Supporting Information

Σχετικά έγγραφα
Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Electronic Supplementary Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

The Free Internet Journal for Organic Chemistry

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information for

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Supporting Information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Supporting Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Selective mono reduction of bisphosphine

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Experimental procedure

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supplementary information

Acylative Suzuki coupling of amides: Acyl-nitrogen activation via synergy of independently modifiable activating groups

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Materials

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supplementary Material

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supporting Information

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Supporting Information

Supporting Information

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Supporting Information

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

gem-dichloroalkenes for the Construction of 3-Arylchromones

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information For

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Electronic Supporting Information. Synthesis and Reactivity of 18 F-Labeled α,α-difluoro-α-aryloxyacetic Acids

Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds

SUPPORTING INFORMATION

Supporting Information

Aqueous MW eco-friendly protocol for amino group protection.

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Nickel Catalyzed C O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

Supporting Information

Effect of uridine protecting groups on the diastereoselectivity

Electronic Supplementary Information (ESI)

Transcript:

Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 One-Pot Decarboxylative Acylation of N-, O-, S-Nucleophiles and Peptides with 2,2-Disubstituted Malonic Acids Iryna O. Lebedyeva,* [a, b] Suvendu Biswas, [a] Kevin Goncalves, [a] Sean M. Sileno, [a] Ashton R. Jackson, [a] Kunal Patel, [a] Peter J. Steel, [c] and the late Prof. Dr. Alan R. Katritzky [a] chem_201403529_sm_miscellaneous_information.pdf

Contents Page Experimental Section... S2 References for the Supporting Information:... S10 1 H and 13 C Spectra of Decarboxylated Benzotriazolyl Intermediates 3a,b... S11 1 H and 13 C Spectra of Acylated N-, O-, S-Nucleophiles 5a-k... S12 1 H and 13 C Spectra of Acylated Amino Acids and Esters 7a g... S24 1 H and 13 C Spectra of Acylated Di- and Tripeptides 7h l... S31 S1

Experimental Section General Procedure for Synthesis of Decarboxylated Benzotriazolyl Intermediates 3a,b To a solution of 2,2-disubstitutedmalonic acid (1 mmol) in DMF (3 ml) 1-(methylsulfonyl)-1H-benzo[d][1,2,3]triazole (0.20 g, 1 mmol) was added followed by addition of TEA (0.21 ml, 1.5 mmol) and the mixture was subjected to microwave irradiation (20 W, 50 o C) for 1 h. On completion of the reaction the mixture was added to 4N HCl solution (50 ml) and extracted with ethyl acetate (3 x 30 ml). The organic layers were combined, washed with 4N HCl solution (2 x 50 ml) and sodium carbonate solution (2 x 50 ml), then dried over MgSO 4 and evaporated to give products 3a,b. 1-(1H-Benzo[d][1,2,3]triazol-1-yl)-2-methylpropan-1-one (3a). Yellow oil, 0.15 g, 89%, 1 H NMR (300 MHz, CDCl 3) δ 8.23 (t, J = 8.7 Hz, 1H), 8.06 (t, J = 8.7 Hz, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 4.22-3.96 (m, 1H), 1.49-1.29 (m, 6H); 13 C NMR (75 MHz, CDCl 3) δ 176.8, 146.3, 131.5, 130.5, 126.2, 120.2, 114.7, 34.2, 19.3. The obtained data matched those reported in literature. [1] ((1H-Benzo[d][1,2,3]triazol-1-yl)(cyclopentyl)methanone (3b). Light yellow oil, 0.17 g, 92%; 1 H NMR (300 MHz, CDCl 3) δ 8.22 (d, J = 7.8 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 4.19 (q, J = 7.5 Hz, 1H), 2.18-2.12 (m, 2H), 2.11-1.90 (m, 2H), 1.89-1.57 (m, 4H); 13 C NMR (75 MHz, CDCl 3) δ 174.7, 146.2, 131.4, 130.2, 126.0, 120.1, 114.6, 44.2, 30.6, 26.4. Anal. Calcd for C 12H 13N 3O: C, 66.96; H, 6.09; N, 19.52. Found: C, 66.94; H, 6.27; N 19.56. Acylated Amines (5 examples) 2-ethyl-N-propylbutanamide (5a). Colorless oil, 0.12 g, 75%; 1 H NMR (300 MHz, CDCl 3) δ 5.08 (brs, 1H), 3.70 3.60 (m, 2H), 3.11 2.83 (m, 2H), 1.73 (t, J = 6.3 Hz, 1H), 1.46 1.27 (m, 4H), 0.85 0.64 (m, 9H); 13 C NMR (75 MHz, CDCl 3) δ 157.0, 70.7, 42.6, 28.0, 23.2, 19.0, 11.2. The obtained data matched those reported in literature. [2] S2

