KBr) 3273, 3082, 1701, 1655, 1554, 1394 cm -1 ; 1 H NMR (600 MHz, CD 3 OD) δ 7.94 (s, 1H), (m, 1H), 4.74 (d, J = 13.2 Hz, 1H), 4.69 (d, J = 13.2Hz, 1H), 3.87 (d, J = 15.6 Hz, 1H), 3.83 (d, J = 15.6 Hz, 1H), (m, 1H), 2.93 (s, Me for the cis or trans amide isomer), 2.92 (s, Me for the trans or cis amide isomer), (m, 1H), (m, 1H), (m, 1H), 1.45 (s, tert-bu for the cis or trans amide isomer), 1.44 (s, tert-bu for the trans or cis amide isomer); 13 C NMR (150 MHz, CD 3 OD) for the cis and trans amide isomers: δ 170.9, 170.7, 158.1, 157.6, 156.6, 153.1, 137.9, 136.5, 134.4, 134.3, 81.5, 57.53, 57.48, 53.1, 52.69, 52.65, 36.5, 36.3, 33.1, 32.9, 31.5, 28.6; HRMS m/z Calcd. For C 17 H 26 N 3 O 5 (M + H) + : ; Found: S-11
12 Procedures for Synthesis of Pyridoxamines 3d-f Using 3e as the Representative Example (Scheme 2) Step a: To the mixture of compound 10e (2.2 g, 6.3 mmol) and dry THF (30 ml) were added diphenylphosphoryl azide (DPPA) (2.55 g, 9.3 mmol) and 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) (2.44 g, 16.1 mmol) at 0 o C. The mixture was stirred at room temperature for 8 h and then concentrated via rotary evaporation under reduced pressure. The residue was submitted to flash chromatography on silica gel (petroleum ether / acetone = 1:1) to give compound 30e as a white solid (1.2 g, 51%). Step b: The obtained azide 30e (1.2 g) was dissolved in dry THF (30 ml). To the solution was added Pd/C (0.4 g, 10% Pd on carbon, wetted with 55% H 2 O). The mixture was stirred under 1 atm of H 2 atmosphere at room temperature for 4 h and then filtered. The filtrate was dried over Na 2 SO 4, filtered, and concentrated via rotary evaporation under reduced pressure. The residue was submitted to flash chromatography on silica gel (dichloromethane / methanol = 5:1) to give compound 31e as a white solid (1.0 g, 90%). S-12
13 31e: White solid; m. p o C; [α] 25 D = 29.7 (c 0.50, CH 3 OH); IR (KBr) 3268, 1702, 1651, 1544, 1460, 1393 cm -1 ; 1 H NMR (600 MHz, CD 3 OD) δ 7.87 (s, 1H), (m, 1H), (m, 4H), (m, 1H), (m, 3H for the Me of trans/cis amide isomers), (m, 1H), (m, 1H), (m, 1H), (m, 9H for the tert-bu groups of the trans/cis amide isomers); 13 C NMR (150 MHz, CD 3 OD) δ 170.7, 170.6, 158.0, 157.6, 157.0, 156.7, 154.4, 154.2, 139.2, 136.2, 136.0, 132.0, 131.4, 81.5, 53.0, 52.7, 52.5, 52.4, 39.4, 39.2, 36.6, 36.3, 33.1, 32.8, 31.5, 28.7; HRMS m/z Calcd. For C 17 H 27 N 4 O 4 (M + H) + : ; Found: Step c: To a stirred solution of TMSCl (6.21 g, 57.1 mmol) in anhydrous DCM (20 ml) was added MeOH (5 ml) at 0 o C. The mixture was stirred at 0 o C for 30 min. A solution of compound 31e (1.0 g, 2.86 mmol) in MeOH (10 ml) was added via syringe at 0 o C. The mixture was warmed to room temperature and stirred at this temperature for 3 h. The solvent was removed by rotary evaporation in vacuo. The residue was washed with ether and dried under reduced pressure (oil pump) to give compound 3e (1.0 g, 98%) as its HCl salt. Procedures for Synthesis of Pyridoxamines 3a-c and 3g (Scheme 2) Compounds 3a-c and 3g were prepared in 30% (0.075 g), 37% (0.10 g), 50% (0.20 g), and 50% (0.050 g), respectively, from 10a-c (10a: 0.25 g, 10b: 0.27 g, 10c: S-13
14 0.40 g) and 10g (0.10 g) by following a procedure similar to that applied to 3e but without the corresponding deprotection step. Representative Procedure for the 3e-Catalyzed Asymmetric Transamination of α-keto Acids 11 (Table 2, for 13a) To a 5 ml vial equipped with a magnetic stirrer bar were added 4-(naphthalen-1-yl)-2-oxobutanoic acid (11a) ( g, 0.10 mmol), 2,2-diphenylglycine (12) ( g, 0.10 mmol), chiral pyridoxamine 3e ( g, mmol), MeOH (0.70 ml), and H 2 O (0.30 ml). After stirring at 20 C for 6 days, the reaction mixture was transferred to a 25 ml round-bottom flask. MeOH was added until all the sold was dissolved. Then silica gel (0.20 g) was added. After removal of the solvent in vacuo at 30 C, the resulting residue was submitted to column chromatography on silica gel (EtOH / ethyl acetate / 25-28% ammonia solution = 100:58:16) to give compound 13a ( g, 76% yield, 70% ee) as a white solid. The enantiomeric excess of 13a was deteremined by HPLC analysis after the amino acid was converted to its methyl ester by treatment with CH 2 N 2 in methanol. The enantiomeric excesses of 13b-o were deteremined by HPLC analysis after the amino acids were converted to N-benzoyl methyl esters by treatment with thionyl chloride in methanol and subsequent reaction with benzoyl chloride. 6 References (1) Zhu, L.; Chen, H.; Meng, Q.; Fan, W.; Xie, X.; Zhang, Z. Tetrahedron 2011, 67, (2) Asano, Y.; Yamada, A.; Kato, Y.; Yamaguchi, K.; Hibino Y.; Hirai, K.; Kondo, K. J. Org. Chem.1990, 55, (3) Nimitz, J. S.; Mosher, H. S. J. Org. Chem.1981, 46, 211. (4) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc.2010, 132, S-14
