Reactivity of Steroidal 1-Azadienes Toward Carbonyl Compounds under Enamine Catalysis: Chiral Penta- and Hexacyclic Steroids. Supporting Information

Σχετικά έγγραφα
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

IV. ANHANG 179. Anhang 178

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information (ESI)

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Supplementary Material

Supporting Information

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information for

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

The Free Internet Journal for Organic Chemistry

Supporting Information. Experimental section

Supplementary Material

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Supporting Information

Supporting information for

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Supporting Information

Electronic Supplementary Information

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information. for

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Supporting Information

Supporting Information

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supporting Information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supplementary information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

SUPPLEMENTARY MATERIAL

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Experimental. Crystal data

Supporting Information. Experimental section

Supporting Information

multicomponent synthesis of 5-amino-4-

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

Table of Contents 1 Supplementary Data MCD

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting information

Supplementary information

metal-organic compounds

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Transcript:

Reactivity of Steroidal 1-Azadienes Toward Carbonyl Compounds under Enamine Catalysis: Chiral Penta- and Hexacyclic Steroids Susana M. M. Lopes, a Clara S. B. Gomes, b Teresa M. V. D. Pinho e Melo a,* a CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal. b Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal Supporting Information Table of Contents 1. General information.....,...s2 2. Synthesis and characterization of new steroids..... S2 3. Copies of NMR spectra of all new compounds....s10 4. X-Ray Crystallographic data for compound 4a...S33 5. References....S52

1. General information 1 H and 13 C NMR spectra were recorded with a Bruker Avance III instrument operating at 400 and 100 MHz, respectively. The solvent was deuteriochloroform except where indicated otherwise. Chemical shifts are expressed in ppm relative to TMS, and coupling constants (J) are in Hz. Infrared spectra (IR) were recorded with an Agilent Technologies Carey 630 FTIR spectrometer with ATR. High-resolution mass spectra (HMRS) were obtained with a TOF VG Autospect M spectrometer with electrospray ionization (ESI) or electronic impact (EI). Melting points were determined using a Melting Point Device Falc R132467 (open capillary method). Elemental analyses were carried out with an Elemental Vario Micro Cube analyser. Thin-layer chromatography (TLC) analyses were performed using precoated silica gel plates Macherey-Nagel Xtra SIL G/UV254. Flash column chromatography was performed with silica gel 60 (0.035 0.070 mm) provided by Acros Organics, as the stationary phase. 3β-Acetoxy-5,16-pregnadien-20-oxime (2) 1 and 1-(1-p-Chlorophenyl-1H-1,2,3- triazol-4-yl)ethanone (6) 2 were prepared as described in the literature. 2. Procedures and characterization data of new steroids 3β-Acetoxy-5,16-pregnadien-20-tosylimine (1): A solution of oxime 2 (6.07 g, 16.4 mmol) in CCl 4 (112 ml), at 0 ºC and under N 2, was treated sequentially with triethylamine (2.74 ml, 19.7 mmol) and freshly prepared p-toluenesulfinyl chloride 18 (3.17 g, 18.0 mmol). The reaction mixture was stirred at 0 ºC for 15 minutes. After this time, the trimethylamine hydrochloride was filtered and washed with CCl 4 (10 ml). The resulting filtrate was stirred at room temperature overnight. The solvent was evaporated and the product purified by flash chromatography [ethyl acetate/hexane (1:4)]. Compound 1 was obtained as a white solid in 42% yield (3.51 g; 6.89 mmol). mp S2

25 124.0-125.6 ºC (from ethyl acetate/hexane). [α] D +10 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 989, 1030, 1086, 1152, 1243, 1559 and 1732 cm -1. 1 H NMR δ = 0.87 (s, 3H, H-18), 0.95-1.00 (m, 1H), 1.01 (s, 3H, H-19), 1.07-1.15 (m, 1H), 1.23-1.30 (m, 1H), 1.38-1.52 (m, 3H), 1.58-1.71 (m, 3H), 1.78-1.87 (m, 2H), 1.98-2.00 (m, 1H), 2.03 (s, 3H, H-32), 2.04-2.07 (m, 1H), 2.16-2.21 (m, 1H), 2.29-2.38 (m, 3H), 2.44 (s, 3H, H-30), 2.66 (s, 3H, H-21), 4.55-4.63 (m, 1H, H-3), 5.37 (br d, J = 5.2 Hz, 1H, H-6), 6.83 (br dd, J = 3.2 and 2.0 Hz, 1H, H-16), 7.31 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.0 Hz, 2H). 13 C NMR δ = 15.5 (C-18), 19.2 (C-19), 20.7, 21.0, 21.4, 21.6, 27.7, 30.1, 31.4, 32.5, 34.6, 36.7, 36.8, 38.1, 46.8, 50.1, 56.5, 73.8 (C-3), 122.0 (C-6), 126.8, 129.3, 139.1, 140.2, 143.1, 147.0 (C-16), 155.5 (C-17), 170.5 (C-31), 176.6 (C-20). HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 30 H 40 NO 4 S 510.26726; found 510.26605. General procedure for the synthesis of hexacyclic steroids using commercial enamines 3: A solution of 1-azadiene 1 (0.153 g, 0.3 mmol) and 1-pyrrolidino-1-cyclohexene (3a) or 1-pyrrolidino-1-cyclopentene (3b) (0.45 mmol) in dry dichloromethane (1 ml) was irradiated in a microwave reactor at 50 ºC for 10 minutes. After cooling to room temperature, the solvent was evaporated and the product purified by flash chromatography. Hexacyclic steroid 4a: Obtained from 1-pyrrolidino-1-cyclohexene (3a). Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4a as a white solid (119 mg, 67%): mp 206.3-207.5 C (from ethyl acetate/hexane). 25 [α] D +110 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1031, 1090, 1146, 1241, 1300, 1560, 1598 and 1729 cm -1. 1 H NMR δ = 0.80 (s, 3H), 0.92-0.96 (m, 1H), 1.00 (s, 3H), 1.06-1.15 (m, 4H), 1.36-1.59 (m, 10H), 1.81-1.98 (m, 5H), 2.03 (s, 3H), 2.05-2.16 (m, 5H), 2.29-2.32 (m, 2H), 2.43 (s, 3H), 2.57-2.60 (m, 1H), 4.55-4.63 (m, 1H), 5.35 (br d, J = 4.4 Hz, 1H), 6.93 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H). 13 C NMR δ = 11.9, 19.3, 20.3, 21.4, 21.6, 25.2, 26.7, 26.9, 27.7, 31.4, 31.6, 32.9, 35.7, 36.7, 36.9, 37.3, 38.1, S3

