Supporting Information

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Electronic Supplementary Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Divergent synthesis of various iminocyclitols from D-ribose

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supplementary information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting Information

Supporting Information

Supporting Information for

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Electronic Supplementary Information (ESI)

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Supporting Information. Experimental section

Supporting information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Materials

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information

Supporting Information

Supporting Information

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

The Free Internet Journal for Organic Chemistry

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Experimental procedure

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Supplementary Material

Supporting Information

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Aminofluorination of Fluorinated Alkenes

Selective mono reduction of bisphosphine

Supporting Information

Supporting Information. Experimental section

Hydrogen-bonding catalysis of sulfonium salts

Supporting Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Supporting Information

Supporting Information For

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Transcript:

Supporting Information Iron Catalyst for xidation in Water: Surfactant-type Iron Complex-catalyzed Mild and Efficient xidation of Aryl Alkanes Using Aqueous TBHP as xidant in Water Takashi Nagano and Shū Kobayashi* Department of Chemistry, School of Science and Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 110-0033 The HFRE Division, ERAT, Japan Science Technology Agency (JST) (Received July 4, 2008; CL-080662; E-mail: shu_kobayashi@chem.s.u-tokyo.ac.jp) Copyright The Chemical Society of Japan

Supporting Information Iron Catalyst for xidation in Water: Surfactant-Type Iron Complex-catalyzed Mild and Efficieant xidation of Aryl Alkanes Using Aqueous TBHP as xidant in Water Takashi Nagano and Shu _ Kobayashi Department of Chemistry, School of Science and Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERAT, Japan Science and Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Contents Experimental Section General and Starting Materials S-1 Syntheses of aryl alkanes 2d and 2g S-2 General procedure for benzylic oxidation S-2 Characterization data of the oxidation products S-3 References S-7 Copies of 1 H and 13 C NMR spectra of 2d, 2g, 3a-m, 5, 6, 8-10, 12 S-9 Experimental. General. 1 H and 13 C NMR spectra were recorded on a JEL JNM-ECX400 and JNM-ECX600 spectrometer. Tetramethylsilane (TMS) served as internal standard ( = 0 ppm) for 1 H NMR, and CDCl3 was used as internal standard ( = 77.0 ppm) for 13 C NMR. IR spectra were measured using a JASC FT/IR-610 spectrometer. High resolution ESI mass spectrometry was carried out using BRUKER DALTNICS BioTF II. Preparative thin-layer chromatography was carried out using Wakogel B-5F. Starting Materials. 1-Phenyloctane (2a), 4-pentylbiphenyl (2e), 4-nitroethylbenzene (2f), diphenylmethane (2l), fluorene (2m), indane (4), isochromane (7), triphenylmethane (11) and triphenylmethanol (13) were purchased from commercial sources. 1-(4-Methoxyphenyl)octane (2b), 1 1-(4-fluorophenyl)octane (2c), 1 S-1

1,1 -dimethylindane (2h), 2 1,1 -dimethyl-1,2,3,4-tetrahydronaphthalene (2i), 2 2,2-dimethylchromane (2j), 3 and N-phenylsulfonyl-1,2,3,4-tetrahydroquinoline (2k) 4 were prepared according to the literature procedures. Synthesis of 1-(4-t-butylphenyl)octane (2d). 5 This compound was prepared by similar method to those of 2b and 2c according to the literature. 1 t Bu MgBr + n-c 8 H 17 Br Fe(acac) 3 (3 mol %) Et 2, reflux, 30 min t Bu 2d 6 To a refluxing solution of 1-bromooctane (2.6 ml, 15 mmol) and Fe(acac) 3 (159 mg, 0.45 mmol) in Et 2 (100 ml) was added a solution of 4-t-butylmaganesium bromide, which was prepared from 1-bromo-4-t-butylbenezene (5.2 ml, 30 mmol) and Mg (802 mg, 33 mmol) in Et 2 (30 ml), in one portion. After 30 min, the reaction mixture was cooled to 0 C and quenched with 1N HCl. The organic layer was separated and the aqueous layer was extracted with Et 2. The combined organic layers were washed with brine, dried over MgS 4, filtered and evaporated. The residue was distilled under reduced pressure to give 2d (2.13 g, 58%). Boiling point: 93 C (0.15 mmhg). The NMR data are identical with those reported in the literature. 5 1 H NMR (500 MHz, CDCl 3 ): δ 7.29 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 2.56 (t, J = 7.9 Hz, 2H), 1.59 (m, 2H), 1.31-1.27 (m, 19H), 0.88 (t, J = 6.8 Hz, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 148.2, 139.9, 128.0, 125.1, 35.5, 34.3, 31.9, 31.6, 31.4, 29.5 (overlap, 2C), 29.3, 22.7, 14.1. IR (neat): 1517, 1463, 1363, 1269, 830, 570 cm 1. Synthesis of 4-trifluoromethanesulfonyloxyphenylethane (2g). To a solution of 4-ethylphenol (1.0 g, 8.19 mmol) and pyridine (1.1 ml, 13.9 mmol) Tf in CH 2 Cl 2 (15 ml) was added Tf 2 (1.8 ml, 10.6 mmol) at 0 C. After stirring at that temperature for 1 hour, an insoluble salt was removed by filtration using Celite and the filtrate was washed with 1N HCl and saturated NaHC 3. The organic layer was dried over MgS 4, filtered and evaporated. The residue was purified by flash column chromatography (Hexane/AcEt = 19/1) to give the desired compound as colorless oil (2.05 g, 98%). 1 H NMR (400 MHz, CDCl 3 ): δ 7.31 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 2.73 (q, J = 7.6 Hz, 2H), 1.30 (t, J = 7.6 Hz, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 147. 6, 144.7, 129.5, 121.1, 118.7 (q, J CF = 320.2 Hz), 28.2, 15.3. IR (neat): 2973. 1502, 1423, 1251, 1216, 1142, 1018, 891, 839, 611, 496 cm 1. Anal. Calcd for C 9 H 9 3 F 3 S: C, 42.52; H, 3.57. Found: C, 42.37; H, 3.71. S-2