15 (5) Balducci, D.; Conway, P. A.; Sapuppo, G.; Müller-Bunz, H.; Paradisi, F. Tetrahedron 2012, 68, (6) Basra, S.; Fennie, M. W.; Kozlowski, M. C. Org. Lett. 2006, 8, Characterization Data Scheme 2, compound 3a White solid; m.p o C; [α] 25 D = 34.5 (c 0.25, CH 3 OH); IR (KBr) 3269, 1636, 1538, 1460, 1332, 1294 cm -1 ; 1 H NMR (600 MHz, CD 3 OD) δ 7.85 (s, 1H), (m, 1H), 3.97 (d, J = 14.4 Hz, 1H), 3.92 (d, J = 14.4 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), 2.16 (t, J = 7.2 Hz, 2H), (m, 1H), (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); 13 C NMR (150 MHz, D 2 O) δ 175.9, 160.3, 149.5, 140.2, 134.2, 127.0, 51.4, 37.6, 37.3, 31.6, 29.7, 19.0, 12.7; HRMS m/z Calcd. For C 13 H 20 N 3 O 2 (M + H) + : ; Found: Scheme 2, compound 3b White solid; m.p o C; [α] 25 D = 24.7 (c 0.50, CH 3 OH); IR (KBr) 1659, 1537, 1205 cm -1 ; 1 H NMR (600 MHz, D 2 O) δ 8.14 (s, 1H), 5.58 (dd, J = 8.4, 4.2 Hz, 1H), 4.26 (d, J = 14.4 Hz, 1H), 4.15 (d, J = 14.4 Hz, 1H), 3.93 (d, J = 15.6 Hz, 1H), 3.89 (d, J = 15.6 Hz, 1H), (m, 4H), (m, 1H), (m, 1H), (m, 1H); 13 C NMR (150 MHz, D 2 O) δ 172.0, 153.8, 151.1, 141.7, 135.8, 127.3, 70.8, 58.9, 51.0, 35.4, 30.9, 28.1; HRMS m/z Calcd. For C 12 H 18 N 3 O 3 (M + H) + : ; S-15
16 Found: Scheme 2, compound 3c White solid; [α] 25 D = 56.6 (c 0.20, CH 3 OH); IR (KBr) 3408, 3331, 3285, 1675, 1654, 1533, 1406 cm -1 ; 1 H NMR (600 MHz, D 2 O) δ 8.25 (s, 1H), 5.67 (dd, J = 8.4, 4.2 Hz, 1H), 4.39 (d, J = 14.4 Hz, 1H), 4.30 (d, J = 14.4 Hz, 1H), 3.88 (s, 2H), (m, 1H), (m, 1H), (m, 1H), (m, 1H), 2.05 (s, 3H); 13 C NMR (150 MHz, D 2 O) δ 175.0, 171.0, 153.7, 151.2, 141.8, 135.6, 127.3, 51.4, 42.8, 35.4, 30.7, 28.1, 21.6; HRMS m/z Calcd. For C 13 H 19 N 4 O 3 (M + H) + : ; Found: Scheme 2, compound 3d White solid; [α] 25 D = 96.7 (c 0.50, CH 3 OH); IR (KBr) 3404, 1679, 1626, 1533, 1468, 1350, 1307cm -1 ; 1 H NMR (400 MHz, D 2 O) δ 8.25 (s, 1H), 5.68 (dd, J = 8.4, 3.6 Hz, 1H), 4.44 (d, J = 14.4 Hz, 1H), 4.30 (d, J = 14.4 Hz, 1H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), (m, 1H); 13 C NMR (150 MHz, D 2 O) δ 166.3, 153.8, 151.2, 141.6, 135.8, 127.5, 51.5, 40.5, 35.7, 31.0, 28.1; HRMS m/z Calcd. For C 11 H 17 N 4 O 2 (M + H) + : ; Found: S-16
17 Scheme 2, compound 3e White solid; m.p o C; [α] 25 D = 39.1 (c 0.50, CH 3 OH); IR (KBr) 3442, 3250, 1693, 1625, 1541, 1487, 1294 cm -1 ; 1 H NMR (600 MHz, D 2 O) δ 8.29 (s, 1H), 5.71 (d, J = 7.8 Hz, 1H), 4.48 (d, J = 14.4 Hz, 1H), 4.34 (d, J = 14.4 Hz, 1H), (m, 2H), (m, 1H), (m, 1H), (m, 4H), (m, 1H); 13 C NMR (150 MHz, D 2 O) δ 165.5, 153.8, 151.2, 141.4, 135.8, 127.5, 51.5, 49.4, 35.7, 32.8, 30.9, 28.1; HRMS m/z Calcd. For C 12 H 19 N 4 O 2 (M + H) + : ; Found: Scheme 2, compound 3f White solid; m.p o C; [α] 25 D = 20.0 (c 0.30, CH 3 OH); IR (KBr) 3247, 1690, 1625, 1538, 1409 cm -1 ; 1 H NMR (600 MHz, D 2 O) δ 8.25 (s, 1H), 5.68 (dd, J = 8.4, 3.6 Hz, 1H), 4.44 (d, J = 14.4 Hz, 1H), 4.30 (d, J = 14.4 Hz, 1H), (m, 2H), (m, 1H), (m, 1H), 3.15 (q, J = 7.2 Hz, 2H), (m, 1H), (m, 1H), 1.30 (t, J = 7.2 Hz, 3H); 13 C NMR (150 MHz, D 2 O) δ 165.5, 153.8, 151.2, 141.5, 135.8, 127.5, 51.4, 47.5, 43.0, 35.7, 30.9, 28.1, 10.3; HRMS m/z Calcd. For C 13 H 21 N 4 O 2 (M + H) + : ; Found: S-17
18 Scheme 2, compound 3g White solid; [α] 25 D = 16.3 (c 0.10, CH 3 OH); IR (KBr) 3405, 1699, 1663, 1629, 1544, 1340 cm -1 ; 1 H NMR (400 MHz, D 2 O) δ 8.22 (s, 1H), 5.66 (dd, J = 8.0, 3.6 Hz, 1H), 4.41 (d, J = 14.4 Hz, 1H), 4.26 (d, J = 14.4 Hz, 1H), 4.05 (d, J = 16.0 Hz, 1H), 4.00 (d, J = 16.0 Hz, 1H), (m, 1H), (m, 1H), 2.95 (s, 6H), (m, 1H), (m, 1H); 13 C NMR (150 MHz, D 2 O) δ 164.5, 153.8, 151.5, 140.8, 135.0, 128.4, 58.0, 51.5, 43.8, 35.8, 31.0, 28.3; HRMS m/z Calcd. For C 13 H 21 N 4 O 2 (M + H) + : ; Found: Scheme 3, compound 13b White solid, m.p o C; [α] 25 D = (c 0.20, 1.0 M HCl) (63% ee); IR (KBr) 1655, 1582, 1511, 1420, 1326 cm -1 ; 1 H NMR (400 MHz, D 2 O with 20% KOH) δ 2.86 (t, J = 6.4 Hz, 1H), (m, 2H), (m, 2H), 0.54 (t, J = 7.2 Hz, 3H). Scheme 3, compound 13c White solid, m.p o C; [α] 25 D = (c 0.20, 1.0 M HCl) (70% ee); IR (KBr) 3400, 1656, 1582, 1514, 1419, 1340 cm -1 ; 1 H NMR (400 MHz, D 2 O with 20% KOH) δ 2.87 (dd, J = 6.8, 6.0 Hz, 1H), (m, 2H), (m, 8H), 0.53 (t, J = 5.6 Hz, 3H). S-18