41.4, 44.1, 46.8, 50.4, 55.6, 60.1, 73.8, 120.3, 122.1, 126.7, 129.3, 139.5, 140.0, 142.8, 167.9, 170.5, 179.9. HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 36 H 48 NO 4 S 590.32986; found 590.32879. Hexacyclic steroid 4b: Obtained from 1-pyrrolidino-1-cyclopentene (3b). Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4b as a white solid (83.3 mg, 48%). mp 202.5-203.0 C (from ethyl 25 acetate/hexane). [α] D +15 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1028, 1090, 1151, 1240, 1313, 1561, 1615 and 1726 cm -1. 1 H NMR δ = 0.80 (s, 3H, H-18), 0.94-0.98 (m, 1H), 1.00 (s, 3H, H-19), 1.08-1.27 (m, 4H), 1.38-1.57 (m, 7H), 1.64-1.75 (m, 1H), 1.78-1.97 (m, 4H), 2.03 (s, 3H), 2.07-2.13 (m, 4H), 2.29-2.32 (m, 2H), 2.43 (s, 3H), 2.45-2.48 (m, 1H), 2.54 (dd, J = 19.6 and 9.2 Hz, 1H), 2.69 (dd, J = 19.6 and 9.6 Hz, 1H), 4.55-4.63 (m, 1H, H-3), 5.35 (br d, J = 4.8 Hz, 1H, H-6), 7.07 (br d, J = 2.0 Hz, 1H, H-21), 7.29 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H). 13 C NMR δ = 12.1 (C-18), 19.3 (C-19), 20.4, 21.4, 21.6, 23.6, 27.5, 27.7, 31.49, 31.55, 31.61, 32.3, 36.7, 36.9, 37.2, 38.1, 41.6, 46.1, 50.4, 52.4, 55.9, 61.6, 73.9 (C-3), 118.4 (C-21) 122.1 (C-6), 126.7, 129.3, 139.5, 140.0, 142.8, 170.6, 176.6, 179.7 (C-20). HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 35 H 46 NO 4 S 576.31421; found 576.31329. General procedure for the synthesis of hexacyclic and pentacyclic steroids for enamines generated in situ: Method A: A solution of 1-azadiene 1 (0.153 g, 0.3 mmol), appropriate ketone (1.5 mmol) and pyrrolidine (5 μl, 0.06 mmol, 20 mol%) in dry toluene (15 ml) was refluxed, with a Dean-Stark apparatus, for 65-66 hours. After cooling to room temperature, the solvent was evaporated and the product purified by flash chromatography. S4

