Supporting Information Dysiherbols A C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge Wei-Hua Jiao,, Guo-Hua Shi,, Ting-Ting Xu,, Guo-Dong Chen, Bin-Bin Gu, Zhuo Wang, Shuang Peng,, Shu-Ping Wang, Jia Li, Bing-Nan Han, Wei Zhang, and Hou-Wen Lin*, Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 2007, People s Republic of China Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 50632, People s Republic of China Center for Marine Bioproducts Development, Flingers University, Adelaide 500, Australia National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 2003, People s Republic of China
Contents A Photo of a Dysidea sp. Marine Sponge (No. XD0608) Experimental Section Figure S. H NMR Spectrum of Dysiherbol A () in CDCl 3. Figure S2. C NMR Spectrum of Dysiherbol A () in CDCl 3. Figure S3. DEPT5 Spectrum of Dysiherbol A () in CDCl 3. Figure S4. H- H COSY Spectrum of Dysiherbol A () in CDCl 3. Figure S5. HSQC Spectrum of Dysiherbol A () in CDCl 3. Figure S6. HMBC Spectrum of Dysiherbol A () in CDCl 3. Figure S7. NOESY Spectrum of Dysiherbol A () in CDCl 3. Figure S8. HRESIMS of Dysiherbol A (). Figure S9. ECD spectrum of Dysiherbol A () in MeOH. Figure S0. UV spectrum of Dysiherbol A () in MeOH. Figure S. IR spectrum of Dysiherbol A (). Figure S. H NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S. C NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S. DEPT5 Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S. H- H COSY Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S6. HSQC Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S7. HMBC Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S8. NOESY Spectrum of Dysiherbol B (2) in Pyr-d 5. Figure S9. HRESIMS of Dysiherbol B (2). Figure S20. ECD spectrum of Dysiherbol B (2). Figure S. UV spectrum of Dysiherbol B (2) in MeOH. Figure S22. IR spectrum of Dysiherbol B (2). 2
Figure S23. H NMR Spectrum of Dysiherbol C (3) in CDCl 3. Figure S24. C NMR Spectrum of Dysiherbol C (3) in CDCl 3. Figure S25. DEPT5 Spectrum of Dysiherbol C (3) in CDCl 3. Figure S26. H- H COSY Spectrum of Dysiherbol C (3) in CDCl 3. Figure S27. HSQC Spectrum of Dysiherbol C (3) in CDCl 3. Figure S28. HMBC Spectrum of Dysiherbol C (3) in CDCl 3. Figure S29. NOESY Spectrum of Dysiherbol C (3) in CDCl 3. Figure S30. HRESIMS of Dysiherbol C (3). Figure S3. ECD spectrum of Dysiherbol C (3). Figure S22. UV spectrum of Dysiherbol C (3) in MeOH. Figure S33. IR spectrum of Dysiherbol C (3). Figure S34. H NMR Spectrum of Dysideanone E (4) in CDCl 3. Figure S35. C NMR Spectrum of Dysideanone E (4) in CDCl 3. Figure S36. DEPT5 Spectrum of Dysideanone E (4) in CDCl 3. Figure S37. H- H COSY Spectrum of Dysideanone E (4) in CDCl 3. Figure S38. HSQC Spectrum of Dysideanone E (4) in CDCl 3. Figure S39. HMBC Spectrum of Dysideanone E (4) in CDCl 3. Figure S40. NOESY Spectrum of Dysideanone E (4) in CDCl 3. Figure S4. HRESIMS of Dysideanone E (4). Figure S42. ECD spectrum of Dysideanone E (4). Figure S43. Experimental and calculated ECD spectra of 4. Figure S44. UV spectrum of Dysideanone E (4) in MeOH. Figure S45. IR spectrum of Dysideanone E (4). Table S. Crystallographic Table for Dysideanone E (4). 3
A Photo of a Dysidea sp. Marine Sponge (No. XD0608) 4
Figure S. H NMR Spectrum of Dysiherbol A () in CDCl 3. 5
Figure S2. C NMR Spectrum of Dysiherbol A () in CDCl 3. 6
Figure S3. DEPT5 Spectrum of Dysiherbol A () in CDCl 3. 7
Figure S4. H- H COSY Spectrum of Dysiherbol A () in CDCl 3. 8
Figure S5. HSQC Spectrum of Dysiherbol A () in CDCl 3. 9
Figure S6. HMBC Spectrum of Dysiherbol A () in CDCl 3. 0
7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S7. NOESY Spectrum of Dysiherbol A () in CDCl 3.