19 Scheme 3, compound 13d White solid, m.p o C; [α] 25 D = -7.6 (c 0.10, 1.0 M HCl) (69% ee); IR (KBr) 3408, 1656, 1622, 1582, 1413, 1350, 1339 cm -1 ; 1 H NMR (400 MHz, D 2 O with 20% KOH) δ 2.76 (dd, J = 7.6, 5.2 Hz, 1H), (m, 1H), (m, 1H), (m, 12H), 0.46 (t, J = 6.4 Hz, 3H). Scheme 3, compound 13e White solid, m.p o C; [α] 25 D = -1.9 (c 0.10, 1.0 M HCl) (76% ee); IR (KBr) 3405, 3078, 1656, 1582, 1412 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ (m, 1H), 4.90 (d, J = 16.8 Hz, 1H), 4.85 (d, J = 10.2 Hz, 1H), 3.09 (dd, J = 7.2, 5.4 Hz, 1H), 1.95 (dt, J = 7.2, 7.2 Hz, 2H), (m, 1H), (m, 15H); HRMS m/z Calcd. For C 13 H 26 NO 2 (M + H) + : ; Found: Scheme 3, compound 13f White solid, m.p o C; [α] 25 D = -2.4 (c 0.10, 1.0 M HCl) (73% ee); IR (KBr) 3424, 1655, 1601, 1585, 1498, 1300, 1245 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ (m, 4H), 6.62 (dd, J = 7.2, 6.6 Hz, 1H), 3.83 (s, 2H), 2.81 (t, J = 6.6 Hz, 2H), 2.73 (dd, J = 7.2, 6.0 Hz, 1H), (m, 1H), (m, 3H), (m, 6H). S-19
20 Scheme 3, compound 13g White solid, m.p o C; [α] 25 D = -3.2 (c 0.30, 1.0 M HCl) (71% ee); IR (KBr) 3407, 1665, 1632, 1575, 1510, 1411 cm -1 ; 1 H NMR (600 MHz, D 2 O with 2.0 equiv. of KOH) δ 7.45 (dd, J = 7.8, 7.2 Hz, 2H), (m, 6H), 7.21 (d, J = 7.2 Hz, 1H), 3.01 (t, J = 6.0 Hz, 1H), 2.54 (t, J = 8.4 Hz, 2H), (m, 1H), (m, 1H). Scheme 3, compound 13h White solid, m.p o C; [α] 25 D = (c 0.10, 1.0 M HCl) (87% ee); IR (KBr) 3435, 1624, 1593, 1520, 1407 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ 6.55 (s, 2H), 2.96 (t, J = 6.0 Hz, 1H), (m, 2H), 1.89 (s, 6H), 1.85 (s, 3H), (m, 2H). Scheme 3, compound 13a White solid, m.p o C; [α] 25 D = (c 0.20, 1.0 M HCl) (70% ee); IR (KBr) 3423, 1595, 1479, 1403, 1349 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ 7.89 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.39 (dd, J = 7.8, 7.2 Hz, 1H), 7.33 (dd, J = 7.8, 7.2 Hz, 1H), 7.24 (t, J = 7.8, 7.2 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 3.14 (dd, J = 6.6, 6.0 Hz, 1H), (m, 2H), (m, 1H), (m, 1H). S-20
21 Scheme 3, compound 13i White solid, m.p o C; [α] 25 D = (c 0.20, 1.0 M HCl) (81% ee); IR (KBr) 3419, 1657, 1603, 1583, 1518, 1493, 1407 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ 6.60 (s, 1H), 6.50 (d, J = 7.8 Hz, 1H), 6.25 (d, J = 7.8 Hz, 1H), 3.99 (t, J = 9.0 Hz, 2H), 2.75 (dd, J = 6.6, 6.0 Hz, 1H), 2.60 (t, J = 9.0 Hz, 2H), (m, 2H), (m, 1H), (m, 1H); HRMS m/z Calcd. For C 12 H 16 NO 3 (M + H) + : ; Found: Scheme 3, compound 13j White solid, m.p o C; [α] 25 D = 9.3 (c 0.10, 1.0 M HCl) (66% ee); IR (KBr) 3434, 1609, 1509, 1394 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ 7.22 (dd, J = 7.8, 7.2 Hz, 2H), 7.15 (dd, J = 7.8, 7.2 Hz, 1H), 7.11 (d, J = 7.2 Hz, 2H), 3.33 (dd, J = 7.2, 6.0 Hz, 1H), 2.82 (dd, J = 13.2, 6.0 Hz, 1H), 2.67 (dd, J = 13.2, 7.2 Hz, 1H). Scheme 3, compound 13k White solid, m.p o C; [α] 25 D = 6.4 (c 0.30, 1.0 M HCl) (68% ee); IR (KBr) 3446, 3052, 1616, 1586, 1504, 1409, 1313 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ 7.34 (d, J = 7.8 Hz, 1H), (m, 2H), 7.20 (s, 1H), 6.99 (dd, J = 7.8, 7.2 Hz, 1H), (m, 2H), 3.18 (dd, J = 8.4, 4.8 Hz, 1H), 2.81 (dd, J = 13.8, 4.8 Hz, 1H), 2.48 (dd, J = 13.8, 8.4 Hz, 1H). S-21
22 Scheme 3, compound 13l White solid, m.p o C; [α] 25 D = (c 0.10, 1.0 M HCl) (64% ee); IR (KBr) 3424, 3103, 1617, 1587, 1514, 1415, 1340, 1312, 1296 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ 3.08 (dd, J = 8.4, 6.0 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), 0.75 (d, J = 7.2 Hz, 3H), 0.73 (d, J = 6.6 Hz, 3H). Scheme 3, compound 13m White solid, m.p o C; [α] 25 D = -3.6 (c 0.10, 1.0 M HCl) (70% ee); IR (KBr) 3411, 3038, 1625, 1590, 1523, 1405 cm -1 ; 1 H NMR (400 MHz, D 2 O with 20% KOH) δ 2.84 (dd, J = 8.4, 6.0 Hz, 1H), (m, 1H), (m, 6H), 0.43 (t, J = 6.8 Hz, 6H). Scheme 3, compound 13n White solid, m.p o C; [α] 25 D = -4.9 (c 0.10, 1.0 M HCl) (78% ee); IR (KBr) 3607, 3474, 3027, 1633, 1598, 1535, 1493, 1400 cm -1 ; 1 H NMR (600 MHz, D 2 O with 20% KOH) δ (m, 8H), (m, 2H), 4.00 (dd, J = 9.0, 7.2 Hz, 1H), 2.91 (dd, J = 8.4, 5.4 Hz, 1H), (m, 1H), (m, 1H). S-22
23 Scheme 3, compound 13o White solid, m.p o C; [α] 25 D = -1.6 (c 0.20, 1.0 M HCl) (14% ee); IR (KBr) 3392, 3216, 3039, 1703, 1633, 1566, 1498 cm -1 ; 1 H NMR (400 MHz, D 2 O with 20% KOH) δ 2.86 (dd, J = 6.8, 6.0 Hz, 1H), 1.84 (t, J = 8.4 Hz, 2H), (m, 1H), (m, 1H). S-23
