Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Σχετικά έγγραφα
Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Supporting Information

Electronic Supplementary Information (ESI)

IV. ANHANG 179. Anhang 178

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supplementary Material

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

Fused Bis-Benzothiadiazoles as Electron Acceptors

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supplementary Material

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting information for

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Table of Contents 1 Supplementary Data MCD

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Supporting Information

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Supporting Information for

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Supporting Information

Experimental. Crystal data

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

Supporting Information

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

Enhancing the Photochemical Stability of N,C-Chelate Polyboryl Compounds: C- C Bond Formation versus C=C Bond cis, trans-isomerization

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supplementary information

Electronic Supplementary Information (ESI)

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Chiral α-aminoxy Acid / Achiral Cyclopropane α-aminoxy Acid Unit as a Building Block for Constructing α N O Helix

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

Supporting Information

Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of. Arenediazonium Salts to gem-difluoromethylene Azo Compounds

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

SUPPORTING INFORMATION

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Supporting Information

metal-organic compounds

Supporting Information

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Supplementary Information for

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information. for

Supporting Information

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics

Reactivity of Steroidal 1-Azadienes Toward Carbonyl Compounds under Enamine Catalysis: Chiral Penta- and Hexacyclic Steroids. Supporting Information

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

Supporting Information

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Supporting Information

Supporting Information

Supporting Information. Three new high-nuclear transition-metal-substituted

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Transcript:

Supporting Information Dysiherbols A C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge Wei-Hua Jiao,, Guo-Hua Shi,, Ting-Ting Xu,, Guo-Dong Chen, Bin-Bin Gu, Zhuo Wang, Shuang Peng,, Shu-Ping Wang, Jia Li, Bing-Nan Han, Wei Zhang, and Hou-Wen Lin*, Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 2007, People s Republic of China Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 50632, People s Republic of China Center for Marine Bioproducts Development, Flingers University, Adelaide 500, Australia National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 2003, People s Republic of China

Contents A Photo of a Dysidea sp. Marine Sponge (No. XD0608) Experimental Section Figure S. H NMR Spectrum of Dysiherbol A () in CDCl 3. Figure S2. C NMR Spectrum of Dysiherbol A () in CDCl 3. Figure S3. DEPT5 Spectrum of Dysiherbol A () in CDCl 3. Figure S4. H- H COSY Spectrum of Dysiherbol A () in CDCl 3. Figure S5. HSQC Spectrum of Dysiherbol A () in CDCl 3. Figure S6. HMBC Spectrum of Dysiherbol A () in CDCl 3. Figure S7. NOESY Spectrum of Dysiherbol A () in CDCl 3. Figure S8. HRESIMS of Dysiherbol A (). Figure S9. ECD spectrum of Dysiherbol A () in MeOH. Figure S0. UV spectrum of Dysiherbol A () in MeOH. Figure S. IR spectrum of Dysiherbol A (). Figure S. H NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S. C NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S. DEPT5 Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S. H- H COSY Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S6. HSQC Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S7. HMBC Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S8. NOESY Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S9. HRESIMS of Dysiherbol B (2). Figure S20. ECD spectrum of Dysiherbol B (2). Figure S. UV spectrum of Dysiherbol B (2) in MeOH. Figure S22. IR spectrum of Dysiherbol B (2). 2

Figure S23. H NMR Spectrum of Dysiherbol C (3) in CDCl 3. Figure S24. C NMR Spectrum of Dysiherbol C (3) in CDCl 3. Figure S25. DEPT5 Spectrum of Dysiherbol C (3) in CDCl 3. Figure S26. H- H COSY Spectrum of Dysiherbol C (3) in CDCl 3. Figure S27. HSQC Spectrum of Dysiherbol C (3) in CDCl 3. Figure S28. HMBC Spectrum of Dysiherbol C (3) in CDCl 3. Figure S29. NOESY Spectrum of Dysiherbol C (3) in CDCl 3. Figure S30. HRESIMS of Dysiherbol C (3). Figure S3. ECD spectrum of Dysiherbol C (3). Figure S22. UV spectrum of Dysiherbol C (3) in MeOH. Figure S33. IR spectrum of Dysiherbol C (3). Figure S34. H NMR Spectrum of Dysideanone E (4) in CDCl 3. Figure S35. C NMR Spectrum of Dysideanone E (4) in CDCl 3. Figure S36. DEPT5 Spectrum of Dysideanone E (4) in CDCl 3. Figure S37. H- H COSY Spectrum of Dysideanone E (4) in CDCl 3. Figure S38. HSQC Spectrum of Dysideanone E (4) in CDCl 3. Figure S39. HMBC Spectrum of Dysideanone E (4) in CDCl 3. Figure S40. NOESY Spectrum of Dysideanone E (4) in CDCl 3. Figure S4. HRESIMS of Dysideanone E (4). Figure S42. ECD spectrum of Dysideanone E (4). Figure S43. Experimental and calculated ECD spectra of 4. Figure S44. UV spectrum of Dysideanone E (4) in MeOH. Figure S45. IR spectrum of Dysideanone E (4). Table S. Crystallographic Table for Dysideanone E (4). 3