N-phenylcyclohexanecarboxamide (5b). White solid, 0.17 g, 84%, mp 149.2 150.6 C; 1 H NMR (300 MHz, CDCl 3) δ 7.39 (d, J = 8.1 Hz, 2H), 7.28 7.07 (m, 3H), 6.94 (t, J = 6.9 Hz, 1H), 2.18 2.00 (m, 1H), 1.89 1.29 (m, 7H), 1.25 1.02 (m, 3H); 13 C NMR (75 MHz, CDCl 3) δ 174.5, 138.2, 129.0, 124.1, 119.9, 46.7, 29.8, 25.9, 25.8. Anal. Calcd for C 13H 17NO: C, 76.81; H, 8,43; N, 6.89. Found: C, 76.74; H, 8.64; N 7.6.90. The obtained data matched those reported in literature. [3] N-Benzylisobutyramide (5c). White solid, 0.15 g, 83%, mp 79.1 81.0 C; 1 H NMR (300 MHz, CD 3OD) δ 7.37-7.17 (m, 5H), 6.51 (s, 1H), 3.99 (d, J = 4.8 Hz, 2H), 2.51-2.26 (m, 1H), 1.10 (d, J = 6.6 Hz, 6H); 13 C NMR (75 MHz, CDCl 3) δ 177.2, 138.6, 128.7, 127.7, 127.5, 43.5, 35.7, 19.7. The obtained data matched those reported in literature. [4] N-Benzylcyclohexanecarboxamide (5d). White solid, 0.17 g, 78%, mp 105.8 108.0 C; 1 H NMR (300 MHz, CDCl 3) δ 7.41-7.15 (m, 5H), 5.71 (d, J = 7.5 Hz, 1H), 4.40 (d, J = 5.7 Hz, 2H), 2.07 (t, J = 11.7 Hz, 1H), 1.91-1.58 (m, 5H), 1.53-1.07 (m, 5H); 13 C NMR (75 MHz, CDCl 3) δ 176.1, 133.3, 128.9, 127.9, 127.6, 67.3, 45.8, 43.6, 29.9, 26.0. The obtained data matched those reported in literature. [5] N-(2,6-Dimethylphenyl)cyclopropanecarboxamide (5e). White solid, 0.16 g, 83%, mp 165.5 167.8 C; 1 H NMR (300 MHz, CD 3OD) δ 7.07 (s, 3H), 2.20 (s, 6H), 1.96-1.73 (m, 1H), 0.94 (d, J = 7.2 Hz, 2H), 0.85 (d, J = 7.8 Hz, 2H); 13 C NMR (75 MHz, CD 3OD) δ 175.4, 137.1, 135.9, 129.1, 128.3, 18.5, 14.9, 7.6; Anal. Calcd for C 12H 15NO: C, 76.16; H, 7.99; N, 7.40. Found: C, 76.30; H, 8.22; N 7.36. The obtained data matched those reported in literature. [6] S3

Acylated Alcohols (3 examples) Phenyl cyclopentanecarboxylate (5f). Colorless oil, 0.16 g, 86%; 1 H NMR (300 MHz, CDCl 3) δ 7.35 (d, J = 6.6 Hz, 2H), 7.26-7.13 (m, 1H), 7.07 (d, J = 7.5 Hz, 2H), 3.48-3.24 (m, 1H), 2.54-2.17 (m, 5H), 2.14-1.84 (m, 3H); 13 C NMR (75 MHz, CDCl 3) δ 174.0, 150.9, 129.5, 125.8, 121.6, 38.3, 25.5, 18.6. The obtained data matched those reported in literature. [7] (1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl cyclohexanecarboxylate (5g). Colorless oil, 0.22 g, 81%; 20 [α] D = 30.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CDCl 3) δ 3.50-3.25 (m, 1H), 2.26 (t, J = 10.8 Hz, 1H), 2.18-2.00 (m, 1H), 1.99-1.79 (m, 3H), 1.78-1.50 (m, 5H), 1.47-1.00 (m, 7H); 0.98-0.78 (m, 9H), 0.75 (d, J = 6.6 Hz, 3H); 13 C NMR (75 MHz, CDCl 3) δ 181.7, 71.8, 50.1, 45.0, 43.1, 34.7, 31.8, 29.0, 25.9, 25.5, 23.2, 22.4, 21.2, 16.2. The obtained data matched those reported in literature. [8] 3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-ethylbutanoate (5h). White 20 semisolid, 0.37 g, 77%, mp; [α] D = 11.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, DMSO-d 6) δ 5.21 (t, J = 6.6 Hz, 1H), 4.83-4.25 (m, 1H), 2.34-0.41 (m, 54H); 13 C NMR (75 MHz, CDCl 3) δ 170.8, 140.9, 121.9, 75.6, 72.0, 57.0, 56.3, 50.3, 49.0, 42.5, 42.4, 40.0, 39.7, 37.5, 36.4, 36.0, 32.1, 31.8, 28.4, 28.2, 27.8, 24.6, 24.0, 23.0, 22.8, 21.3, 19.6, 19.0, 12.1, 11.7. The obtained data matched those reported in literature. [9] S4