24 The X-ray structure of compound (S,R)-8 S-24
25 Table 1. Crystal data and structure refinement for mo_(s,r)-8_0m. Identification code mo_(s,r)-8_0m Empirical formula C44 H58 N4 O9 S2 Formula weight Temperature 133(2) K Wavelength Å Crystal system Monoclinic Space group P 21 Unit cell dimensions a = (15) Å a= 90. b = (5) Å b= (4). c = (2) Å g = 90. Volume (7) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 908 Crystal size x x mm 3 Theta range for data collection to Index ranges -9<=h<=9, -29<=k<=28, -14<=l<=14 Reflections collected Independent reflections 8126 [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 8126 / 3 / 557 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter 0.03(5) Extinction coefficient 0.007(2) Largest diff. peak and hole and e.å -3 S-25
26 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for mo_(s,r)-8_0m. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) S(1) 11692(2) 5140(1) 10645(1) 26(1) S(2) 5975(2) 7852(1) 5201(2) 29(1) N(1) 5690(7) 4143(2) 6813(5) 28(1) N(2) 10196(7) 4978(2) 9370(5) 22(1) N(3) 8495(8) 8969(2) 1508(5) 26(1) N(4) 6247(8) 8071(2) 3958(5) 22(1) O(1) 5186(6) 5473(2) 5323(4) 30(1) O(2) 6779(9) 6054(2) 8373(5) 44(2) O(3) 8075(7) 6049(2) 6980(4) 29(1) O(4) 12630(7) 4638(2) 11249(4) 33(1) O(5) 7128(7) 7716(2) -211(4) 32(1) O(6) 5901(7) 7054(2) 1463(5) 38(1) O(7) 8656(7) 7065(2) 2723(5) 36(1) O(8) 5674(8) 8324(3) 5904(5) 45(2) O(9) 4437(9) 9125(3) 7121(7) 63(2) C(1) 7222(9) 4836(3) 8147(6) 25(1) C(2) 8431(9) 4886(3) 9412(6) 25(1) C(3) 8128(10) 4332(3) 9981(6) 32(2) C(4) 7324(10) 3930(3) 8927(6) 31(2) C(5) 6672(9) 4304(3) 7882(6) 24(1) C(6) 5207(9) 4526(3) 5955(6) 26(1) C(7) 5687(8) 5072(3) 6157(6) 25(1) C(8) 6725(8) 5235(3) 7291(5) 22(1) C(9) 7179(9) 5821(3) 7607(6) 27(2) C(10) 8526(11) 6625(3) 7244(7) 34(2) C(11) 9740(12) 6791(3) 6585(7) 40(2) C(12) 3931(9) 5337(3) 4198(6) 30(2) C(13) 2124(9) 5235(3) 4253(6) 28(2) C(14) 1485(11) 5509(3) 5047(7) 32(2) C(15) -207(11) 5428(3) 5039(8) 38(2) S-26
27 C(16) -1285(10) 5058(3) 4229(7) 39(2) C(17) -648(10) 4785(3) 3446(7) 36(2) C(18) 1028(10) 4861(3) 3455(6) 28(2) C(19) 13251(10) 5503(3) 10072(7) 34(2) C(20) 13751(11) 5156(4) 9182(8) 43(2) C(21) 12374(13) 6019(4) 9502(10) 52(2) C(22) 14813(13) 5623(4) 11156(8) 54(2) C(23) 8045(8) 8250(3) 2731(6) 21(1) C(24) 8051(9) 8162(3) 3997(5) 23(1) C(25) 8959(10) 8689(3) 4628(6) 30(2) C(26) 8943(10) 9115(3) 3668(6) 29(2) C(27) 8473(9) 8777(3) 2561(6) 24(1) C(28) 8033(10) 8619(3) 598(6) 29(2) C(29) 7572(9) 8076(3) 687(6) 24(1) C(30) 7589(8) 7883(3) 1799(5) 24(1) C(31) 7226(9) 7297(3) 1936(6) 25(1) C(32) 8621(12) 6471(3) 2868(8) 40(2) C(33) 9267(12) 6203(3) 1932(8) 46(2) C(34) 7341(9) 7873(3) -1323(5) 30(2) C(35) 9218(9) 7907(3) -1267(6) 28(1) C(36) 9703(10) 8250(3) -2054(6) 30(2) C(37) 11375(11) 8262(3) -2063(6) 36(2) C(38) 12657(11) 7950(3) -1274(8) 40(2) C(39) 12207(11) 7608(4) -478(7) 45(2) C(40) 10508(10) 7594(3) -471(7) 35(2) C(41) 3818(10) 7511(4) 4550(7) 37(2) C(42) 3241(12) 7376(5) 5631(8) 52(2) C(43) 4154(12) 6999(4) 3945(9) 50(2) C(44) 2545(10) 7898(4) 3714(8) 46(2) S-27
28 Table 3. Bond lengths [Å] and angles [ ] for mo_(s,r)-8_0m. S(1)-O(4) 1.497(5) S(1)-N(2) 1.653(6) S(1)-C(19) 1.843(8) S(2)-O(8) 1.489(6) S(2)-N(4) 1.653(5) S(2)-C(41) 1.859(8) N(1)-C(5) 1.323(9) N(1)-C(6) 1.346(9) N(2)-C(2) 1.460(9) N(2)-H(2A) 0.83(9) N(3)-C(28) 1.336(9) N(3)-C(27) 1.344(9) N(4)-C(24) 1.460(9) N(4)-H(4) 0.88(7) O(1)-C(7) 1.361(8) O(1)-C(12) 1.433(9) O(2)-C(9) 1.204(8) O(3)-C(9) 1.318(8) O(3)-C(10) 1.462(9) O(5)-C(29) 1.340(8) O(5)-C(34) 1.440(8) O(6)-C(31) 1.195(9) O(7)-C(31) 1.353(9) O(7)-C(32) 1.463(9) O(9)-H(9A) 0.82(3) O(9)-H(9B) 0.83(3) C(1)-C(8) 1.373(9) C(1)-C(5) 1.376(9) C(1)-C(2) 1.510(9) C(2)-C(3) 1.569(10) C(2)-H(2) C(3)-C(4) 1.558(10) C(3)-H(3A) C(3)-H(3B) C(4)-C(5) 1.495(9) C(4)-H(4C) S-28
29 C(4)-H(4D) C(6)-C(7) 1.389(10) C(6)-H(6) C(7)-C(8) 1.396(9) C(8)-C(9) 1.496(9) C(10)-C(11) 1.497(11) C(10)-H(10A) C(10)-H(10B) C(11)-H(11A) C(11)-H(11B) C(11)-H(11C) C(12)-C(13) 1.503(10) C(12)-H(12A) C(12)-H(12B) C(13)-C(14) 1.387(10) C(13)-C(18) 1.405(10) C(14)-C(15) 1.378(12) C(14)-H(14) C(15)-C(16) 1.400(13) C(15)-H(15) C(16)-C(17) 1.375(11) C(16)-H(16) C(17)-C(18) 1.363(11) C(17)-H(17) C(18)-H(18) C(19)-C(21) 1.497(12) C(19)-C(20) 1.511(11) C(19)-C(22) 1.512(12) C(20)-H(20A) C(20)-H(20B) C(20)-H(20C) C(21)-H(21A) C(21)-H(21B) C(21)-H(21C) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C) C(23)-C(27) 1.365(9) S-29