7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S8. HRESIMS of Dysiherbol A ().
7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S9. ECD Spectrum of Dysiherbol A ().
7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S0. UV Spectrum of Dysiherbol A () in MeOH.
7 OH 20 6 0 8 3 5 Dysiherbol A () Figure S. IR Spectrum of Dysiherbol A ().
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. H NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. 6
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. C NMR Spectrum of Dysiherbol B (2) in Pyr-d 5. 7
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. DEPT5 Spectrum of Dysiherbol B (2) in Pyr-d 5. 8
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. H- H COSY Spectrum of Dysiherbol B (2) in Pyr-d 5. 9
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S6. HSQC Spectrum of Dysiherbol B (2) in Pyr-d 5. 20
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S7. HMBC Spectrum of Dysiherbol B (2) in Pyr-d 5.
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S8. NOESY Spectrum of Dysiherbol B (2) in Pyr-d 5. 22
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S9. HRESIMS of Dysiherbol B (2). 23
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S20. ECD Spectrum of Dysiherbol B (2). 24
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S. UV Spectrum of Dysiherbol B (2) in MeOH. 25
7 OH 20 6 0 8 3 5 Dysiherbol B (2) Figure S22. IR Spectrum of Dysiherbol B (2). 26
Figure S23. H NMR Spectrum of Dysiherbol C (3) in CDCl 3. 27
Figure S24. C NMR Spectrum of Dysiherbol C (3) in CDCl 3. 28
Figure S25. DEPT5 Spectrum of Dysiherbol C (3) in CDCl 3. 29
Figure S26. H- H COSY Spectrum of Dysiherbol C (3) in CDCl 3. 30
Figure S27. HSQC Spectrum of Dysiherbol C (3) in CDCl 3. 3
Figure S28. HMBC Spectrum of Dysiherbol C (3) in CDCl 3. 32
Figure. S29. NOESY Spectrum of Dysiherbol C (3) in CDCl 3. 33
7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S30. HRESIMS of Dysiherbol C (3). 34
7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S3. ECD Spectrum of Dysiherbol C (3) in MeOH. 35
7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S32. UV Spectrum of Dysiherbol C (3) in MeOH. 36
7 OH 20 6 O 0 8 3 5 Dysiherbol C (3) Figure S33. IR Spectrum of Dysiherbol C (3). 37
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S34. H NMR Spectrum of Dysideanone E (4) in CDCl 3. 38
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S35. C NMR Spectrum of Dysideanone E (4) in CDCl 3. 39