General procedure for iron-catalyzed benzylic oxidation: To a mixture of arylalkane (0.5 mmol) and Fe 2 (DS) 4 10H 2 6 (17 mg, 0.0125 mmol) in H 2 (0.5 ml) was added 70% aqueous TBHP solution (0.34 ml, 2.5 mmol) at 30 C. After stirring for 50 hours at that temperature, the reaction was quenched with a saturated aqueous NaHC 3 solution. The resulting mixture was extracted with Et 2 and the combined organic layers were dried over anhydrous MgS 4, filtered through a pad of Celite and concentrated in vacuo. The crude mixture was chromatographed on silica gel to give the desired ketone. 1-Phenyloctan-1-one (3a). 7 1 H NMR (400 MHz, CDCl 3 ): δ 7.96 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H), 1.73 (m, 2H), 1.39-1.20 (m, 8H), 0.88 (t, J = 6.4 Hz, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 200.5, 137.0, 132.8, 128.5, 128.0, 38.6, 31.7, 29.3, 29.1, 24.3, 22.6, 14.0. IR (neat): 2927, 1681, 1598, 1580, 1449, 1221, 751, 691, 570 cm 1. HRMS (ESI): calcd for C 14 H 21 + (M+H + ) 205.1587, found 205.1586. 1-(4-Methoxyphenyl)octan-1-one (3b). 8 1 H NMR (400 MHz, CDCl 3 ): δ 7.94 (d, J = Me 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 3.86 (s, 3H), 2.90 (t, J = 7.4 Hz, 2H), 1.72 (m, 2H), 1.37-1.20 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 199.2, 163.2, 130.2, 130.1, 113.6, 55.4, 38.2, 31.7, 29.3, 29.1, 24.6, 22.6, 14.0. IR (KBr): 2965, 2844, 1668, 1604, 1508, 1418, 1359, 1279, 1258, 1176, 1021, 956, 834, 591, 578 cm 1. 1-(4-Fuluorophenyl)octan-1-one (3c). 8 1 H NMR (400 MHz, CDCl 3 ): δ 8.01-7.96 (m, F 2H), 7.15-7.10 (m, 2H), 2.93 (t, J = 7.4 Hz, 2H), 1.73 (m, 2H), 1.41-1.20 (m, 10H), 0.88 (t, J = 6.6 Hz). 13 C NMR (100 MHz, CDCl 3 ): δ 198.9, 165.5 (d, J CF = 253.9 Hz), 133.4 (d, J CF = 2.9 Hz), 130.6 (d, J CF = 8.6 Hz), 115.5 (d, J CF = 22.1 Hz), 38.5, 31.7, 29.3, 29.1, 24.3, 22.6, 14.0. IR (KBr): 2919, 2849, 1681, 1600, 1508, 1244, 849, 822, 772, 600, 567 cm 1. HRMS (ESI): calcd for C 14 H 20 F + (M+H + ) 223.1493, S-3