A Photo of a Dysidea sp. Marine Sponge (No. XD0608) 4

Figure S. H NMR Spectrum of Dysiherbol A () in CDCl 3. 5

Figure S2. C NMR Spectrum of Dysiherbol A () in CDCl 3. 6

Figure S3. DEPT5 Spectrum of Dysiherbol A () in CDCl 3. 7

Figure S4. H- H COSY Spectrum of Dysiherbol A () in CDCl 3. 8

Figure S5. HSQC Spectrum of Dysiherbol A () in CDCl 3. 9

Figure S6. HMBC Spectrum of Dysiherbol A () in CDCl 3. 0

7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S7. NOESY Spectrum of Dysiherbol A () in CDCl 3.

7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S8. HRESIMS of Dysiherbol A ().

7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S9. ECD Spectrum of Dysiherbol A ().

7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S0. UV Spectrum of Dysiherbol A () in MeOH.

7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S. IR Spectrum of Dysiherbol A ().

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. H NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. 6

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. C NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. 7

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. DEPT5 Spectrum of Dysiherbol B (2) in Pyr-d 5. 8

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. H- H COSY Spectrum of Dysiherbol B (2) in Pyr-d 5. 9

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S6. HSQC Spectrum of Dysiherbol B (2) in Pyr-d 5. 20

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S7. HMBC Spectrum of Dysiherbol B (2) in Pyr-d 5.

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S8. NOESY Spectrum of Dysiherbol B (2) in Pyr-d 5. 22

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S9. HRESIMS of Dysiherbol B (2). 23

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S20. ECD Spectrum of Dysiherbol B (2). 24

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. UV Spectrum of Dysiherbol B (2) in MeOH. 25

7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S22. IR Spectrum of Dysiherbol B (2). 26

Figure S23. H NMR Spectrum of Dysiherbol C (3) in CDCl 3. 27

Figure S24. C NMR Spectrum of Dysiherbol C (3) in CDCl 3. 28

Figure S25. DEPT5 Spectrum of Dysiherbol C (3) in CDCl 3. 29

Figure S26. H- H COSY Spectrum of Dysiherbol C (3) in CDCl 3. 30

Figure S27. HSQC Spectrum of Dysiherbol C (3) in CDCl 3. 3

Figure S28. HMBC Spectrum of Dysiherbol C (3) in CDCl 3. 32

Figure. S29. NOESY Spectrum of Dysiherbol C (3) in CDCl 3. 33

7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S30. HRESIMS of Dysiherbol C (3). 34

7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S3. ECD Spectrum of Dysiherbol C (3) in MeOH. 35

7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S32. UV Spectrum of Dysiherbol C (3) in MeOH. 36

7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S33. IR Spectrum of Dysiherbol C (3). 37

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S34. H NMR Spectrum of Dysideanone E (4) in CDCl 3. 38

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S35. C NMR Spectrum of Dysideanone E (4) in CDCl 3. 39

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S36. DEPT5 Spectrum of Dysideanone E (4) in CDCl 3. 40

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S37. H- H COSY Spectrum of Dysideanone E (4) in CDCl 3. 4

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S38. HSQC Spectrum of Dysideanone E (4) in CDCl 3. 42

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S39. HMBC Spectrum of Dysideanone E (4) in CDCl 3. 43