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S36. DEPT5 Spectrum of Dysideanone E (4) in CDCl 3. 40
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S37. H- H COSY Spectrum of Dysideanone E (4) in CDCl 3. 4
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S38. HSQC Spectrum of Dysideanone E (4) in CDCl 3. 42
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S39. HMBC Spectrum of Dysideanone E (4) in CDCl 3. 43
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S40. NOESY Spectrum of Dysideanone E (4) in CDCl 3. 44
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S4. HRESIMS of Dysideanone E (4). 45
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S42. ECD Spectrum of Dysideanone E (4). 46
Figure S43. Experimental and calculated ECD spectra of 4. 47
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S44. UV Spectrum of Dysideanone E (4) in MeOH. 48
20 O 8 3 7 H 4 6 H 9 0 8 5 6 Dysideanone E (4) Figure S45. IR Spectrum of Dysideanone E (4). 49
Table S. Crystallographic Table for Dysideanone E (4). Table. Crystal data and structure refinement for cu_dm635_0m. Identification code cu_dm635_0m Empirical formula C H28 O2 Formula weight 3.43 Temperature 0 K Wavelength.5478 Å Crystal system Monoclinic Space group P Unit cell dimensions a = 0.40(3) Å α= 90. b = 6.592(2) Å β= 94.667(2). c =.5869(3) Å γ = 90. Volume 850.66(4) Å 3 Z 2 Density (calculated).220 Mg/m 3 Absorption coefficient 0.59 mm - F(000) 340 Crystal size 0. x 0.08 x 0.03 mm 3 Theta range for data collection 3.523 to 69.483. Index ranges -<=h<=, -7<=k<=7, -<=l<= Reflections collected 640 Independent reflections 2646 [R(int) = 0.0424] Completeness to theta = 67.679 96.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7532 and 0.5984 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2646 / / 2 Goodness-of-fit on F 2.085 Final R indices [I>2sigma(I)] R = 0.044, wr2 = 0.95 R indices (all data) R = 0.0467, wr2 = 0.78 Absolute structure parameter 0.07() Extinction coefficient n/a Largest diff. peak and hole 0.37 and -0.28 e.å -3 50
Table 2. Atomic coordinates ( x 0 4 ) and equivalent isotropic displacement parameters (Å 2 x 0 3 ) for cu_dm635_0m. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) O() 3945(2) 876(3) 73() 22() O(2) 4097(2) 607(4) 3449(2) 30() C() 3492(2) 56(4) 75(2) 9() C(2) 4625(2) 4934(5) 8379(2) 23() C(3) 4303(3) 3589(5) 939(2) 26() C(4) 3066(3) 4267(4) 9750(2) 24() C(5) 900(3) 48(4) 8924(2) () C(6) 686(3) 4993(5) 9395(2) 24() C(7) -463(3) 58(5) 8563(2) 27() C(8) -2(2) 6629(5) 765(2) 23() C(9) 050(2) 5892(4) 706(2) 20() C(0) 220(2) 5624(4) 7983(2) 8() C() 3025(3) 4858(6) 0755(2) 3() C() 7(3) 890(5) 868(2) 27() C() -60(3) 6962(6) 6882(2) 33() C() 740(3) 3945(5) 6425(2) 26() C() 46(2) 7608(5) 6348(2) 22() C(6) 2688(2) 702(4) 5885(2) 20() C(7) 389(2) 688(4) 67(2) 20() C(8) 5060(2) 6446(4) 6230(2) () C(9) 59(3) 698(5) 587(2) 23() C(20) 407(3) 6329(5) 44(2) 23() C() 2788(3) 6806(5) 4845(2) 23() 5
Table 3. Bond lengths [Å] and angles [ ] for cu_dm635_0m. O()-H() 0.8400 O()-C(7).439(3) O(2)-C(20).236(3) C()-H(A).0000 C()-C(2).547(3) C()-C(0).543(3) C()-C(7).567(4) C(2)-H(2A) 0.9900 C(2)-H(2B) 0.9900 C(2)-C(3).53(4) C(3)-H(3A) 0.9900 C(3)-H(3B) 0.9900 C(3)-C(4).502(4) C(4)-C(5).533(3) C(4)-C().326(4) C(5)-C(6).532(4) C(5)-C(0).564(3) C(5)-C().55(4) C(6)-H(6A) 0.9900 C(6)-H(6B) 0.9900 C(6)-C(7).53(4) C(7)-H(7A) 0.9900 C(7)-H(7B) 0.9900 C(7)-C(8).526(4) C(8)-H(8).0000 C(8)-C(9).550(3) C(8)-C().538(3) C(9)-C(0).57(3) C(9)-C().55(4) C(9)-C().548(4) C(0)-H(0).0000 C()-H(A) 0.9500 C()-H(B) 0.9500 C()-H(A) 0.9800 C()-H(B) 0.9800 C()-H(C) 0.9800 52
C()-H(A) 0.9800 C()-H(B) 0.9800 C()-H(C) 0.9800 C()-H(A) 0.9800 C()-H(B) 0.9800 C()-H(C) 0.9800 C()-H(A) 0.9900 C()-H(B) 0.9900 C()-C(6).497(3) C(6)-C(7).56(3) C(6)-C().335(4) C(7)-C(8).499(4) C(8)-H(8) 0.9500 C(8)-C(9).334(4) C(9)-H(9) 0.9500 C(9)-C(20).475(3) C(20)-C().462(4) C()-H() 0.9500 C(7)-O()-H() 09.5 C(2)-C()-H(A) 08.5 C(2)-C()-C(7) 08.9(2) C(0)-C()-H(A) 08.5 C(0)-C()-C(2).48(9) C(0)-C()-C(7) 0.0(2) C(7)-C()-H(A) 08.5 C()-C(2)-H(2A) 08.9 C()-C(2)-H(2B) 08.9 H(2A)-C(2)-H(2B) 07.7 C(3)-C(2)-C().3(2) C(3)-C(2)-H(2A) 08.9 C(3)-C(2)-H(2B) 08.9 C(2)-C(3)-H(3A) 09.5 C(2)-C(3)-H(3B) 09.5 H(3A)-C(3)-H(3B) 08.0 C(4)-C(3)-C(2) 0.9(2) C(4)-C(3)-H(3A) 09.5 C(4)-C(3)-H(3B) 09.5 53
C(3)-C(4)-C(5).5(2) C()-C(4)-C(3).6(2) C()-C(4)-C(5) 4.9(3) C(4)-C(5)-C(0) 07.(2) C(4)-C(5)-C() 06.3(2) C(6)-C(5)-C(4) 0.9(2) C(6)-C(5)-C(0) 07.9(2) C(6)-C(5)-C() 09.7(2) C()-C(5)-C(0).8(2) C(5)-C(6)-H(6A) 09.0 C(5)-C(6)-H(6B) 09.0 H(6A)-C(6)-H(6B) 07.8 C(7)-C(6)-C(5).0(2) C(7)-C(6)-H(6A) 09.0 C(7)-C(6)-H(6B) 09.0 C(6)-C(7)-H(7A) 09.3 C(6)-C(7)-H(7B) 09.3 H(7A)-C(7)-H(7B) 07.9 C(8)-C(7)-C(6).8(2) C(8)-C(7)-H(7A) 09.3 C(8)-C(7)-H(7B) 09.3 C(7)-C(8)-H(8) 06.6 C(7)-C(8)-C(9).0(2) C(7)-C(8)-C() 0.2(2) C(9)-C(8)-H(8) 06.6 C()-C(8)-H(8) 06.6 C()-C(8)-C(9).4(2) C(8)-C(9)-C(0) 08.64(9) C(8)-C(9)-C().0(2) C()-C(9)-C(0).2(2) C()-C(9)-C(8) 08.3(2) C()-C(9)-C(0) 06.75(9) C()-C(9)-C() 07.7(2) C()-C(0)-C(5).8(2) C()-C(0)-C(9).88(8) C()-C(0)-H(0) 04.9 C(5)-C(0)-C(9).3(2) C(5)-C(0)-H(0) 04.9 54