Method B: A solution of 1-azadiene 1 (0.153 g, 0.3 mmol), appropriate ketone (0.45 mmol) and pyrrolidine (5 μl, 0.06 mmol, 20 mol%) in dry toluene (1 ml) was irradiated in a microwave reactor at 140 ºC for 10 minutes. After cooling to room temperature, the solvent was evaporated and the product purified by flash chromatography. Hexacyclic steroid 4a: Obtained from cyclohexanone. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4a (Method A: 123.4 mg, 70%; Method B: 114.2 mg, 65%). Compound 4a was identified by comparison with the specimen previously isolated (see above). Hexacyclic steroid 4b: Obtained from cyclopentanone. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4b (Method A: 121.8 mg, 71%; Method B: 107.3 mg, 62%). Compound 4b was identified by comparison with the specimen previously isolated (see above). Hexacyclic steroid 4c: Obtained from cycloheptanone. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4c as a white solid (Method B: 90.3 mg, 50%): mp 188.9-190.1 C (from ethyl acetate/hexane). 25 [α] D +100 (c 0.5 in CH 2 Cl 2 ). IR (ATR) 1033, 1091, 1143, 1244, 1298, 1552, 1593, 1593 and 1729 cm -1. 1 H NMR δ = 0.79 and 0.81 (s, 3H), 0.92-0.97 (m, 1H), 0.99 and 1.00 (s, 3H), 1.02-1.20 (m, 3H), 1.25-1.55 (m, 9H), 1.59-1.98 (m, 9H), 2.03 (s, 3H), 2.05-2.36 (m, 5H), 2.43 (s, 3H), 2.53-2.69 (m, 3H), 4.55-4.63 (m, 1H), 5.35 (br d, J = 3.2 Hz, 1H), 6.94 and 7.01 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H). 13 C NMR δ 12.1, 19.3, 20.4, 21.4, 25.4, 26.3, 27.6, 27.7, 28.5, 31.5, 31.6, 36.7, 36.9, 37.7, 38.1, 41.3, 42.0, 42.7, 43.5, 50.3, 54.3, 55.5, 56.4, 73.8, 121.4, 122.1, 126.7, 129.3, 139.6, 139.9, 142.7, 170.6, 174.0, 179.3. Anal. Calcd for C 37 H 49 NO 4 S: C, 73.59; H, 8.14; N, 2.32. Found: C, 73.45; H, 8.34; N, 2.23. Duplication of signals corresponding to protons H-21, H-18 and H-19 is observed in the 1 H NMR spectrum of steroid 4c. The 13 C NMR spectrum shows also duplication of S5

some signals (Figure 8). This can be explained considering conformational isomerism since steroid 4c was isolated as a single compound as indicated by the observed narrow melting range. Hexacyclic steroid 4d: Obtained from cyclooctanone. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4d as a white 25 solid (Method B: 52.3 mg, 28%): mp 163.7-165.3 C (from ethyl acetate/hexane). [α] D +95 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1031, 1088, 1155, 1238, 1311, 1578 and 1729 cm -1. 1 H NMR δ = 0.84 (s, 3H), 0.93-0.98 (m, 1H), 1.00 (s, 3H), 1.02-1.56 (m, 15H), 1.61-1.85 (m, 5H), 1.94-2.00 (m, 2H), 2.02 (s, 3H), 2.08-2.36 (m, 8H), 2.42 (s, 3H), 2.52-2.56 (m, 1H), 4.55-4.63 (m, 1H), 5.35 (bd, J = 4.8 Hz, 1H), 7.01 (bd, J = 2.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H). 13 C NMR δ = 12.1, 19.3, 20.3, 21.4, 21.5, 23.9, 25.0, 25.4, 26.0, 26.8, 27.7, 31.4, 31.6, 33.4, 33.9, 36.7, 36.9, 37.3, 38.1, 41.7, 42.0, 48.1, 50.4, 55.5, 61.3, 73.9, 122.1, 122.9, 126.7, 129.3, 139.7, 140.0, 142.7, 170.5, 175.2, 179.5. HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 38 H 52 NO 4 S 618.36116; found 618.36150. Hexacyclic steroid 4e: Obtained from tetrahydro-4h-pyran-4-one. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:2)] gave compound 4e as a white solid (Method B: 78.8 mg, 44%): mp 222.3-224.0 C (from ethyl 25 acetate/hexane). [α] D +110 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1030, 1091, 1144, 1258, 1300, 1562, 1607 and 1725 cm -1. 1 H NMR δ = 0.79 (s, 3H), 0.93-0.97 (m, 1H), 1.00 (s, 3H), 1.08-1.21 (m, 3H), 1.32-1.55 (m, 7H), 1.79-1.98 (m, 4H), 2.03 (s, 3H), 2.04-2.08 (m, 1H), 2.09 (sl, 1H), 2.26-2.35 (m, 2H), 2.44 (s, 3H), 2.47 (sl, 1H), 2.50-2.60 (m, 2H), 3.06 (br t, J = 11.0 Hz, 1H), 3.43-3.49 (m, 1H), 4.14 (ddd, J = 18.0, 11.6 and 6.4 Hz, 2H), 4.55-4.63 (m, 1H), 5.35 (br d, J = 4.8 Hz, 1H), 7.03 (s, 1H), 7.31 (d, J = 8.0 Hz, S6