found 223.1487. 1-(4-t-Butylphenyl)octan-1-one (3d). 1 H NMR (400 MHz, CDCl 3 ): δ 7.90 (d, J = 8.0, t Bu 2H), 7.47 (d, J = 8.0 Hz, 2H), 2.94 (t, J = 7.4 Hz, 2H), 1.72 (m, 2H), 1.38-1.21 (m, 19H), 0.88 (t, J = 7.0, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 200.3, 156.5, 134.5, 128.0, 125.4, 38.5, 35.0, 31.7, 31.1, 29.3, 29.1, 24.5, 22.6, 14.1. IR (neat): 2959, 1683, 1606, 1465, 1407, 1363, 1269, 1226, 1107, 734, 582 cm 1. HRMS (ESI): calcd for C 18 H 29 + (M+H + ) 261.2213, found 261.2220. 1-(1,1'-Biphenyl)-4-yl-1-pentanone (3e). 9 1 H NMR (400 MHz, CDCl 3 ): δ 8.03 (d, J = Ph 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 6.8 Hz, 2H), 7.49-7.37 (m, 3H), 2.99 (t, J = 7.2 Hz, 2H), 1.75 (m, 2H), 1.43 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 200.2, 145.5, 139.9, 135.7, 128.9, 128.6, 128.1, 127.2, 127.1, 38.3, 26.5, 22.5, 13.9. IR (KBr): 2952, 2868, 1675, 1602, 1449, 1404, 1375, 1344, 1270, 1212, 980, 850, 742, 692, 575 cm 1. HRMS (ESI): calcd for C 17 H 18 Na + (M+Na + ) 261.1250, found 261.1238. 4 -Nitroacetophenone (3f). 10 1 H NMR (400 MHz, CDCl 3 ): δ 8.34 (d, J = 8.8 Hz, 2H), 2 N 8.13 (d, J = 8.8 Hz, 2H), 2.70 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 196.3, 150.2, 141.3, 129.3, 123.8, 27.0. IR (KBr): 3109, 1694, 1608, 1520, 1349, 1263, 963, 857747,691, 504 cm 1. HRMS (ESI): calcd for C 8 H 8 N 3 + (M+H + ) 166.0499, found 166.0489. 4 -(Trifluoromethanelsulfonyloxy)acetophenone (3g). 11 1 H NMR (400 MHz, CDCl 3 ): Tf δ 8.07 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 2.64 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 196.1, 152.4, 136.8, 130.6, 121.6, 118.6 (q, J CF = 321.1 Hz), 26.6. IR (neat): 1693, 1595, 1497, 1427, 1214, 1139, 891, 611, 526 cm 1. HRMS (ESI): calcd for C 9 H 8 F 3 + 4 (M+H + ) 269.0090, found 269.0095. S-4

3,3-Dimethyl-1-indanone (3h). 12 1 H NMR (400 MHz, CDCl 3 ): δ 7.70 (d, J = 7.2. 1H), 7.62 (m, 1H), 7.50 (d, J = 7.6, 1H), 7.37 (m, 1H), 2.60 (s, 2H), 1.42 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 206.0, 163.8, 135.2, 134.9, 127.3, 123.5, 123.2, 52.8, 38.4, 29.9. IR (neat): 2961, 1716, 1604, 1472, 1324, 1291, 1247, 1092, 1037, 1016, 913, 734, 530 cm 1. HRMS (ESI): calcd for C 11 H 13 + (M+H + ) 161.0961, found 161.0957. 4,4-Dimethyl-1-tetralone (3i). 13 1 H NMR (400 MHz, CDCl 3 ): δ 8.02 (dd, J = 8.0, 1.2, 1H), 7.53 (dt, J = 8.0, 1.6, 1H), 7.42 (dd, J = 7.6, 0.8, 1H), 7.29 (dt, J = 7.8, 1.2, 1H), 2.73 (t, J = 7.0 Hz, 2H), 2.03 (t, J = 7.0 Hz, 2H), 1.40 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 198.4, 152.2, 133.8, 131.0, 127.2, 126.2, 125.8, 37.0, 35.0, 33.8, 29.7. IR (neat): 2964, 1685, 1600, 1284, 1249, 1198, 913, 768, 733, 569 cm 1. HRMS (ESI): calcd for C 12 H 15 + (M+H + ) 175.1117, found 175.1113. 2,3-Dihydro-2,2 -dimethylchromen-4-one (3j). 14 1 H NMR (400 MHz, CDCl 3 ): δ 7.86 (dd, J = 7.6, 1.8 Hz, 1H), 7.47 (m, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 2.73 (s, 2H), 1.47 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 192.4, 159.8, 136.0, 126.4, 120.5, 120.0, 118.2, 79.0, 48.7, 26.5. IR (KBr): 2978, 2934, 1686, 1605, 1456, 1306, 1256, 1119, 1024, 929, 896, 766, 571 cm 1. HRMS (ESI): calcd for C 11 H 13 + 2 (M+H + ) 177.0910, found 177.0907. 1- Phenylsurfonyl-1,2,3,4-tetrahydroquinolin-4-one (3k). 1 H NMR (400 MHz, CDCl 3 ): δ 7.95 (dd, J = 8.0, 1.6 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.69-7.57 (m, 4H), 7.45 (t, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 4.25 (t, J = 6.4 Hz, 2H), 2.38 (t, J = 6.4 Hz, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ 192.5, 142.1, 139.6, 134.7, 133.5, 129.5, 127.7, 126.7, 125.7, 124.5, 46.2, 36.4. IR (KBr): 1681, 1598, 1454, 1364, 1351, 1168, 760, 736, 590 cm 1. HRMS (ESI): calcd for C 15 H 15 N 3 + (M+H + ) 288.0689, found 288.0695. N S 2 Ph S-5