Acylated Thioalcohols (3 examples) S-Phenyl cyclopentanecarbothioate (5i). Yellow oil, 0.18 g, 88%; 1 H NMR (300 MHz, CDCl 3) δ 7.60-7.25 (m, 5H), 3.03 (t, J = 8.4 Hz, 1H), 2.03-1.75 (m, 4H), 1.73-1.43 (m, 4H); 13 C NMR (75 MHz, CDCl 3) δ 200.9, 134.9, 134.6, 129.2, 128.3, 53.0, 30.8, 26.1. The obtained data matched those reported in literature. [10] N-(Tert-butoxycarbonyl)-S-(cyclopropanecarbonyl)-L-cysteine (5j).Yellow oil, 0.24 g, 83%; 20 [α] D = 17.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CDCl 3) δ 9.77 (s, 1H), 5.35 (d, J = 7.8 Hz, 1H), 4.59-4.18 (m, 1H), 3.32-3.08 (m, 1H), 2.06-1.88 (m, 2H), 1.36 (s, 9H), 1.09 (t, J = 5.0 Hz, 2H), 0.90 (t, J = 3.8 Hz, 2H); 13 C NMR (75 MHz, CDCl 3) δ 199.1, 174.3, 155.7, 80.6, 53.5, 30.8, 28.4, 22.9, 11.4; Anal. Calcd for C 12H 19NO 5S: C, 49.81; H, 6.62; N, 4.84. Found: C, 49.86; H, 7.00; N 4.70. N-((Benzyloxy)carbonyl)-S-(cyclobutanecarbonyl)-L-cysteine (5k). Yellow oil, 0.28 g, 80%; 20 [α] D = 22.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CDCl 3) δ 7.60-7.08 (m, 5H), 6.72 (br s, 1H), 5.03 (d, J = 12.6 Hz, 2H), 4.65-4.25 (m, 1H), 3.50-3.08 (m, 2H), 2.33-1.66 (m, 4H), 1.46-0.91 (m, 5H); 13 C NMR (75 MHz, CDCl 3) δ 201.4, 174.0, 156.3, 136.2, 128.7, 128.4, 128.3, 67.5, 54.0, 46.9, 29.9, 26.1, 18.2; HRMS (ESI) C 17H 21NO 5SNa calcd.: [(M+Na) + ] = 374.4068found: [(M+Na) + ] = 374.4070. Acylated Aminoacids (8 examples) Benzyl isobutyrylglycinate (7a). White solid, 0.14 g, 80%, mp 112.8 114.0 C; 1 H NMR (300 MHz, CDCl 3) δ 7.37-7.29 (m, 5H), 6.04 (br s, 1H), 5.16 (s, 2H), 4.06 (d, J = 5.1 Hz, 2H), 2.49-2.33 (m, 1H), 1.15 (d, S5