2H), 7.85 (d, J = 8.0 Hz, 2H). 13 C NMR δ = 11.8, 19.3, 20.3, 21.4, 21.6, 26.6, 27.7, 31.4, 31.5, 35.1, 36.7, 36.9, 37.2, 38.1, 39.3, 41.2, 46.3, 50.3, 55.8, 59.6, 68.0, 71.9, 73.8, 120.9, 122.0, 126.7, 129.3, 139.2, 140.0, 143.1, 162.0, 170.5, 178.8. HRMS (ESI- TOF) m/z: [M+H + ] Calcd. for C 35 H 46 NO 5 S 592.30912; found 592.30923. Hexacyclic steroid 4f: Obtained from tetrahydro-4h-thiopyran-4-one. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 4f as a white solid (Method B: 122.2 mg, 67%): mp 232.9-234.7 C (from ethyl 25 acetate/hexane). [α] D +110 (c 0.5 in CH 2 Cl 2 ). IR (ATR) 1027, 1091, 1148, 1261, 1302, 1567, 1600 and 1721 cm -1. 1 H NMR δ = 0.79 (s, 3H), 0.91-0.96 (m, 1H), 0.99 (s, 3H), 1.07-1.19 (m, 3H), 1.32-1.56 (m, 8H), 1.80-1.97 (m, 3H), 2.03 (s, 3H), 2.08-2.11 (m, 2H), 2.25-2.33 (m, 2H), 2.44 (s, 3H), 2.45-2.90 (m, 7H), 4.55-4.63 (m, 1H), 5.35 (br d, J = 4.8 Hz, 1H), 6.99 and 7.01 (s, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H). 13 C NMR δ 11.8, 19.3, 20.3, 21.4, 21.6, 26.9, 27.7, 29.1, 31.3, 31.5, 33.7, 36.7, 36.9, 37.2, 37.4, 38.1, 41.5, 43.1, 48.1, 50.3, 55.5, 59.9, 73.8, 122.0, 122.5, 126.7, 129.3, 139.1, 140.0, 143.1, 162.9, 170.5, 178.7. Anal. Calcd for C 35 H 45 NO 4 S 2 : C, 69.16; H, 7.46; N, 2.30. Found: C, 68.91; H, 7.42; N, 2.19. Duplication of signals corresponding to protons H-21 is observed in the 1 H NMR spectrum of steroid 4f. The 13 C NMR spectrum shows also duplication of some signals (Figure 11). This can be explained considering conformational isomerism since steroid 4f was isolated as a single compound as indicated by the observed narrow melting range. The chemical shift and appearance of proton H-21 depends on the deuterium solvent (DMSO-d 6 or CDCl 3 ) and on the temperature used to record the spectrum (Figures 12 and 13). S7

Hexacyclic steroid 4g: Obtained from N-methyl-4-piperidone. Purification of the crude product by flash chromatography [ethyl acetate (100%) and ethyl acetate/methanol (95:5)] gave compound 4g as a yellow solid (Method B: 109.2 mg, 60%): mp 145.8-25 147.3 C (from ethyl acetate/hexane). [α] D +90 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1033, 1088, 1146, 1238, 1298, 1567, 1597 and 1735 cm -1. 1 H NMR δ = 0.80 (s, 3H), 0.93-0.98 (m, 1H), 1.00 (s, 3H), 1.08-1.21 (m, 3H), 1.36-1.59 (m, 7H), 1.68-1.73 (m, 1H), 1.80-1.96 (m, 4H), 2.03 (s, 3H), 2.05-2.08 (m, 4H), 2.25-2.29 (m, 1H), 2.33 (s, 3H), 2.43 (s, 3H), 2.46-2.61 (m, 3H), 2.95-2.98 (m, 1H), 3.08 (dd, J = 10.4 and 5.2 Hz, 1H), 4.55-4.63 (m, 1H), 5.35 (approx. d, J = 4.4 Hz, 1H), 6.99 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H). 13 C NMR δ = 11.9, 19.3, 20.3, 21.4, 21.6, 26.8, 27.7, 31.4, 31.5, 34.8, 36.7, 36.9, 37.2, 38.1, 41.4, 41.5, 45.87, 45.91, 50.3, 55.4, 55.6, 59.8, 60.9, 73.8, 120.6, 122.8, 126.7, 129.3, 139.3, 140.0, 143.0, 163.4, 170.5, 179.2. HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 36 H 49 N 2 O 4 S 605.34076; found 605.34022. Pentacyclic steroids 7a and 7b: Obtained from 1-(1-p-chlorophenyl-1H-1,2,3-triazol-4- yl)ethanone 6. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave, in order of elution, compound 7a as a white solid (Method B: 68.0 mg, 32%) and compound 7b as a white solid (Method B: 50.6 mg, 24%). 25 Compound 7a: mp 166.9-168.1 C (from ethyl acetate/hexane). [α] D +65 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1020, 1026, 1091, 1152, 1248, 1300, 1500, 1569, 1592 and 1717 cm -1. 1 H NMR δ = 0.85 (s, 3H, H-18), 0.96-1.04 (m, 1H), 1.02 (s, 3H, H-19), 1.09-1.30 (m, 4H), 1.43-1.59 (m, 5H), 1.61-1.68 (m, 1H), 1.82-1.88 (m, 2H), 1.97-1.98 (m, 1H), 2.03 (s, 3H, H-42), 2.08-2.11 (m, 1H), 2.16 (d, J = 12.8 Hz, 1H, H-17), 2.27-2.36 (m, 2H), 2.45 (s, 3H), 2.49-2.59 (m, 1H, H-16), 2.61-2.69 (m, 1H, H-23), 3.56 (dd, J = 17.6 and 3.6 Hz, 1H, H-23), 4.56-4.64 (m, 1H, H-3), 5.38 (br d, J = 4.8 Hz, 1H, H-6), 7.33 (d, J = 8.0 Hz, 2H), 7.53-7.56 (m, 2H), 7.69 (br d, J = 2.0 Hz, 1H, H-21), 7.73-7.76 (m, 2H), 7.88 (d, J = 8.0 Hz, 2H), 8.33 (s, 1H, H-25). 13 C NMR δ = 12.0 (C-18), 19.3 (C- 19), 20.3, 21.4, 21.6, 27.7, 28.5, 31.4, 31.5, 35.6, 36.7, 37.0, 37.3, 38.1, 38.6, 41.6, 50.4, 55.5, 61.1 (C-17), 73.8 (C-3), 120.2 (C-25), 120.6 (C-21), 121.8, 122.2, 126.8, 129.4, S8