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S40. NOESY Spectrum of Dysideanone E (4) in CDCl 3. 44

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S4. HRESIMS of Dysideanone E (4). 45

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S42. ECD Spectrum of Dysideanone E (4). 46

Figure S43. Experimental and calculated ECD spectra of 4. 47

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S44. UV Spectrum of Dysideanone E (4) in MeOH. 48

20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S45. IR Spectrum of Dysideanone E (4). 49

Table S. Crystallographic Table for Dysideanone E (4). Table. Crystal data and structure refinement for cu_dm635_0m. Identification code cu_dm635_0m Empirical formula C H28 O2 Formula weight 3.43 Temperature 0 K Wavelength.5478 Å Crystal system Monoclinic Space group P Unit cell dimensions a = 0.40(3) Å α= 90. b = 6.592(2) Å β= 94.667(2). c =.5869(3) Å γ = 90. Volume 850.66(4) Å 3 Z 2 Density (calculated).220 Mg/m 3 Absorption coefficient 0.59 mm - F(000) 340 Crystal size 0. x 0.08 x 0.03 mm 3 Theta range for data collection 3.523 to 69.483. Index ranges -<=h<=, -7<=k<=7, -<=l<= Reflections collected 640 Independent reflections 2646 [R(int) = 0.0424] Completeness to theta = 67.679 96.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7532 and 0.5984 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2646 / / 2 Goodness-of-fit on F 2.085 Final R indices [I>2sigma(I)] R = 0.044, wr2 = 0.95 R indices (all data) R = 0.0467, wr2 = 0.78 Absolute structure parameter 0.07() Extinction coefficient n/a Largest diff. peak and hole 0.37 and -0.28 e.å -3 50

Table 2. Atomic coordinates ( x 0 4 ) and equivalent isotropic displacement parameters (Å 2 x 0 3 ) for cu_dm635_0m. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) O() 3945(2) 876(3) 73() 22() O(2) 4097(2) 607(4) 3449(2) 30() C() 3492(2) 56(4) 75(2) 9() C(2) 4625(2) 4934(5) 8379(2) 23() C(3) 4303(3) 3589(5) 939(2) 26() C(4) 3066(3) 4267(4) 9750(2) 24() C(5) 900(3) 48(4) 8924(2) () C(6) 686(3) 4993(5) 9395(2) 24() C(7) -463(3) 58(5) 8563(2) 27() C(8) -2(2) 6629(5) 765(2) 23() C(9) 050(2) 5892(4) 706(2) 20() C(0) 220(2) 5624(4) 7983(2) 8() C() 3025(3) 4858(6) 0755(2) 3() C() 7(3) 890(5) 868(2) 27() C() -60(3) 6962(6) 6882(2) 33() C() 740(3) 3945(5) 6425(2) 26() C() 46(2) 7608(5) 6348(2) 22() C(6) 2688(2) 702(4) 5885(2) 20() C(7) 389(2) 688(4) 67(2) 20() C(8) 5060(2) 6446(4) 6230(2) () C(9) 59(3) 698(5) 587(2) 23() C(20) 407(3) 6329(5) 44(2) 23() C() 2788(3) 6806(5) 4845(2) 23() 5

Table 3. Bond lengths [Å] and angles [ ] for cu_dm635_0m. O()-H() 0.8400 O()-C(7).439(3) O(2)-C(20).236(3) C()-H(A).0000 C()-C(2).547(3) C()-C(0).543(3) C()-C(7).567(4) C(2)-H(2A) 0.9900 C(2)-H(2B) 0.9900 C(2)-C(3).53(4) C(3)-H(3A) 0.9900 C(3)-H(3B) 0.9900 C(3)-C(4).502(4) C(4)-C(5).533(3) C(4)-C().326(4) C(5)-C(6).532(4) C(5)-C(0).564(3) C(5)-C().55(4) C(6)-H(6A) 0.9900 C(6)-H(6B) 0.9900 C(6)-C(7).53(4) C(7)-H(7A) 0.9900 C(7)-H(7B) 0.9900 C(7)-C(8).526(4) C(8)-H(8).0000 C(8)-C(9).550(3) C(8)-C().538(3) C(9)-C(0).57(3) C(9)-C().55(4) C(9)-C().548(4) C(0)-H(0).0000 C()-H(A) 0.9500 C()-H(B) 0.9500 C()-H(A) 0.9800 C()-H(B) 0.9800 C()-H(C) 0.9800 52