30 C(23)-C(30) 1.380(9) C(23)-C(24) 1.521(9) C(24)-C(25) 1.551(9) C(24)-H(24) C(25)-C(26) 1.543(9) C(25)-H(25A) C(25)-H(25B) C(26)-C(27) 1.495(9) C(26)-H(26A) C(26)-H(26B) C(28)-C(29) 1.391(10) C(28)-H(28) C(29)-C(30) 1.402(9) C(30)-C(31) 1.479(10) C(32)-C(33) 1.524(12) C(32)-H(32A) C(32)-H(32B) C(33)-H(33A) C(33)-H(33B) C(33)-H(33C) C(34)-C(35) 1.498(10) C(34)-H(34A) C(34)-H(34B) C(35)-C(40) 1.389(10) C(35)-C(36) 1.404(10) C(36)-C(37) 1.354(11) C(36)-H(36) C(37)-C(38) 1.381(12) C(37)-H(37) C(38)-C(39) 1.396(13) C(38)-H(38) C(39)-C(40) 1.375(12) C(39)-H(39) C(40)-H(40) C(41)-C(44) 1.508(12) C(41)-C(43) 1.511(12) C(41)-C(42) 1.540(11) C(42)-H(42A) S-30
31 C(42)-H(42B) C(42)-H(42C) C(43)-H(43A) C(43)-H(43B) C(43)-H(43C) C(44)-H(44A) C(44)-H(44B) C(44)-H(44C) O(4)-S(1)-N(2) 110.5(3) O(4)-S(1)-C(19) 105.8(3) N(2)-S(1)-C(19) 99.2(3) O(8)-S(2)-N(4) 110.3(3) O(8)-S(2)-C(41) 106.2(4) N(4)-S(2)-C(41) 98.6(3) C(5)-N(1)-C(6) 117.3(6) C(2)-N(2)-S(1) 115.9(4) C(2)-N(2)-H(2A) 116(6) S(1)-N(2)-H(2A) 114(6) C(28)-N(3)-C(27) 116.6(6) C(24)-N(4)-S(2) 116.2(4) C(24)-N(4)-H(4) 109(4) S(2)-N(4)-H(4) 111(4) C(7)-O(1)-C(12) 117.9(5) C(9)-O(3)-C(10) 115.3(5) C(29)-O(5)-C(34) 118.5(6) C(31)-O(7)-C(32) 116.9(6) H(9A)-O(9)-H(9B) 96(10) C(8)-C(1)-C(5) 120.4(6) C(8)-C(1)-C(2) 128.4(6) C(5)-C(1)-C(2) 111.2(6) N(2)-C(2)-C(1) 107.5(5) N(2)-C(2)-C(3) 115.9(6) C(1)-C(2)-C(3) 102.7(6) N(2)-C(2)-H(2) C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(4)-C(3)-C(2) 106.2(5) S-31
32 C(4)-C(3)-H(3A) C(2)-C(3)-H(3A) C(4)-C(3)-H(3B) C(2)-C(3)-H(3B) H(3A)-C(3)-H(3B) C(5)-C(4)-C(3) 103.1(6) C(5)-C(4)-H(4C) C(3)-C(4)-H(4C) C(5)-C(4)-H(4D) C(3)-C(4)-H(4D) H(4C)-C(4)-H(4D) N(1)-C(5)-C(1) 123.4(6) N(1)-C(5)-C(4) 123.9(6) C(1)-C(5)-C(4) 112.7(6) N(1)-C(6)-C(7) 122.7(6) N(1)-C(6)-H(6) C(7)-C(6)-H(6) O(1)-C(7)-C(6) 124.5(6) O(1)-C(7)-C(8) 116.3(6) C(6)-C(7)-C(8) 119.3(6) C(1)-C(8)-C(7) 117.0(6) C(1)-C(8)-C(9) 120.3(6) C(7)-C(8)-C(9) 122.6(6) O(2)-C(9)-O(3) 124.1(6) O(2)-C(9)-C(8) 122.6(6) O(3)-C(9)-C(8) 113.3(6) O(3)-C(10)-C(11) 108.0(6) O(3)-C(10)-H(10A) C(11)-C(10)-H(10A) O(3)-C(10)-H(10B) C(11)-C(10)-H(10B) H(10A)-C(10)-H(10B) C(10)-C(11)-H(11A) C(10)-C(11)-H(11B) H(11A)-C(11)-H(11B) C(10)-C(11)-H(11C) H(11A)-C(11)-H(11C) H(11B)-C(11)-H(11C) S-32
33 O(1)-C(12)-C(13) 113.7(6) O(1)-C(12)-H(12A) C(13)-C(12)-H(12A) O(1)-C(12)-H(12B) C(13)-C(12)-H(12B) H(12A)-C(12)-H(12B) C(14)-C(13)-C(18) 118.8(7) C(14)-C(13)-C(12) 122.1(7) C(18)-C(13)-C(12) 119.1(6) C(15)-C(14)-C(13) 120.9(7) C(15)-C(14)-H(14) C(13)-C(14)-H(14) C(14)-C(15)-C(16) 119.4(7) C(14)-C(15)-H(15) C(16)-C(15)-H(15) C(17)-C(16)-C(15) 119.6(7) C(17)-C(16)-H(16) C(15)-C(16)-H(16) C(18)-C(17)-C(16) 121.1(7) C(18)-C(17)-H(17) C(16)-C(17)-H(17) C(17)-C(18)-C(13) 120.1(7) C(17)-C(18)-H(18) C(13)-C(18)-H(18) C(21)-C(19)-C(20) 110.5(7) C(21)-C(19)-C(22) 111.4(8) C(20)-C(19)-C(22) 111.6(7) C(21)-C(19)-S(1) 107.1(6) C(20)-C(19)-S(1) 111.0(5) C(22)-C(19)-S(1) 105.0(6) C(19)-C(20)-H(20A) C(19)-C(20)-H(20B) H(20A)-C(20)-H(20B) C(19)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C) C(19)-C(21)-H(21A) C(19)-C(21)-H(21B) S-33
34 H(21A)-C(21)-H(21B) C(19)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21B)-C(21)-H(21C) C(19)-C(22)-H(22A) C(19)-C(22)-H(22B) H(22A)-C(22)-H(22B) C(19)-C(22)-H(22C) H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) C(27)-C(23)-C(30) 120.6(6) C(27)-C(23)-C(24) 111.1(6) C(30)-C(23)-C(24) 128.2(6) N(4)-C(24)-C(23) 107.9(5) N(4)-C(24)-C(25) 116.9(5) C(23)-C(24)-C(25) 102.3(5) N(4)-C(24)-H(24) C(23)-C(24)-H(24) C(25)-C(24)-H(24) C(26)-C(25)-C(24) 108.2(5) C(26)-C(25)-H(25A) C(24)-C(25)-H(25A) C(26)-C(25)-H(25B) C(24)-C(25)-H(25B) H(25A)-C(25)-H(25B) C(27)-C(26)-C(25) 102.7(6) C(27)-C(26)-H(26A) C(25)-C(26)-H(26A) C(27)-C(26)-H(26B) C(25)-C(26)-H(26B) H(26A)-C(26)-H(26B) N(3)-C(27)-C(23) 123.2(6) N(3)-C(27)-C(26) 123.5(6) C(23)-C(27)-C(26) 113.3(6) N(3)-C(28)-C(29) 124.1(6) N(3)-C(28)-H(28) C(29)-C(28)-H(28) O(5)-C(29)-C(28) 125.0(6) S-34
35 O(5)-C(29)-C(30) 116.8(6) C(28)-C(29)-C(30) 118.1(6) C(23)-C(30)-C(29) 117.3(6) C(23)-C(30)-C(31) 123.4(6) C(29)-C(30)-C(31) 119.2(6) O(6)-C(31)-O(7) 123.4(7) O(6)-C(31)-C(30) 127.6(6) O(7)-C(31)-C(30) 109.0(6) O(7)-C(32)-C(33) 108.4(7) O(7)-C(32)-H(32A) C(33)-C(32)-H(32A) O(7)-C(32)-H(32B) C(33)-C(32)-H(32B) H(32A)-C(32)-H(32B) C(32)-C(33)-H(33A) C(32)-C(33)-H(33B) H(33A)-C(33)-H(33B) C(32)-C(33)-H(33C) H(33A)-C(33)-H(33C) H(33B)-C(33)-H(33C) O(5)-C(34)-C(35) 113.2(5) O(5)-C(34)-H(34A) C(35)-C(34)-H(34A) O(5)-C(34)-H(34B) C(35)-C(34)-H(34B) H(34A)-C(34)-H(34B) C(40)-C(35)-C(36) 118.2(7) C(40)-C(35)-C(34) 121.7(7) C(36)-C(35)-C(34) 120.1(6) C(37)-C(36)-C(35) 120.9(7) C(37)-C(36)-H(36) C(35)-C(36)-H(36) C(36)-C(37)-C(38) 120.8(8) C(36)-C(37)-H(37) C(38)-C(37)-H(37) C(37)-C(38)-C(39) 119.3(8) C(37)-C(38)-H(38) C(39)-C(38)-H(38) S-35