130.1, 135.0, 135.2, 139.1, 139.9, 143.2, 147.4, 150.0, 170.5 (C-42), 178.8 (C-20). HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 40 H 46 ClN 4 O 4 S 713.29228; found 713.29099. 25 Compound 7b: mp 187.4-188.5 C (from ethyl acetate/hexane). [α] D -40 (c 0.5 in CH 2 Cl 2 ). IR (ATR) 1026, 1091, 1152, 1238, 1249, 1298, 1499, 1587 and 1720 cm -1. 1 H NMR δ = 0.74 (s, 3H, H-18), 0.91-0.96 (m, 1H), 0.99 (s, 3H, H-19), 1.02-1.16 (m, 2H), 1.22-1.54 (m, 8H), 1.83-2.00 (m, 4H), 2.04 (s, 3H, H-42), 2.15-2.34 (m, 3H), 2.43 (s, 3H), 2.97-3.04 (m, 2H, H-23), 4.56-4.64 (m, 1H, H-3), 5.35 (br d, J = 4.4 Hz, 1H, H- 6), 5.88 (s, 1H, H-32), 6.56 (br d, J = 2.8 Hz, 1H, H-21), 7.31 (d, J = 8.4 Hz, 2H), 7.49-7.53 (m, 2H), 7.68-7.73 (m, 4H), 7.97 (s, 1H, H-25). 13 C NMR δ = 16.2 (C-18), 19.3 (C- 19), 20.7, 21.4, 21.6, 27.7, 29.9, 30.8, 31.3, 31.8, 35.8, 36.5, 36.9, 37.9, 38.0, 44.6, 49.8, 56.3, 73.7 (C-3), 117.3 (C-25), 120.7, 121.6, 122.1 (C-6), 122.8 (C-21), 126.9, 129.5, 130.0, 130.1, 134.5, 135.5, 139.6, 143.8, 145.3 (C-20), 148.6 (C-24), 170.6 (C-41). HRMS (ESI-TOF) m/z: [M+H + ] Calcd. for C 40 H 46 ClN 4 O 4 S 713.29228; found 713.29055. Bis-steroid 8: A solution of 1-azadiene 1 (0.153 g, 0.3 mmol) and pyrrolidine (5 μl, 0.06 mmol, 20 mol%) in dry toluene (1 ml) was irradiated in a microwave reactor at 140 ºC for 10 minutes. After cooling to room temperature, the solvent was evaporated. Purification of the crude product by flash chromatography [ethyl acetate/hexane (1:4)] gave compound 8 as a white solid (66.5 mg, 52%): mp 216.2-216.9 C (from ethyl 25 acetate/hexane). [α] D +55 (c 1.0 in CH 2 Cl 2 ). IR (ATR) 1037, 1091, 1235, 1244, 1296, 1540, 1578 and 1731 cm -1. 1 H NMR δ = 0.82 (s, 3H), 0.94-0.98 (m, 1H), 1.00 (s, 3H), 1.03 (s, 3H), 1.06 (s, 3H), 1.08-1.22 (m, 5H), 1.38-1.52 (m, 8H), 1.58-2.02 (m, 14H), 2.03 (s, 3H), 2.04 (s, 3H), 2.10-2.13 (m, 1H), 2.24-2.38 (m, 7H), 2.43 (s, 3H), 2.47 (br s, 1H), 2.79 (br d, J = 12.8 Hz, 1H), 4.57-4.63 (m, 2H), 5.36 (br d, J = 4.8 Hz, 1H), 5.39 (br d, J = 4.8 Hz, 1H), 6.27 (br s, 1H, H-16 ), 7.29 (d, J = 8.0 Hz, 2H), 7.35 (s, 1H, H-21), 7.85 (d, J = 8.0 Hz, 2H). 13 C NMR δ 12.1, 16.1, 19.2, 19.3, 20.3, 21.1, 21.4, 21.6, 27.7, 28.7, 30.2, 31.4, 31.5, 31.6, 32.1, 35.2, 36.7, 36.8, 37.0, 37.3, 38.1, S9