C()-H(A) 0.9800 C()-H(B) 0.9800 C()-H(C) 0.9800 C()-H(A) 0.9800 C()-H(B) 0.9800 C()-H(C) 0.9800 C()-H(A) 0.9900 C()-H(B) 0.9900 C()-C(6).497(3) C(6)-C(7).56(3) C(6)-C().335(4) C(7)-C(8).499(4) C(8)-H(8) 0.9500 C(8)-C(9).334(4) C(9)-H(9) 0.9500 C(9)-C(20).475(3) C(20)-C().462(4) C()-H() 0.9500 C(7)-O()-H() 09.5 C(2)-C()-H(A) 08.5 C(2)-C()-C(7) 08.9(2) C(0)-C()-H(A) 08.5 C(0)-C()-C(2).48(9) C(0)-C()-C(7) 0.0(2) C(7)-C()-H(A) 08.5 C()-C(2)-H(2A) 08.9 C()-C(2)-H(2B) 08.9 H(2A)-C(2)-H(2B) 07.7 C(3)-C(2)-C().3(2) C(3)-C(2)-H(2A) 08.9 C(3)-C(2)-H(2B) 08.9 C(2)-C(3)-H(3A) 09.5 C(2)-C(3)-H(3B) 09.5 H(3A)-C(3)-H(3B) 08.0 C(4)-C(3)-C(2) 0.9(2) C(4)-C(3)-H(3A) 09.5 C(4)-C(3)-H(3B) 09.5 53

C(3)-C(4)-C(5).5(2) C()-C(4)-C(3).6(2) C()-C(4)-C(5) 4.9(3) C(4)-C(5)-C(0) 07.(2) C(4)-C(5)-C() 06.3(2) C(6)-C(5)-C(4) 0.9(2) C(6)-C(5)-C(0) 07.9(2) C(6)-C(5)-C() 09.7(2) C()-C(5)-C(0).8(2) C(5)-C(6)-H(6A) 09.0 C(5)-C(6)-H(6B) 09.0 H(6A)-C(6)-H(6B) 07.8 C(7)-C(6)-C(5).0(2) C(7)-C(6)-H(6A) 09.0 C(7)-C(6)-H(6B) 09.0 C(6)-C(7)-H(7A) 09.3 C(6)-C(7)-H(7B) 09.3 H(7A)-C(7)-H(7B) 07.9 C(8)-C(7)-C(6).8(2) C(8)-C(7)-H(7A) 09.3 C(8)-C(7)-H(7B) 09.3 C(7)-C(8)-H(8) 06.6 C(7)-C(8)-C(9).0(2) C(7)-C(8)-C() 0.2(2) C(9)-C(8)-H(8) 06.6 C()-C(8)-H(8) 06.6 C()-C(8)-C(9).4(2) C(8)-C(9)-C(0) 08.64(9) C(8)-C(9)-C().0(2) C()-C(9)-C(0).2(2) C()-C(9)-C(8) 08.3(2) C()-C(9)-C(0) 06.75(9) C()-C(9)-C() 07.7(2) C()-C(0)-C(5).8(2) C()-C(0)-C(9).88(8) C()-C(0)-H(0) 04.9 C(5)-C(0)-C(9).3(2) C(5)-C(0)-H(0) 04.9 54