36 C(40)-C(39)-C(38) 119.9(8) C(40)-C(39)-H(39) C(38)-C(39)-H(39) C(39)-C(40)-C(35) 120.8(8) C(39)-C(40)-H(40) C(35)-C(40)-H(40) C(44)-C(41)-C(43) 113.2(7) C(44)-C(41)-C(42) 111.0(7) C(43)-C(41)-C(42) 111.7(8) C(44)-C(41)-S(2) 109.9(6) C(43)-C(41)-S(2) 106.3(5) C(42)-C(41)-S(2) 104.1(5) C(41)-C(42)-H(42A) C(41)-C(42)-H(42B) H(42A)-C(42)-H(42B) C(41)-C(42)-H(42C) H(42A)-C(42)-H(42C) H(42B)-C(42)-H(42C) C(41)-C(43)-H(43A) C(41)-C(43)-H(43B) H(43A)-C(43)-H(43B) C(41)-C(43)-H(43C) H(43A)-C(43)-H(43C) H(43B)-C(43)-H(43C) C(41)-C(44)-H(44A) C(41)-C(44)-H(44B) H(44A)-C(44)-H(44B) C(41)-C(44)-H(44C) H(44A)-C(44)-H(44C) H(44B)-C(44)-H(44C) Symmetry transformations used to generate equivalent atoms: S-36
37 Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for mo_(s,r)-8_0m. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 S(1) 27(1) 27(1) 23(1) -2(1) 7(1) -1(1) S(2) 26(1) 41(1) 21(1) 4(1) 7(1) -1(1) N(1) 23(3) 26(3) 31(3) 1(2) 6(2) 0(2) N(2) 30(3) 15(3) 20(3) -4(2) 7(2) 0(2) N(3) 34(3) 19(3) 29(3) 4(2) 14(3) 2(2) N(4) 25(3) 19(3) 22(3) 5(2) 6(2) 3(2) O(1) 32(3) 28(3) 25(2) 7(2) 3(2) -5(2) O(2) 71(4) 23(3) 50(3) -9(2) 37(3) -9(3) O(3) 37(3) 21(2) 32(3) -1(2) 16(2) -7(2) O(4) 36(3) 33(3) 24(2) 3(2) 2(2) 1(2) O(5) 40(3) 35(3) 24(2) -4(2) 13(2) -5(2) O(6) 33(3) 33(3) 40(3) 0(2) 0(2) -9(2) O(7) 37(3) 21(2) 41(3) 1(2) 2(2) -1(2) O(8) 41(3) 68(4) 28(3) -16(3) 12(2) -2(3) O(9) 38(4) 67(5) 69(5) -20(4) -2(3) 6(4) C(1) 21(3) 27(3) 29(3) -2(3) 12(3) 0(3) C(2) 31(4) 20(3) 23(3) -2(3) 8(3) 4(3) C(3) 32(4) 35(4) 28(4) 6(3) 10(3) -3(3) C(4) 32(4) 26(4) 31(4) 8(3) 6(3) -3(3) C(5) 24(3) 17(3) 32(4) 3(3) 8(3) 1(3) C(6) 28(3) 24(3) 21(3) -2(3) 1(3) -3(3) C(7) 25(3) 26(4) 25(3) 2(3) 8(3) 1(3) C(8) 23(3) 19(3) 24(3) 1(3) 8(2) 0(3) C(9) 30(4) 24(3) 29(4) 1(3) 12(3) 0(3) C(10) 46(5) 18(3) 40(4) 1(3) 15(4) -2(3) C(11) 58(5) 27(4) 40(4) -3(3) 23(4) -10(4) C(12) 31(4) 30(4) 26(3) 1(3) 4(3) 1(3) C(13) 37(4) 24(4) 27(3) 7(3) 14(3) 6(3) C(14) 44(4) 21(3) 33(4) 1(3) 14(3) 0(3) S-37
38 C(15) 50(5) 27(4) 44(4) 7(3) 24(4) 11(3) C(16) 30(4) 49(5) 42(4) 21(4) 16(3) 9(4) C(17) 35(4) 33(4) 33(4) 10(3) 1(3) 2(3) C(18) 36(4) 23(3) 22(3) 5(3) 7(3) 7(3) C(19) 32(4) 35(4) 35(4) 1(3) 9(3) -8(3) C(20) 37(4) 44(4) 58(5) -2(4) 28(4) -5(4) C(21) 49(5) 34(4) 72(6) 11(4) 20(5) -8(4) C(22) 54(6) 57(6) 47(5) -1(4) 9(4) -27(5) C(23) 22(3) 16(3) 26(3) 1(2) 10(3) 0(2) C(24) 28(3) 21(3) 17(3) 2(2) 4(3) 4(3) C(25) 34(4) 27(4) 28(4) 3(3) 10(3) -2(3) C(26) 40(4) 25(3) 23(3) 0(3) 12(3) -6(3) C(27) 24(3) 26(3) 24(3) -2(3) 10(3) 2(3) C(28) 34(4) 30(4) 22(3) 4(3) 9(3) 1(3) C(29) 26(3) 23(3) 22(3) -4(3) 6(3) -4(3) C(30) 22(3) 27(3) 21(3) -2(3) 6(2) -3(3) C(31) 25(4) 27(3) 19(3) -6(3) 4(3) -2(3) C(32) 46(5) 23(4) 42(4) -5(3) 5(4) -3(3) C(33) 46(5) 27(4) 59(5) -11(4) 9(4) 3(4) C(34) 31(4) 44(4) 13(3) -5(3) 5(3) -1(3) C(35) 29(3) 33(4) 22(3) -8(3) 5(3) 2(3) C(36) 38(4) 28(3) 21(3) -9(3) 7(3) 1(3) C(37) 40(4) 42(4) 26(4) -10(3) 11(3) -7(4) C(38) 34(4) 37(4) 52(5) -17(4) 18(4) -7(3) C(39) 43(5) 45(5) 35(4) -18(4) -3(4) 12(4) C(40) 37(4) 34(4) 28(4) -10(3) 2(3) 0(3) C(41) 27(4) 47(4) 37(4) 5(3) 11(3) -8(3) C(42) 40(5) 77(7) 43(5) 6(5) 19(4) -13(5) C(43) 43(5) 36(5) 71(6) -8(4) 18(5) -16(4) C(44) 21(4) 54(5) 55(5) 9(4) 1(3) -4(4) S-38
39 Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for mo_(s,r)-8_0m. x y z U(eq) H(2) H(3A) H(3B) H(4C) H(4D) H(6) H(10A) H(10B) H(11A) H(11B) H(11C) H(12A) H(12B) H(14) H(15) H(16) H(17) H(18) H(20A) H(20B) H(20C) H(21A) H(21B) H(21C) H(22A) H(22B) H(22C) H(24) H(25A) H(25B) H(26A) H(26B) S-39
40 H(28) H(32A) H(32B) H(33A) H(33B) H(33C) H(34A) H(34B) H(36) H(37) H(38) H(39) H(40) H(42A) H(42B) H(42C) H(43A) H(43B) H(43C) H(44A) H(44B) H(44C) H(2A) 10540(100) 4750(40) 8970(70) 30(20) H(4) 5640(80) 8370(30) 3700(50) 4(14) H(9A) 5030(170) 8910(50) 6880(130) 110(60) H(9B) 5270(90) 9260(40) 7640(60) 50(30) S-40