38.9, 41.6, 47.0, 50.2, 50.4, 55.5, 57.1, 61.3, 73.8, 73.9, 119.4 (C-21), 122.07, 122.14, 126.7, 129.3, 137.1 (C-16 ), 139.6, 140.0, 140.3, 142.8, 155.0, 155.2, 170.6, 179.9 (C- 20). Anal. Calcd for C 53 H 69 NO 6 S: C, 75.05; H, 8.20; N, 1.65. Found: C, 75.13; H, 7.90; N, 73. S10

3. Copies of NMR spectra of all new compounds Figure 1. 1 H and 13 C NMR spectra of compound 1 (CDCl 3 ). S11

Figure 2. COSY and NOESY spectra of compound 1 (CDCl 3 ). S12

Figure 3. HSQC and HMBC spectra of compound 1 (CDCl 3 ). S13

Figure 4. 1 H and 13 C NMR spectra of compound 4a (CDCl 3 ). S14

Figure 5. 1 H and 13 C NMR spectra of compound 4b (CDCl 3 ). S15

Figure 6. COSY and NOESY spectra of compound 4b (CDCl 3 ). S16

Figure 7. HSQC and HMBC spectra of compound 4b (CDCl 3 ). S17

Figure 8. 1 H and 13 C NMR spectra of compound 4c (CDCl 3 ). S18

Figure 9. 1 H and 13 C NMR spectra of compound 4d (CDCl 3 ). S19

Figure 10. 1 H and 13 C NMR spectra of compound 4e (CDCl 3 ). S20

Figure 11. 1 H and 13 C NMR spectra of compound 4f (CDCl 3 ). S21

Figure 12. Expansion of 1 H NMR spectra of compound 4f, in CDCl 3 and DMSO-d 6. Figure 13. Chemical behavior of the H-21 proton, in the 1 H NMR spectra of compound 4f with increasing temperature (DMSO-d 6 ). S22

Figure 14. 1 H and 13 C NMR spectra of compound 4g (CDCl 3 ). S23

Figure 15. 1 H and 13 C NMR spectra of compound 7a (CDCl 3 ). S24

Figure 16. COSY and NOESY spectra of compound 7a (CDCl 3 ). S25

Figure 17. HSQC and HMBC spectra of compound 7a (CDCl 3 ). S26

Figure 18. 1 H and 13 C NMR spectra of compound 7b (CDCl 3 ). S27

Figure 19. COSY and NOESY spectra of compound 7b (CDCl 3 ). S28

Figure 20. HSQC and HMBC spectra of compound 7b (CDCl 3 ). S29

Figure 21. 1 H and 13 C NMR spectra of compound 8 (CDCl 3 ). S30

Figure 22. COSY and NOESY spectra of compound 8 (CDCl 3 ). S31

Figure 23. HSQC and HMBC spectra of compound 8 (CDCl 3 ). S32

4. X-Ray Crystallographic data for compound 4a. X-ray Diffraction. Crystals of compound 4a was selected, covered with polyfluoroether oil, and mounted on a nylon loop. Crystallographic data for this compound was collected at the IST using graphite monochromated Mo-Kα radiation (λ=0.71073å) on a Bruker AXS-KAPPA APEX II diffractometer equipped with an Oxford Cryosystem open-flow nitrogen cryostat, at 150 K. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT on all observed reflections. Absorption corrections were applied using SADABS. 3 Structure solution and refinement were performed using direct methods with the programs SIR2014 4 included in the package of programs WINGX-Version 2014.1 5 and SHELXL. 6 The crystal showed the presence of disordered solvent molecules, the PLATON/SQUEEZE 7 routine being applied, since a good disorder model was impossible to attain. All hydrogen atoms were inserted in idealised positions and allowed to refine riding on the parent carbon atom, with C H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.99 Å for aromatic, methyl, methylene and methine H atoms, respectively, and with U iso (H) = 1.2U eq (C). The figures of the molecular structure were generated using ORTEP-III. CCDC-1847972 (for 4a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. S33

Table 1. Crystallographic data and details about refinement for structure 4a. 4a Formula C 36 H 47 N O 4 S M 589.80 (Å) 0.71073 T (K) 150(2) crystal system Orthorhombic space group P 2 1 2 1 2 1 a (Å) 6.2632(9) b (Å) 17.172(3) c (Å) 32.338(6) ( ) 90 ( ) 90 ( ) 90 V (Å 3 ) 3478.0(10) Z 4 calc (g.cm -3 ) 1.126 µ (mm -1 ) 0.129 Crystal size 0.06 0.08 0.40 Crystal colour Colourless Crystal description Needle max ( ) 26.213 total data 23442 unique data 6870 R int 0.1105 R [I>2 (I)] 0.0611 R w 0.1265 Goodness of fit 0.856 min max -0.276 0.184 S34

Figure 24. ORTEP-3 diagram of compound 4a, using 30% probability level ellipsoids. Selected bond lengths (Å): C1 C2, 1.531(7); C5 C6, 1.321(7); C8 C14, 1.520(7); C15 C16, 1.535(7); C21 C22, 1.333(7); N28 C20, 1.303(6); S29 N28, 1.658(4); S29 O3, 1.440(4); S29 O4, 1.445(4); C3 O1, 1.461(6); Selected bond angles (º): C19 C10 C9 111.6(4); C18 C13 C17 111.0(4); C20 N28 S29, 118.2(4); C2 C3 O1, 106.2(4). S35