C(9)-C(0)-H(0) 04.9 C(4)-C()-H(A) 0.0 C(4)-C()-H(B) 0.0 H(A)-C()-H(B) 0.0 C(5)-C()-H(A) 09.5 C(5)-C()-H(B) 09.5 C(5)-C()-H(C) 09.5 H(A)-C()-H(B) 09.5 H(A)-C()-H(C) 09.5 H(B)-C()-H(C) 09.5 C(8)-C()-H(A) 09.5 C(8)-C()-H(B) 09.5 C(8)-C()-H(C) 09.5 H(A)-C()-H(B) 09.5 H(A)-C()-H(C) 09.5 H(B)-C()-H(C) 09.5 C(9)-C()-H(A) 09.5 C(9)-C()-H(B) 09.5 C(9)-C()-H(C) 09.5 H(A)-C()-H(B) 09.5 H(A)-C()-H(C) 09.5 H(B)-C()-H(C) 09.5 C(9)-C()-H(A) 09.4 C(9)-C()-H(B) 09.4 H(A)-C()-H(B) 08.0 C(6)-C()-C(9).2(2) C(6)-C()-H(A) 09.4 C(6)-C()-H(B) 09.4 C()-C(6)-C(7).5(2) C()-C(6)-C() 3.5(2) C()-C(6)-C(7) 2.9(2) O()-C(7)-C() 07.8(9) O()-C(7)-C(6) 08.2(2) O()-C(7)-C(8) 09.3(2) C(6)-C(7)-C() 08.2(2) C(8)-C(7)-C().3(2) C(8)-C(7)-C(6).5(2) C(7)-C(8)-H(8) 7.9 55

C(9)-C(8)-C(7) 4.(2) C(9)-C(8)-H(8) 7.9 C(8)-C(9)-H(9) 9.4 C(8)-C(9)-C(20).3(2) C(20)-C(9)-H(9) 9.4 O(2)-C(20)-C(9).7(2) O(2)-C(20)-C().6(2) C()-C(20)-C(9) 6.7(2) C(6)-C()-C(20) 2.3(2) C(6)-C()-H() 8.9 C(20)-C()-H() 8.9 Symmetry transformations used to generate equivalent atoms: 56

Table 4. Anisotropic displacement parameters (Å 2 x 0 3 ) for cu_dm635_0m. The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U +... + 2 h k a* b* U ] U U 22 U 33 U 23 U U O() 25() 25() 9() -5() 6() -4() O(2) 40() 35() () 0() 8() 9() C() 20() 25() () -() 2() 0() C(2) 20() 33(2) 6() 4() 2() () C(3) 28() 32(2) 9() 8() () 5() C(4) 30() 25(2) 6() 4() 5() 0() C(5) 25() 22(2) () -2() 7() -() C(6) 29() 28(2) 7() -3() 0() -3() C(7) 22() 36(2) 24() -6() 0() -4() C(8) () 29(2) 20() -5() 3() -() C(9) 8() 27() () -7() 2() () C(0) 8() 22() () -() 3() -() C() 35() 4(2) 6() 4() () -2() C() 35() 24(2) 23() 0() 9() -3() C() 8() 5(2) 3() -4() 3() 5() C() 25() 33(2) 20() -8() () -3() C() () 30(2) () -2() () 5() C(6) 20() 22() 7() () 3() 0() C(7) 9() 25() () -2() 3() () C(8) 9() 26(2) 8() 0() 2() 0() C(9) 24() 26(2) () () 7() 2() C(20) 32() 23() () 0() 4() 2() C() 26() 27() () 0() 2() 3() 57

Table 5. Hydrogen coordinates ( x 0 4 ) and isotropic displacement parameters (Å 2 x 0 3 ) for cu_dm635_0m. x y z U(eq) H() 4500 95 7060 34 H(A) 3398 3823 70 23 H(2A) 5376 4338 8054 28 H(2B) 4875 636 8649 28 H(3A) 42 23 9084 32 H(3B) 50 367 989 32 H(6A) 448 4046 996 29 H(6B) 88 6346 9727 29 H(7A) -709 3849 8272 32 H(7B) -08 5780 8909 32 H(8) 75 7994 7976 28 H(0) 2325 70 83 H(A) 3789 4859 22 37 H(B) 2230 5280 007 37 H(A) 2356 90 80 4 H(B) 845 690 8267 4 H(C) 86 044 9263 4 H(A) -690 5632 669 50 H(B) -8 7806 6280 50 H(C) -2024 7660 7259 50 H(A) 228 2993 6822 39 H(B) 46 3278 6265 39 H(C) 249 4332 5757 39 H(A) 758 7790 5764 26 H(B) 42 897 6745 26 H(8) 5825 6340 6694 25 H(9) 5980 593 4938 28 H() 2034 6908 4369 27 58