41 Table 6. Torsion angles [ ] for mo_(s,r)-8_0m. O(4)-S(1)-N(2)-C(2) 93.6(5) C(19)-S(1)-N(2)-C(2) (5) O(8)-S(2)-N(4)-C(24) 93.7(5) C(41)-S(2)-N(4)-C(24) (5) S(1)-N(2)-C(2)-C(1) 170.9(4) S(1)-N(2)-C(2)-C(3) -74.9(6) C(8)-C(1)-C(2)-N(2) -69.1(8) C(5)-C(1)-C(2)-N(2) 108.0(6) C(8)-C(1)-C(2)-C(3) 168.2(7) C(5)-C(1)-C(2)-C(3) -14.8(7) N(2)-C(2)-C(3)-C(4) -96.9(7) C(1)-C(2)-C(3)-C(4) 20.0(7) C(2)-C(3)-C(4)-C(5) -18.3(8) C(6)-N(1)-C(5)-C(1) -0.6(10) C(6)-N(1)-C(5)-C(4) (7) C(8)-C(1)-C(5)-N(1) 1.5(10) C(2)-C(1)-C(5)-N(1) (6) C(8)-C(1)-C(5)-C(4) (6) C(2)-C(1)-C(5)-C(4) 3.4(8) C(3)-C(4)-C(5)-N(1) (6) C(3)-C(4)-C(5)-C(1) 9.7(8) C(5)-N(1)-C(6)-C(7) -0.5(10) C(12)-O(1)-C(7)-C(6) 7.1(10) C(12)-O(1)-C(7)-C(8) (6) N(1)-C(6)-C(7)-O(1) (6) N(1)-C(6)-C(7)-C(8) 0.5(10) C(5)-C(1)-C(8)-C(7) -1.4(9) C(2)-C(1)-C(8)-C(7) 175.4(6) C(5)-C(1)-C(8)-C(9) 174.1(6) C(2)-C(1)-C(8)-C(9) -9.1(10) O(1)-C(7)-C(8)-C(1) 179.2(6) C(6)-C(7)-C(8)-C(1) 0.4(9) O(1)-C(7)-C(8)-C(9) 3.8(9) C(6)-C(7)-C(8)-C(9) (6) C(10)-O(3)-C(9)-O(2) -1.9(10) C(10)-O(3)-C(9)-C(8) 179.1(6) S-41
42 C(1)-C(8)-C(9)-O(2) -55.5(10) C(7)-C(8)-C(9)-O(2) 119.7(8) C(1)-C(8)-C(9)-O(3) 123.5(7) C(7)-C(8)-C(9)-O(3) -61.3(9) C(9)-O(3)-C(10)-C(11) 172.2(6) C(7)-O(1)-C(12)-C(13) 70.0(8) O(1)-C(12)-C(13)-C(14) 32.4(9) O(1)-C(12)-C(13)-C(18) (6) C(18)-C(13)-C(14)-C(15) -1.7(10) C(12)-C(13)-C(14)-C(15) 176.7(7) C(13)-C(14)-C(15)-C(16) 1.0(11) C(14)-C(15)-C(16)-C(17) -0.6(11) C(15)-C(16)-C(17)-C(18) 1.0(11) C(16)-C(17)-C(18)-C(13) -1.7(10) C(14)-C(13)-C(18)-C(17) 2.1(10) C(12)-C(13)-C(18)-C(17) (6) O(4)-S(1)-C(19)-C(21) (6) N(2)-S(1)-C(19)-C(21) 67.6(6) O(4)-S(1)-C(19)-C(20) 61.5(6) N(2)-S(1)-C(19)-C(20) -53.0(6) O(4)-S(1)-C(19)-C(22) -59.3(7) N(2)-S(1)-C(19)-C(22) (6) S(2)-N(4)-C(24)-C(23) 169.0(4) S(2)-N(4)-C(24)-C(25) -76.5(6) C(27)-C(23)-C(24)-N(4) 111.5(6) C(30)-C(23)-C(24)-N(4) -64.8(8) C(27)-C(23)-C(24)-C(25) -12.3(7) C(30)-C(23)-C(24)-C(25) 171.4(7) N(4)-C(24)-C(25)-C(26) (7) C(23)-C(24)-C(25)-C(26) 16.0(7) C(24)-C(25)-C(26)-C(27) -14.1(7) C(28)-N(3)-C(27)-C(23) 1.4(10) C(28)-N(3)-C(27)-C(26) (7) C(30)-C(23)-C(27)-N(3) -0.6(10) C(24)-C(23)-C(27)-N(3) (6) C(30)-C(23)-C(27)-C(26) (6) C(24)-C(23)-C(27)-C(26) 3.8(8) C(25)-C(26)-C(27)-N(3) (6) S-42
43 C(25)-C(26)-C(27)-C(23) 6.6(8) C(27)-N(3)-C(28)-C(29) -1.1(10) C(34)-O(5)-C(29)-C(28) 8.1(10) C(34)-O(5)-C(29)-C(30) (6) N(3)-C(28)-C(29)-O(5) (7) N(3)-C(28)-C(29)-C(30) 0.1(11) C(27)-C(23)-C(30)-C(29) -0.5(10) C(24)-C(23)-C(30)-C(29) 175.5(6) C(27)-C(23)-C(30)-C(31) 175.8(6) C(24)-C(23)-C(30)-C(31) -8.2(11) O(5)-C(29)-C(30)-C(23) 180.0(6) C(28)-C(29)-C(30)-C(23) 0.8(10) O(5)-C(29)-C(30)-C(31) 3.5(9) C(28)-C(29)-C(30)-C(31) (6) C(32)-O(7)-C(31)-O(6) 8.1(10) C(32)-O(7)-C(31)-C(30) (6) C(23)-C(30)-C(31)-O(6) 120.1(8) C(29)-C(30)-C(31)-O(6) -63.6(10) C(23)-C(30)-C(31)-O(7) -58.8(8) C(29)-C(30)-C(31)-O(7) 117.5(7) C(31)-O(7)-C(32)-C(33) 86.5(8) C(29)-O(5)-C(34)-C(35) 70.8(8) O(5)-C(34)-C(35)-C(40) 27.6(10) O(5)-C(34)-C(35)-C(36) (6) C(40)-C(35)-C(36)-C(37) 1.9(10) C(34)-C(35)-C(36)-C(37) (7) C(35)-C(36)-C(37)-C(38) -1.8(11) C(36)-C(37)-C(38)-C(39) 1.4(11) C(37)-C(38)-C(39)-C(40) -1.3(11) C(38)-C(39)-C(40)-C(35) 1.4(11) C(36)-C(35)-C(40)-C(39) -1.7(10) C(34)-C(35)-C(40)-C(39) 176.3(7) O(8)-S(2)-C(41)-C(44) 63.0(6) N(4)-S(2)-C(41)-C(44) -51.1(6) O(8)-S(2)-C(41)-C(43) (6) N(4)-S(2)-C(41)-C(43) 71.7(6) O(8)-S(2)-C(41)-C(42) -55.9(7) N(4)-S(2)-C(41)-C(42) (6) S-43
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles
X-Ray crystallographic data tables for paper: Supplementary Material (ESI) for Organic & Biomolecular Chemistry Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically
Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory
Supporting Information Dysiherbols A C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge Wei-Hua Jiao,, Guo-Hua Shi,, Ting-Ting Xu,, Guo-Dong Chen,
Supporting Information
Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and
Supporting Information for
Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid Taotao Ling, a Chinmay Chowdhury, a Bryan A. Kramer, a Binh G. Vong, a Michael A. Palladino b and Emmanuel A. Theodorakis a
and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol
FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu
IV. ANHANG 179. Anhang 178
Anhang 178 IV. ANHANG 179 1. Röntgenstrukturanalysen (Tabellen) 179 1.1. Diastereomer A (Diplomarbeit) 179 1.2. Diastereomer B (Diplomarbeit) 186 1.3. Aldoladdukt 5A 193 1.4. Aldoladdukt 13A 200 1.5. Aldoladdukt
Supporting Information
Supporting Information Vinylogous elimination/heck coupling/allylation domino reactions: access to 2- substituted 2,3-dihydrobenzofurans and indolines Jianguo Yang, *, Hanjie Mo, Xiuxiu Jin, Dongdong Cao,
Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.