Table 2. Crystal data and structure refinement for 4a. Identification code Empirical formula Formula weight 589.80 Temperature Wavelength Crystal system 4a C36 H47 N O4 S 293(2) K 0.71073 Å Orthorhombic Space group P 21 21 21 Unit cell dimensions a = 6.2632(9) Å = 90. b = 17.172(3) Å = 90. c = 32.338(6) Å = 90. Volume 3478.0(10) Å 3 Z 4 Density (calculated) 1.126 Mg/m 3 Absorption coefficient 0.129 mm -1 F(000) 1272 Crystal size 0.400 x 0.080 x 0.060 mm 3 Theta range for data collection 2.372 to 26.213. Index ranges Reflections collected 23442-7<=h<=5, -21<=k<=19, -39<=l<=39 Independent reflections 6870 [R(int) = 0.1105] Completeness to theta = 25.242 99.6 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.992 and 0.950 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 6870 / 0 / 383 Goodness-of-fit on F 2 0.856 Final R indices [I>2sigma(I)] R1 = 0.0611, wr2 = 0.1265 R indices (all data) R1 = 0.1564, wr2 = 0.1510 Absolute structure parameter -0.04(9) Extinction coefficient n/a Largest diff. peak and hole 0.184 and -0.276 e.å -3 S36

Table 3. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for 4a. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) S(29) 6507(2) 6596(1) 8016(1) 47(1) O(3) 5064(7) 6218(2) 7733(1) 65(1) O(1) 12134(7) 3349(2) 11460(1) 67(1) N(28) 7633(6) 5971(2) 8340(1) 42(1) O(4) 8126(6) 7103(2) 7846(1) 61(1) C(14) 11505(8) 4245(3) 9034(2) 40(1) C(8) 12302(8) 4199(3) 9477(2) 40(1) C(13) 10203(8) 4990(3) 8939(2) 39(1) C(31) 2889(8) 7333(3) 8250(2) 47(1) C(16) 12130(8) 4634(3) 8323(2) 42(1) C(9) 10407(8) 4250(3) 9783(2) 43(1) C(17) 9867(8) 4856(3) 8474(2) 39(1) C(5) 12879(9) 3661(3) 10312(2) 44(1) C(7) 13489(9) 3436(3) 9556(2) 53(2) C(21) 9393(9) 5317(3) 7748(2) 50(2) C(20) 8896(8) 5440(3) 8189(2) 43(1) C(10) 11179(8) 4276(3) 10238(2) 41(1) C(6) 13849(9) 3289(3) 10008(2) 53(2) C(4) 13467(9) 3497(4) 10756(2) 59(2) C(27) 12100(8) 4272(3) 7891(2) 48(2) O(2) 12820(9) 2084(3) 11439(1) 95(2) C(18) 11483(9) 5741(3) 9018(2) 53(2) C(11) 8847(8) 4915(3) 9676(2) 51(2) C(30) 4978(8) 7171(3) 8360(2) 43(1) C(32) 1746(10) 7881(3) 8466(2) 56(2) C(22) 10735(9) 4771(4) 7613(2) 53(2) C(15) 13099(8) 4161(3) 8680(2) 53(2) C(3) 11513(10) 3348(3) 11024(2) 54(2) C(12) 8220(8) 4961(3) 9215(2) 48(1) C(35) 5916(10) 7542(4) 8687(2) 60(2) C(33) 2652(10) 8269(4) 8789(2) 58(2) C(1) 9271(9) 4083(4) 10521(2) 57(2) S37

C(2) 9851(10) 3980(4) 10977(2) 62(2) C(25) 14470(11) 3977(4) 7270(2) 74(2) C(37) 12751(11) 2681(5) 11633(2) 69(2) C(26) 14380(9) 4194(4) 7725(2) 63(2) C(19) 12100(11) 5081(3) 10351(2) 68(2) C(34) 4733(11) 8093(4) 8902(2) 72(2) C(23) 10926(11) 4619(5) 7155(2) 80(2) C(38) 13353(13) 2786(4) 12072(2) 93(2) C(24) 13271(12) 4569(4) 7016(2) 84(2) C(36) 1406(13) 8904(4) 9013(2) 104(3) S38