Benzophenone (3l). 15 1 H NMR (400 MHz, CDCl 3 ): δ 7.81 (d, J = 7.6 Hz, 4H), 7.60 (t, J = 7.6 Hz, 2H), 7.49 (t, J = 7.6 Hz, 4H). 13 C NMR (100 MHz, CDCl 3 ): δ 196.6, 137.4, 132.3, 129.9, 128.2. IR (neat): 1656, 1599, 1577, 1447, 1317, 1278, 941, 920, 764, 700, 638 cm 1. HRMS (ESI): calcd for C 13 H 10 Na + (M+Na + ) 205.0624, found 205.0634. 9-Fluorenone (3m). 16 1 H NMR (400 MHz, CDCl 3 ): δ 7.65 (brd, J = 7.2 Hz, 2H), 7.52-7.46 (m, 4H), 7.29 (dt, J = 7.2, 1.6 Hz, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ 193.8, 144.3, 134.6, 134.0, 128.9, 124.1, 120.2. IR (KBr): 1714, 1611, 1599, 1450, 1298, 918, 736 cm 1. HRMS (ESI): calcd for C 13 H 9 + (M+H + ) 181.0648, found 181.0645. 1-Indanone (5). 17 1 H NMR (400 MHz, CDCl 3 ): δ 7.76 (d, J = 7.6 Hz, 1H), 7.59 (m, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.37 (m, 1H), 3.15 (t, J = 5.8 Hz, 2H), 2.70 (m, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ 207.1, 155.1, 137.0, 134.6, 127.2, 126.7, 123.7, 36.2, 25.8. 1-(t-Butylperoxy)indan-3-one (6). 18 1 H NMR (400 MHz, CDCl 3 ): δ 7.79-7.76 (m, 2H), t Bu 7.66 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 5.65 (dd, J = 6.4, 2.0 Hz, 1H), 2.99 (dd, J = 19.2, 6.4 Hz, 1H), 2.83 (dd, J = 19.2, 2.4 Hz, 1H), 1.27 (s, 9H). 13 C NMR (100 MHz, CDCl 3 ): δ 203.1, 151.0, 137.4, 134.7, 129.9, 127.5, 123.3, 80.7, 79.0, 42.7, 26.4. 3,4-Dihydroisochromen-1-one (8). 19 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (d, J = 8.0 Hz, 1H), 7.55 (m, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.4 Hz), 4.55 (t, J = 6.0 Hz, 2H), 3.07 (t, J = 6.0 Hz, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ 165.1, 139.5, 133.6, 130.2, 127.5, 127.2, 125.1, 67.2, 27.7. 1-(tert-Butylperoxy)-1H-isochromen-4(3H)-one (9). 1 H NMR (400 MHz, CDCl 3 ): δ t Bu 8.03 (d, J = 8.0 Hz, 1H), 7.66 (dt, J = 1.4, 8.0 Hz, 1H), 7.56 (dt, J = 1.4, 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 6.21 (s, 1H), 4.86 (d, J = S-6