; doi:10.3390/molecules22020254 S1 of S23 Supplementary Materials: Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Information
Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan
Supporting Information
Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General
Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds
Supporting Information for Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Zhongxue Fang, a Yongquan Ning, a Pengbing Mi, a Peiqiu Liao, a Xihe Bi* a,b a Department of Chemistry,
Supporting Information
Supporting Information Gold-catalyzed Cycloisomerization of 1,6-Diyne-4-en-3-ols to form Naphthyl Ketone Derivatives. Jian-Jou Lian and Rai-Shung Liu* Department of Chemistry, National Tsing-Hua University,
Supporting Information
Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,
Supporting Information
Supporting Information Transition-metal-free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds Qiyi Yao, Lingkai Kong, Mengdan Wang,
Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*
Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green
Supporting Information
Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State
Supporting Information
Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei
chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX
σ-donor/acceptor confused ligands: The case of a chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX 77843-3255. *To whom correspondence
Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings
ickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings Braulio M. Puerta Lombardi, Rudy M. Braun, Chris Gendy, Chia Yun Chang,
Supporting Information. for
Supporting Information for A general synthetic route to [Cu(X)(NHC)] (NHC = N- heterocyclic carbene, X =Cl, Br, I) complexes Orlando Santoro, Alba Collado, Alexandra M. Z. Slawin, Steven P. Nolan and Catherine
Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;
Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene
Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3
Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate
Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis
Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of α-diazoketones with Various Amines: A Strategy for Catalytic Wolff 1,2,3-Triazole Synthesis Zikun Wang, a Xihe
Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled
Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal
Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate
upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic
Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins
Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins Guolin Cheng, Tuan-Jie Li, and Jin-Quan Yu* Department of Chemistry, The Scripps Research Institute,
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic
Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long
Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran
1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and
Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group
Supporting Information Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group Changsheng Kuai, Lianhui Wang, Bobin Li, Zhenhui Yang, Xiuling Cui* Engineering
Supporting Information
Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation
First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of
Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond Ken-ichi Yamashita, Kei-ichi Sato, Masaki Kawano and Makoto Fujita* Contents; Figure S1.
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
Supporting information for
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting information for Palladium-Catalyzed Benzothieno[2,3-b]indole Formation via Dehydrative-Dehydrogenative
Divergent synthesis of various iminocyclitols from D-ribose
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,
Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions
Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a
Supplementary information
Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles
Supporting information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1
Supporting Information. Synthesis and biological evaluation of nojirimycin- and
Supporting Information for Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors Davide Bini 1, Francesca Cardona 2, Matilde Forcella 1, Camilla Parmeggiani 2,3,
Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes
Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory
Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination
Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine
Supporting information
Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition
Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors
Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Andrea Trabocchi a, icolino Pala b, Ilga Krimmelbein c, Gloria Menchi a, Antonio Guarna a, Mario Sechi b, Tobias Dreker c, Andrea Scozzafava
Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors
Supporting Information Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Xiao-Peng He, abd Cui Li, d Xiao-Ping Jin, b Zhuo Song, b Hai-Lin Zhang,
Diastereoselective Access to Trans-2-Substituted Cyclopentylamines
Supporting Information Diastereoselective Access to Trans-2-Substituted Cyclopentylamines Antoine Joosten, Emilie Lambert, Jean-Luc Vasse, Jan Szymoniak jean-luc.vasse@univ-reims.fr jan.szymoniak@univ-reims.fr
The Free Internet Journal for Organic Chemistry
The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization
SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids
10.1071/CH17272_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(12), 1285-1290 SUPPLEMENTARY MATERIAL A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine
The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using
Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh
Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-
Supporting Information for A catalyst-free multicomponent domino sequence for the diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3- (arylamino)allyl]chromen-4-ones Pitchaimani Prasanna 1, Pethaiah
Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines
Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of
Supporting Information
Supporting Information 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Convenient and General Zinc-Catalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions
Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes
1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization
Supporting Information
Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*
Supporting Information
S1 Supporting Information Synthesis of 2-Arylated Hydroxytyrosol Derivatives via Suzuki-Myaura Cross-Coupling Roberta Bernini, a Sandro Cacchi, b* Giancarlo Fabrizi, b* Eleonora Filisti b a Dipartimento
Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors
Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,
Synthesis and evaluation of novel aza-caged Garcinia xanthones
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Synthesis and evaluation of novel aza-caged Garcinia xanthones Xiaojin Zhang, a,1 Xiang Li, a,1 Haopeng Sun, * b Zhengyu Jiang,
Supporting Information for. Palladium-catalyzed Addition Reaction of Aroyl/Heteroaroyl Acid Anhydrides to Norbornenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information for Palladium-catalyzed Addition Reaction of Aroyl/Heteroaroyl Acid Anhydrides
Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of. Arenediazonium Salts to gem-difluoromethylene Azo Compounds
Org. Lett. Supporting Information Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of Arenediazonium Salts to gem-difluoromethylene Azo Compounds Haizhen Jiang,*,, Yunrong Chen, Bo Chen, Hui
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory
Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines
Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-yl Aldimines Filip Colpaert, Sven Mangelinckx, and Norbert De Kimpe Department
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac
Supporting Information
Supporting Information Novel ne-pot Synthesis of Polysubstituted Isocoumarins from Arynes and Trifluoroacetylated β-diketones Kentaro kuma,* Koki Hirano, Yukiko Tanabe, Ryoichi Itoyama, Atsumi Miura, Noriyoshi
Supplementary Information for
Supplementary Information for Organocatalytic Asymmetric Intramolecular [3+2] Cycloaddition: A Straightforward Approach to Access Multiply Substituted Hexahydrochromeno[4,3-b]pyrrolidine Derivatives in
Aminofluorination of Fluorinated Alkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,
Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles
Supporting Information for Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Angélica de Fátima S. Barreto*, Veronica Alves dos Santos, and Carlos
Pd Catalyzed Carbonylation for the Construction of Tertiary and
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Pd Catalyzed Carbonylation for the Construction of Tertiary and Quaternary
Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using
Supporting Information For
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information For ne-pot synthesis of 2,3-difunctionalized indoles
Supporting Information for
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for Quinine-Catalyzed Highly Enantioselective Cycloannulation
Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3
Supplementary Information Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism Qianyi Wang, Wuchao Zhao,
Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary information Copper-Catalyzed xidative Coupling of Acids with Alkanes Involving Dehydrogenation:
Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary Information for: Highly Efficient Asymmetric Hydrogenation
Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction
Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *
Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents
Electronic upplementary Material (EI) for RC Advances. This journal is The Royal ociety of Chemistry 205 upporting Information Palladium-Catalyzed Direct ortho-ulfonylation of Azobenzenes with Arylsulfonyl
ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.
ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 Silver-Catalyzed Asymmetric Synthesis of 2,3-Dihydrobenzofurans: A New Chiral Synthesis of Pterocarpans Leticia Jiménez-González, Sergio
Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach
Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach Kodai Saito, Yuka Moriya, and Takahiko Akiyama* Department of Chemistry,
9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer
Supporting Information
Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo
Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates
Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2008 Supporting Information for: Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation
Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Aluminium-mediated Aromatic C Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene
Supplementary Information
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supplementary Information An Efficient Approach to Generate Aryl Carbene: Gold-Catalyzed
Supporting Information
Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Supporting Information for Catalytic Enantioselective Conjugate Reduction of β,β- Disubstituted α,β-unsaturated sulfones Tomás Llamas, Ramón
Supporting Information
Supporting Information Selective Synthesis of xygen-containing Heterocycles via Tandem Reactions of 1,2-Allenic Ketones with Ethyl 4-Chloroacetoacetate Qiang Wang, a, b Zhouqing Xu b and Xuesen Fan a *
Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces
Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section
Supporting Information
Supporting Information Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2-cis-Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors Tomonari Tanaka,* 1