C(9)-C(0)-H(0) 04.9 C(4)-C()-H(A) 0.0 C(4)-C()-H(B) 0.0 H(A)-C()-H(B) 0.0 C(5)-C()-H(A) 09.5 C(5)-C()-H(B) 09.5 C(5)-C()-H(C) 09.5 H(A)-C()-H(B) 09.5 H(A)-C()-H(C) 09.5 H(B)-C()-H(C) 09.5 C(8)-C()-H(A) 09.5 C(8)-C()-H(B) 09.5 C(8)-C()-H(C) 09.5 H(A)-C()-H(B) 09.5 H(A)-C()-H(C) 09.5 H(B)-C()-H(C) 09.5 C(9)-C()-H(A) 09.5 C(9)-C()-H(B) 09.5 C(9)-C()-H(C) 09.5 H(A)-C()-H(B) 09.5 H(A)-C()-H(C) 09.5 H(B)-C()-H(C) 09.5 C(9)-C()-H(A) 09.4 C(9)-C()-H(B) 09.4 H(A)-C()-H(B) 08.0 C(6)-C()-C(9).2(2) C(6)-C()-H(A) 09.4 C(6)-C()-H(B) 09.4 C()-C(6)-C(7).5(2) C()-C(6)-C() 3.5(2) C()-C(6)-C(7) 2.9(2) O()-C(7)-C() 07.8(9) O()-C(7)-C(6) 08.2(2) O()-C(7)-C(8) 09.3(2) C(6)-C(7)-C() 08.2(2) C(8)-C(7)-C().3(2) C(8)-C(7)-C(6).5(2) C(7)-C(8)-H(8) 7.9 55
C(9)-C(8)-C(7) 4.(2) C(9)-C(8)-H(8) 7.9 C(8)-C(9)-H(9) 9.4 C(8)-C(9)-C(20).3(2) C(20)-C(9)-H(9) 9.4 O(2)-C(20)-C(9).7(2) O(2)-C(20)-C().6(2) C()-C(20)-C(9) 6.7(2) C(6)-C()-C(20) 2.3(2) C(6)-C()-H() 8.9 C(20)-C()-H() 8.9 Symmetry transformations used to generate equivalent atoms: 56
Table 4. Anisotropic displacement parameters (Å 2 x 0 3 ) for cu_dm635_0m. The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U +... + 2 h k a* b* U ] U U 22 U 33 U 23 U U O() 25() 25() 9() -5() 6() -4() O(2) 40() 35() () 0() 8() 9() C() 20() 25() () -() 2() 0() C(2) 20() 33(2) 6() 4() 2() () C(3) 28() 32(2) 9() 8() () 5() C(4) 30() 25(2) 6() 4() 5() 0() C(5) 25() 22(2) () -2() 7() -() C(6) 29() 28(2) 7() -3() 0() -3() C(7) 22() 36(2) 24() -6() 0() -4() C(8) () 29(2) 20() -5() 3() -() C(9) 8() 27() () -7() 2() () C(0) 8() 22() () -() 3() -() C() 35() 4(2) 6() 4() () -2() C() 35() 24(2) 23() 0() 9() -3() C() 8() 5(2) 3() -4() 3() 5() C() 25() 33(2) 20() -8() () -3() C() () 30(2) () -2() () 5() C(6) 20() 22() 7() () 3() 0() C(7) 9() 25() () -2() 3() () C(8) 9() 26(2) 8() 0() 2() 0() C(9) 24() 26(2) () () 7() 2() C(20) 32() 23() () 0() 4() 2() C() 26() 27() () 0() 2() 3() 57
Table 5. Hydrogen coordinates ( x 0 4 ) and isotropic displacement parameters (Å 2 x 0 3 ) for cu_dm635_0m. x y z U(eq) H() 4500 95 7060 34 H(A) 3398 3823 70 23 H(2A) 5376 4338 8054 28 H(2B) 4875 636 8649 28 H(3A) 42 23 9084 32 H(3B) 50 367 989 32 H(6A) 448 4046 996 29 H(6B) 88 6346 9727 29 H(7A) -709 3849 8272 32 H(7B) -08 5780 8909 32 H(8) 75 7994 7976 28 H(0) 2325 70 83 H(A) 3789 4859 22 37 H(B) 2230 5280 007 37 H(A) 2356 90 80 4 H(B) 845 690 8267 4 H(C) 86 044 9263 4 H(A) -690 5632 669 50 H(B) -8 7806 6280 50 H(C) -2024 7660 7259 50 H(A) 228 2993 6822 39 H(B) 46 3278 6265 39 H(C) 249 4332 5757 39 H(A) 758 7790 5764 26 H(B) 42 897 6745 26 H(8) 5825 6340 6694 25 H(9) 5980 593 4938 28 H() 2034 6908 4369 27 58