17.2, 1H), 4.38 (d, J = 17.2 Hz, 1H), 1.33 (s, 9H). 13 C NMR (100 MHz, CDCl 3 ): δ 193.5, 135.9, 134.4, 130.1, 129.5, 127.1, 126.0, 99.4, 81.6, 66.2, 26.4. IR (neat): 2969, 1703, 1604, 1294, 1103, 1011, 769, 543 cm 1 +. HRMS (ESI): calcd for C 13 H 16 Na 4 (M+Na + ) 259.0941, found 259.0937. 1-(tert-Butylperoxy)-3,4-dihydro-1H-isochromene (10). 20 1 H NMR (400 MHz, t Bu 1.36 (s, 9H). CDCl 3 ): δ 7.35 (d, J = 7.2 Hz, 1H), 7.30-7.21 (m, 2H), 7.15 (d, J = 7.6 Hz, 1H), 6.05 (s, 1H), 4.22 (dt, J = 12.4, 3.2 Hz, 1H), 4.01 (ddd, J = 11.2, 5.8, 1.4 Hz, 1H), 3.04 (m, 1H), 2.61 (dd, J = 16.4, 2.8 Hz, 1H), 13 C NMR (100 MHz, CDCl 3 ): δ 135.6, 130.2, 128.8, 128.7, 128.3, 126.2, 99.2, 81.0, 58.1, 27.8, 26.7. IR (neat): 2973, 1363, 1198, 1095 (C--), 1002, 746 cm 1. 1-(t-Butylperoxy)-1,1,1-triphenylmethane (12). 18,21 1 H NMR (400 MHz, CDCl 3 ): δ Ph Ph t Bu Ph 7.39-7.36 (m, 6H), 7.28-7.20 (m, 9H), 0.99 (s, 9H). 13 C NMR (100 MHz, CDCl 3 ): δ 143.6, 129.2, 127.3, 127.0, 90.6, 79.7, 26.3. IR (KBr): 2980, 1596, 1491, 1450, 1362, 1184, 1002, 908, 871, 705 cm 1. Anal. Calcd for C 23 H 24 2 : C, 83.10; H, 7.28. Found: C, 83.08; H, 7.51. References (1) Nagano, T.; Hayashi, T. rg. Lett. 2004, 6, 1297. (2) Reetz, M. T.; Westermann, J.; Kyung, S.-H. Chem. Ber. 1985, 118, 1050. (3) Bernier, D.; Brückner, R. Synthesis 2007, 2249. (4) Uchiyama, M.; Matsumoto, Y.; Nakamura, S.; hwada, T.; Kobayashi, N.; Yamashita, N.; Matsumiya, A.; Sakamoto, T. J. Am. Chem. Soc. 2004, 126, 8755. (5) Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. J. rg. Chem. 2003, 68, 7733. (6) Tolbert, S. H.; Sieger, P.; Stucky, G. D.; Aubin, S. M. J.; Wu, C.-C.; Hendrickson, D. N. J. Am. Chem. Soc. 1997, 119, 8652. (7) Ackermann, L.; Kaspar, L. T. J. rg. Chem. 2007, 72, 6149. (8) Muzart, J.; N Ait Ajjou, A. Synthesis 1993, 785. (9) Picard, F.; Schulz, T.; Hartmann, R. W. Bioorg. Med. Chem. 2002, 10, 437. (10) Fujita, K.; Tanino, N.; Yamaguchi, R. rg. Lett. 2007, 9, 109. S-7

(11) Chung, C. W. Y.; Toy, P. H. Tetrahedron 2005, 61, 709. (12) Chassaing, S.; Kumarraja, M.; Pale, P.; Sommer, J. rg. Lett. 2007, 9, 3889. (13) Chen, F.; Yang, J.; Zhang, H.; Guan, C.; Wan, J. Synth Commun. 1995, 25, 3163. (14) Deagostino, A.; Farina, V.; Prandi, C.; Zavattaro, C.; Venturello, P. Eur. J. rg. Chem. 2006, 3451. (15) Xing, D.; Guan, B.; Cai, G.; Fang, Z.; Yang, L.; Shi, Z. rg. Lett. 2006, 8, 693. (16) Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem., Int. Ed. 2006, 45, 3140. (17) dedra, A.; Datta, S.; Liu, R.-S. J. rg. Chem. 2007, 72, 3289. (18) Muzart, J.; N Ait Ajjou, A. J. Mol. Catal. 1994, 92, 141. (19) Silvestre, S. M.; Salvador, A. R. Tetrahedron 2007, 63, 2439. (20) Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P. rg. Lett. 2005, 7, 5167. (21) Barton, D. H. R.; Le Gloahec, V. N. Tetrahedron 1998, 54, 15457. S-8

S-9

S-10

S-11

S-12

S-13

S-14

S-15

S-16

S-17

S-18

S-19

S-20

S-21

S-22

S-23

S-24

S-25

S-26

S-27

S-28

S-29