Table 6. Torsion angles [ ] for cu_dm635_0m. O()-C(7)-C(8)-C(9) -2.7(3) O(2)-C(20)-C()-C(6) -79.5(3) C()-C(2)-C(3)-C(4) -5.(3) C()-C(7)-C(8)-C(9) 9.(3) C(2)-C()-C(0)-C(5) -48.9(3) C(2)-C()-C(0)-C(9) 78.7(2) C(2)-C()-C(7)-O() -62.3(3) C(2)-C()-C(7)-C(6) -78.7(2) C(2)-C()-C(7)-C(8) 57.2(3) C(2)-C(3)-C(4)-C(5) 59.5(3) C(2)-C(3)-C(4)-C() -.0(3) C(3)-C(4)-C(5)-C(6) -77.(2) C(3)-C(4)-C(5)-C(0) -59.6(3) C(3)-C(4)-C(5)-C() 63.7(3) C(4)-C(5)-C(6)-C(7) 72.(2) C(4)-C(5)-C(0)-C() 53.8(3) C(4)-C(5)-C(0)-C(9) -74.5(2) C(5)-C(6)-C(7)-C(8) -57.5(3) C(6)-C(5)-C(0)-C() 73.3(2) C(6)-C(5)-C(0)-C(9) -55.0(3) C(6)-C(7)-C(8)-C(9) 56.2(3) C(6)-C(7)-C(8)-C() -75.2(2) C(7)-C(8)-C(9)-C(0) -53.8(3) C(7)-C(8)-C(9)-C() 72.6(3) C(7)-C(8)-C(9)-C() -69.4(2) C(8)-C(9)-C(0)-C() -73.(2) C(8)-C(9)-C(0)-C(5) 54.8(3) C(8)-C(9)-C()-C(6) 73.66(9) C(9)-C()-C(6)-C(7) -6.5(3) C(9)-C()-C(6)-C() 6.4(3) C(0)-C()-C(2)-C(3) 46.5(3) C(0)-C()-C(7)-O() 6.4(2) C(0)-C()-C(7)-C(6) -55.(3) C(0)-C()-C(7)-C(8) -79.2(2) C(0)-C(5)-C(6)-C(7) 55.0(3) C(0)-C(9)-C()-C(6) 56.9(3) 59

C()-C(4)-C(5)-C(6) 3.4(4) C()-C(4)-C(5)-C(0) 0.9(3) C()-C(4)-C(5)-C() -5.8(3) C()-C(5)-C(6)-C(7) -70.8(3) C()-C(5)-C(0)-C() -64.0(3) C()-C(5)-C(0)-C(9) 67.7(3) C()-C(8)-C(9)-C(0) 79.9(2) C()-C(8)-C(9)-C() -53.7(3) C()-C(8)-C(9)-C() 64.3(3) C()-C(9)-C(0)-C() 62.4(3) C()-C(9)-C(0)-C(5) -69.8(3) C()-C(9)-C()-C(6) -66.2(3) C()-C(9)-C(0)-C() -56.5(3) C()-C(9)-C(0)-C(5) 7.3(2) C()-C(6)-C(7)-O() -57.2(3) C()-C(6)-C(7)-C() 58.6(3) C()-C(6)-C(7)-C(8) -78.0(2) C()-C(6)-C()-C(20) 79.5(3) C(6)-C(7)-C(8)-C(9) -2.5(4) C(7)-C()-C(2)-C(3) 68.6(2) C(7)-C()-C(0)-C(5) -70.5(2) C(7)-C()-C(0)-C(9) 57.2(3) C(7)-C(6)-C()-C(20) -2.8(5) C(7)-C(8)-C(9)-C(20) -0.3(5) C(8)-C(9)-C(20)-O(2) -78.9(3) C(8)-C(9)-C(20)-C().9(4) C(9)-C(20)-C()-C(6) -0.3(4) C()-C(6)-C(7)-O() 4.9(3) C()-C(6)-C(7)-C() -9.3(3) C()-C(6)-C(7)-C(8) 4.(4) Symmetry transformations used to generate equivalent atoms: 60

Table 7. Hydrogen bonds for cu_dm635_0m [Å and ]. D-H...A d(d-h) d(h...a) d(d...a) <(DHA) O()-H()...O(2)# 0.84.93 2.767(3) 74.3 Symmetry transformations used to generate equivalent atoms: # -x+,y+/2,-z+ 6