J = 6.9 Hz, 6H); 13 C NMR (75 MHz, CDCl 3) δ 177.3, 170.2, 135.3, 128.8, 128.7, 128.5, 67.4, 41.5, 35.5, 19.6; HRMS (ESI) C 13H 18NO 3 calcd.: [(M+H) + ] = 236.1303 found: [(M+H) + ] = 236.1301. Benzyl (cyclobutanecarbonyl)glycinate (7b). White solid, 0.20 g, 86%, mp 116.2 118.4 C; 1 H NMR (300 MHz, CDCl 3) δ 7 7.42-7.20 (m, 5H), 6.10-5.76 (m, 1H), 5.14 (s, 2H), 4.04 (d, J = 4.5 Hz, 2H), 3.21-2.86 (m, 1H), 2.39-2.03 (m, 4H), 2.01-1.76 (m, 2H); 13 C NMR (75 MHz, CDCl 3) δ 175.3, 170.2, 135.3, 128.8, 128.7, 128.5, 67.4, 41.5, 39.8, 25.5, 18.4; Anal. Calcd for C 14H 17NO 3: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.12; H, 6.99; N 5.51. 20 (Cyclopropanecarbonyl)-L-leucine (7c). White solid, 0.16 g, 79%, mp 122.4 124.0 C; [α] D = 12.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CDCl 3) δ 9.87 (s, 1H), 7.04 (d, J = 10.8 Hz, 1H), 4.68-4.38 (m, 1H), 1.65-1.35 (m, 3H), 1.21-1.08 (m, 1H), 0.95-0.56 (m, 10H); 13 C NMR (75 MHz, CDCl 3) δ 176.4, 175.1, 51.4, 41.3, 25.0, 23.0, 22.0, 14.8, 7.9. The obtained data matched those reported in literature. [11] 20 (2-Ethylbutanoyl)-L-valine (7d). White solid, 0.17 g, 85%, mp 134.8 136.0 C; [α] D = 14.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CDCl 3) δ 6.00 (d, J = 7.8 Hz, 1H), 4.70-4.35 (m, 1H), 3.24-2.77 (m, 1H), 2.38-2.00 (m, 5H), 1.99-1.76 (m, 2H), 0.98 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H); 13 C NMR (75 MHz, CDCl 3) δ 176.0, 175.3, 57.2, 40.0, 31.2, 25.7, 25.5, 19.2, 18.4, 17.9; Anal. Calcd for C 11H 21NO 3: C, 61.37; H, 9.83; N, 6.51. Found: C, 61.41; H, 10.04; N 6.37. (2-Ethylbutanoyl)-L-phenylalanine (7e). White solid, 0.21 g, 80%, mp 121.5 123.8 C; [α] D 20 = + 21.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CD 3OD) δ 7.38-7.08 (m, 5H), 4.80-4.66 (m, 1H), 3.25-3.10 (m, 1H), 2.92 (dd, J = 17.1, 10.2 Hz, 1H), 2.13-1.87 (m, 1H), 1.59-1.17 (m, 4H), 0.85 (t, J = 7.5 Hz, 3H), 0.58 (t, J = 7.5 Hz, 3H); 13 C NMR (75 S6

MHz, CDCl 3) δ 176.9, 174.8, 136.0, 129.5, 128.7, 127.3, 53.1, 51.2, 37.8, 25.8, 12.0; Anal. Calcd for C 15H 21NO 3: C, 68.42; H, 8.04; N, 5.32. Found: C, 68.18; H, 8.28; N 5.44. 20 (2-Ethylbutanoyl)-D-phenylalanine (7f). White solid, 0.22 g, 84%, mp 129.7 131.2 C; [α] D = 20.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CD 3OD) δ 7.36-7.07 (m, 5H), 4.80-4.56 (m, 1H), 3.21 (dd, J = 14.1, 4.8 Hz, 1H), 2.88 (dd, J = 14.1, 10.3 Hz, 1H), 2.09-1.81 (m, 1H), 1.59-1.13 (m, 4H), 0.81 (t, J = 7.5 Hz, 3H), 0.54 (t, J = 7.5 Hz, 3H); 13 C NMR (75 MHz, CD 3OD) δ 178.7, 175.0, 138.8, 130.3, 129.5, 127.8, 54.8, 51.7, 38.5, 27.2, 12.5; Anal. Calcd for C 15H 21NO 3: C, 68.42; H, 8.04; N, 5.32. Found: C, 68.47; H, 8.17; N 5.25. (2-Ethylbutanoyl)-D,L-phenylalanine (7g). White solid, 0.23 g, 87%, mp 124.0 125.8 C; 1 H NMR (300 MHz, CDCl 3) δ 10.93 (br s, 1H), 7.50-6.91 (m, 5H), 6.44-6.10 (m, 1H), 5.15-4.85 (m, 1H), 3.38-2.90 (m, 2H), 2.12-1.78 (m, 1H), 1.60-1.30 (m, 4H), 0.95-0.70 (m, 6H); 13 C NMR (75 MHz, CDCl 3) δ 177.0, 175.0, 135.9, 129.4, 128.7, 127.3, 53.1, 51.2, 37.7, 25.6, 12.0. The obtained data matched those reported in literature. [12] Acylated Di- and Tripeptides (5 examples) (Cyclobutanecarbonyl)-L-leucyl-L-alanine (7h). White solid, 0.25 g, 89%, mp 148.2 150.0 C; 20 [α] D = 9.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CDCl 3) δ 10.12 (br s, 1H), 6.17 (s, 1H), 4.69-4.36 (m, 1H), 2.31 (t, J = 10.9 Hz, 1H), 2.13 (t, J = 10.8 Hz, 1H), 1.96-1.56 (m, 12H), 1.42 (d, J = 7.2 Hz, 6H); 13 C NMR (75 MHz, CDCl 3) δ 182.3, 177.2, 176.8, 48.3, 45.4, 43.1, 29.7, 29.0, 25.8, 25.5, 18.4; Anal. Calcd for C 14H 24N 2O 4: C, 59.13; H, 8.51; N, 9.85. Found: C, 59.29; H, 8.39; N 9.67. S7