Table 6. Torsion angles [ ] for cu_dm635_0m. O()-C(7)-C(8)-C(9) -2.7(3) O(2)-C(20)-C()-C(6) -79.5(3) C()-C(2)-C(3)-C(4) -5.(3) C()-C(7)-C(8)-C(9) 9.(3) C(2)-C()-C(0)-C(5) -48.9(3) C(2)-C()-C(0)-C(9) 78.7(2) C(2)-C()-C(7)-O() -62.3(3) C(2)-C()-C(7)-C(6) -78.7(2) C(2)-C()-C(7)-C(8) 57.2(3) C(2)-C(3)-C(4)-C(5) 59.5(3) C(2)-C(3)-C(4)-C() -.0(3) C(3)-C(4)-C(5)-C(6) -77.(2) C(3)-C(4)-C(5)-C(0) -59.6(3) C(3)-C(4)-C(5)-C() 63.7(3) C(4)-C(5)-C(6)-C(7) 72.(2) C(4)-C(5)-C(0)-C() 53.8(3) C(4)-C(5)-C(0)-C(9) -74.5(2) C(5)-C(6)-C(7)-C(8) -57.5(3) C(6)-C(5)-C(0)-C() 73.3(2) C(6)-C(5)-C(0)-C(9) -55.0(3) C(6)-C(7)-C(8)-C(9) 56.2(3) C(6)-C(7)-C(8)-C() -75.2(2) C(7)-C(8)-C(9)-C(0) -53.8(3) C(7)-C(8)-C(9)-C() 72.6(3) C(7)-C(8)-C(9)-C() -69.4(2) C(8)-C(9)-C(0)-C() -73.(2) C(8)-C(9)-C(0)-C(5) 54.8(3) C(8)-C(9)-C()-C(6) 73.66(9) C(9)-C()-C(6)-C(7) -6.5(3) C(9)-C()-C(6)-C() 6.4(3) C(0)-C()-C(2)-C(3) 46.5(3) C(0)-C()-C(7)-O() 6.4(2) C(0)-C()-C(7)-C(6) -55.(3) C(0)-C()-C(7)-C(8) -79.2(2) C(0)-C(5)-C(6)-C(7) 55.0(3) C(0)-C(9)-C()-C(6) 56.9(3) 59
C()-C(4)-C(5)-C(6) 3.4(4) C()-C(4)-C(5)-C(0) 0.9(3) C()-C(4)-C(5)-C() -5.8(3) C()-C(5)-C(6)-C(7) -70.8(3) C()-C(5)-C(0)-C() -64.0(3) C()-C(5)-C(0)-C(9) 67.7(3) C()-C(8)-C(9)-C(0) 79.9(2) C()-C(8)-C(9)-C() -53.7(3) C()-C(8)-C(9)-C() 64.3(3) C()-C(9)-C(0)-C() 62.4(3) C()-C(9)-C(0)-C(5) -69.8(3) C()-C(9)-C()-C(6) -66.2(3) C()-C(9)-C(0)-C() -56.5(3) C()-C(9)-C(0)-C(5) 7.3(2) C()-C(6)-C(7)-O() -57.2(3) C()-C(6)-C(7)-C() 58.6(3) C()-C(6)-C(7)-C(8) -78.0(2) C()-C(6)-C()-C(20) 79.5(3) C(6)-C(7)-C(8)-C(9) -2.5(4) C(7)-C()-C(2)-C(3) 68.6(2) C(7)-C()-C(0)-C(5) -70.5(2) C(7)-C()-C(0)-C(9) 57.2(3) C(7)-C(6)-C()-C(20) -2.8(5) C(7)-C(8)-C(9)-C(20) -0.3(5) C(8)-C(9)-C(20)-O(2) -78.9(3) C(8)-C(9)-C(20)-C().9(4) C(9)-C(20)-C()-C(6) -0.3(4) C()-C(6)-C(7)-O() 4.9(3) C()-C(6)-C(7)-C() -9.3(3) C()-C(6)-C(7)-C(8) 4.(4) Symmetry transformations used to generate equivalent atoms: 60
Table 7. Hydrogen bonds for cu_dm635_0m [Å and ]. D-H...A d(d-h) d(h...a) d(d...a) <(DHA) O()-H()...O(2)# 0.84.93 2.767(3) 74.3 Symmetry transformations used to generate equivalent atoms: # -x+,y+/2,-z+ 6