Methyl (2-ethylbutanoyl)-L-phenylalanyl-L-valinate (7i). White solid, 0.34 g, 90%, mp 112.4 114.2 20 C; [α] D = 7.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CD 3OD) δ 7.39-7.08 (m, 5H), 4.82-4.56 (m, 1H), 4.43-4.26 (m, 1H), 3.09 (s, 3H), 2.93-2.75 (m, 2H), 2.18-1.75 (m, 6H), 1.10-0.75 (m, 12H); 13 C NMR (75 MHz, CD 3OD) δ 177.5, 174.5, 174.0, 138.6, 130.4, 129.5, 129.4, 127.8, 59.0, 55.7, 40.6, 38.9, 32.0, 26.4, 26.0, 19.7, 19.1, 18.4; Anal. Calcd for C 21H 32N 2O 4: C, 66.99; H, 8.57; N, 7.44. Found: C, 66.81; H, 8.47; N 7.71. 20 (Cyclohexanecarbonyl)-L-alanyl-L-leucine (7j). Yellow oil, 0.28 g, 88%; [α] D = 13.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CD 3OD) δ 4.53-4.13 (m, 2H), 2.31-2.17 (m, 1H), 2.08-1.58 (m, 10H), 1.55-1.15 (m, 12H); 13 C NMR (75 MHz, CD 3OD) δ 180.1, 179.1, 176.3, 57.5, 52.3, 46.1, 44.4, 30.7, 30.4, 27.1, 26.9, 26.7, 17.8; Anal. Calcd for C 16H 28N 2O 4: C, 61.51; H, 9.03; N, 8.97. Found: C, 61.71; H, 9.32; N 8.96. S-(((Benzyloxy)carbonyl)-L-alanyl)-N-(3-(cyclohexanecarboxamido)propanoyl)-Lcysteine (7k). White solid, 0.42 g, 82%, mp 109.7 111.5 C; [α] D = 14.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, 20 CD 3OD) δ 7.35-7.02 (m, 5H), 5.08 (s, 2H), 4.63-4.57 (m, 1H), 4.25 (q, J = 7.3 Hz, 1H), 3.52-3.35 (m, 3H), 3.14 (dd, J = 13.8, 7.5 Hz, 1H), 2.38 (t, J = 6.6 Hz, 2H), 2.13-2.10 (m, 1H), 1.76-1.69 (m, 3H), 1.62 (d, J = 7.6 Hz, 1H), 1.47-1.12 (m, 9H); 13 C NMR (75 MHz, CD 3OD) δ 203.3, 179.4, 173.8, 173.0, 158.4, 138.1, 129.6, 129.1, 128.8, 67.9, 58.4, 53.2, 46.4, 36.9, 36.3, 30.8, 30.7, 27.0, 26.9, 18.0; Anal. Calcd for C 24H 33N 3O 7S: C, 56.79; H, 6.55; N, 8.28. Found: C, 57.07; H, 6.37; N 8.27. (Cyclohexanecarbonyl)-L-phenylalanylglycylglycine (7l). White solid, 0.35 g, 90%, mp 144.8 146.0 C; [α] D 20 = + 10.0 (c 1.0, CH 3OH); 1 H NMR (300 MHz, CD 3OD) δ 7.35-7.02 (m, 5H), 4.65-4.35 (m, 1H), S8

3.89 (d, J = 8.7 Hz, 2H), 3.68 (s, 2H), 3.13 (dd, J = 13.5, 5.1 Hz, 1H), 2.88 (dd, J = 13.2, 9.0 Hz, 1H), 2.14 (t, J = 8.7 Hz, 1H), 1.72-1.55 (m, 4H), 1.36-1.09 (m, 6H); 13 C NMR (75 MHz, CD 3OD) δ 179.4, 174.4, 172.7, 171.5, 138.4, 130.3, 129.4, 127.7, 56.3, 45.9, 43.4, 41.8, 38.4, 30.8, 30.2, 26.9, 26.8, 26.6; HRMS (ESI) C 20H 26N 3O 5 calcd.: [(M-H) - ] = 388.1879 found: [(M-H) - ] = 388.1879. S9

References for the Supporting Information: [1] A. R. Katritzky, Z. Wang, M. Wang, C. D. Hall, K. Suzuki, J. Org. Chem., 2005, 70, 4854 4856. [2] L. Huizhen, G. Laurenczy, N. Yan, P. J. Dyson, Chem. Commun., 2014, 50, 341 343. [3] J. E. Wilson, G. C. Fu, Angew. Chem., 2004, 116, 6518 6520. [4] T. K. Houlding, K. Tchabanenko, Md. T. Rahman, E. V. Rebrov, Org. Biomol. Chem., 2013, 11, 4171 4177. [5] Y. Kawagoe, K. Moriyama, H. Togo, Tetrahedron, 2013, 69, 3971 3977. [6] H. Bo, M. A. Crider, J. P. Stables, Eur. J. Med. Chem., 2001, 36, 265 86. [7] A. N. Niyazov, B. Namatov, Kh. Atlyev, Izvestiya Akademii Nauk Turkmenskoi SSR, 1974, 4, 62 66. [8] Ger. Pat. DE 2109456, 1972. [9] J. M. Pochan, H. W. Gibson, J. Phys. Chem., 1974, 78, 1740 1743. [10] S. Kim, S. Kim, N. Otsuka, I. Ryu, Angew. Chem. Int. Ed., 2005, 44, 6183 6186. [11] A. Leone-Bay, N. Santiago, D. Achan, K. Chaudhary, F. DeMorin, L. Falzarano, S. Haas, S. Kalbag, D. Kaplan, H. Leipold, C. Lercara, D. O Toole, T. Rivera, C. Rosado, D. Sarubbi, E. Vuocolo, N. Wang, S. Milstein, R. A. Baughman, J. Med. Chem., 1995, 38, 4263 4269. [12] R. Granger, J. Giroux, J. Lanet, M. Corbier, Bull. Soc. Chim. Fr., 1958, 1160 1166. S10

1 H and 13 C Spectra of Decarboxylated Benzotriazolyl Intermediates 3a,b 1 H spectrum of 3a 13 C spectrum of 3a S11

1 H spectrum of 3b 13 C spectrum of 3b S12

1 H and 13 C Spectra of Acylated N-, O-, S-Nucleophiles 5a-k 1 H spectrum of 5a 13 C spectrum of 5a S13

1 H spectrum of 5b 13 C spectrum of 5b S14

1 H spectrum of 5c 13 C spectrum of 5c S15

1 H spectrum of 5d 13 C spectrum of 5d S16

1 H spectrum of 5e 13 C spectrum of 5e S17

1 H spectrum of 5f 13 C spectrum of 5f S18

1 H spectrum of 5g 13 C spectrum of 5g S19

1 H spectrum of 5h 13 C spectrum of 5h S20

1 H spectrum of 5i 13 C spectrum of 5i S21

1 H spectrum of 5j 13 C spectrum of 5j S22

1 H spectrum of 5k 13 C spectrum of 5k S23

1 H and 13 C Spectra of Acylated Amino Acids and Esters 7a g 1 H spectrum of 7a 13 C spectrum of 7a S24

1 H spectrum of 7b 13 C spectrum of 7b S25

1 H spectrum of 7c 13 C spectrum of 7c S26

1 H spectrum of 7d 13 C spectrum of 7d S27

1 H spectrum of 7e 13 C spectrum of 7e S28

1 H spectrum of 7f 13 C spectrum of 7f S29

1 H spectrum of 7g 13 C spectrum of 7g S30

1 H and 13 C Spectra of Acylated Di- and Tripeptides 7h l 1 H spectrum of 7h 13 C spectrum of 7h S31

1 H spectrum of 7i 13 C spectrum of 7i S32

1 H spectrum of 7j 13 C spectrum of 7j S33

1 H spectrum of 7k 13 Cspectra 13 C spectrum of 3a of 7k S34

1 H spectrum of 7l 13 C spectrum of 7l S35