Table 4. Bond lengths [Å] and angles [ ] for 4a. S(29)-O(3) 1.440(4) S(29)-O(4) 1.445(4) S(29)-N(28) 1.658(4) S(29)-C(30) 1.769(5) O(1)-C(37) 1.333(7) O(1)-C(3) 1.461(6) N(28)-C(20) 1.303(6) C(14)-C(8) 1.520(7) C(14)-C(15) 1.526(7) C(14)-C(13) 1.547(7) C(14)-H(14) 0.9800 C(8)-C(7) 1.527(7) C(8)-C(9) 1.549(7) C(8)-H(8) 0.9800 C(13)-C(12) 1.530(7) C(13)-C(17) 1.536(7) C(13)-C(18) 1.540(7) C(31)-C(32) 1.374(7) C(31)-C(30) 1.384(7) C(31)-H(31) 0.9300 C(16)-C(27) 1.530(7) C(16)-C(15) 1.535(7) C(16)-C(17) 1.547(7) C(16)-H(16) 0.9800 C(9)-C(11) 1.544(7) C(9)-C(10) 1.548(7) C(9)-H(9) 0.9800 C(17)-C(20) 1.492(7) C(17)-H(17) 0.9800 C(5)-C(6) 1.321(7) C(5)-C(4) 1.507(7) C(5)-C(10) 1.520(7) C(7)-C(6) 1.500(7) C(7)-H(7A) 0.9700 C(7)-H(7B) 0.9700 C(21)-C(22) 1.333(7) S39

C(21)-C(20) 1.473(7) C(21)-H(21) 0.9300 C(10)-C(19) 1.540(8) C(10)-C(1) 1.541(7) C(6)-H(6) 0.9300 C(4)-C(3) 1.522(8) C(4)-H(4A) 0.9700 C(4)-H(4B) 0.9700 C(27)-C(22) 1.507(8) C(27)-C(26) 1.530(8) C(27)-H(27) 0.9800 O(2)-C(37) 1.204(8) C(18)-H(18A) 0.9600 C(18)-H(18B) 0.9600 C(18)-H(18C) 0.9600 C(11)-C(12) 1.544(7) C(11)-H(11A) 0.9700 C(11)-H(11B) 0.9700 C(30)-C(35) 1.368(7) C(32)-C(33) 1.363(8) C(32)-H(32) 0.9300 C(22)-C(23) 1.510(8) C(15)-H(15A) 0.9700 C(15)-H(15B) 0.9700 C(3)-C(2) 1.512(8) C(3)-H(3) 0.9800 C(12)-H(12A) 0.9700 C(12)-H(12B) 0.9700 C(35)-C(34) 1.387(8) C(35)-H(35) 0.9300 C(33)-C(34) 1.387(9) C(33)-C(36) 1.524(8) C(1)-C(2) 1.531(7) C(1)-H(1A) 0.9700 C(1)-H(1B) 0.9700 C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(25)-C(24) 1.508(9) S40

C(25)-C(26) 1.519(8) C(25)-H(25A) 0.9700 C(25)-H(25B) 0.9700 C(37)-C(38) 1.480(8) C(26)-H(26B) 0.9700 C(26)-H(26A) 0.9700 C(19)-H(19A) 0.9600 C(19)-H(19B) 0.9600 C(19)-H(19C) 0.9600 C(34)-H(34) 0.9300 C(23)-C(24) 1.538(10) C(23)-H(23B) 0.9700 C(23)-H(23A) 0.9700 C(38)-H(38A) 0.9600 C(38)-H(38B) 0.9600 C(38)-H(38C) 0.9600 C(24)-H(24A) 0.9700 C(24)-H(24B) 0.9700 C(36)-H(36A) 0.9600 C(36)-H(36B) 0.9600 C(36)-H(36C) 0.9600 O(3)-S(29)-O(4) 118.0(3) O(3)-S(29)-N(28) 112.2(2) O(4)-S(29)-N(28) 109.4(2) O(3)-S(29)-C(30) 108.2(3) O(4)-S(29)-C(30) 106.4(2) N(28)-S(29)-C(30) 101.2(2) C(37)-O(1)-C(3) 118.7(5) C(20)-N(28)-S(29) 118.2(4) C(8)-C(14)-C(15) 119.1(4) C(8)-C(14)-C(13) 113.8(4) C(15)-C(14)-C(13) 106.0(4) C(8)-C(14)-H(14) 105.6 C(15)-C(14)-H(14) 105.6 C(13)-C(14)-H(14) 105.6 C(14)-C(8)-C(7) 111.3(4) C(14)-C(8)-C(9) 110.4(4) S41

C(7)-C(8)-C(9) 108.3(4) C(14)-C(8)-H(8) 108.9 C(7)-C(8)-H(8) 108.9 C(9)-C(8)-H(8) 108.9 C(12)-C(13)-C(17) 117.1(4) C(12)-C(13)-C(18) 110.7(4) C(17)-C(13)-C(18) 111.0(4) C(12)-C(13)-C(14) 106.6(4) C(17)-C(13)-C(14) 98.2(4) C(18)-C(13)-C(14) 112.6(4) C(32)-C(31)-C(30) 120.0(6) C(32)-C(31)-H(31) 120.0 C(30)-C(31)-H(31) 120.0 C(27)-C(16)-C(15) 118.5(4) C(27)-C(16)-C(17) 112.2(4) C(15)-C(16)-C(17) 104.8(4) C(27)-C(16)-H(16) 106.9 C(15)-C(16)-H(16) 106.9 C(17)-C(16)-H(16) 106.9 C(11)-C(9)-C(10) 112.9(4) C(11)-C(9)-C(8) 112.5(4) C(10)-C(9)-C(8) 111.7(4) C(11)-C(9)-H(9) 106.4 C(10)-C(9)-H(9) 106.4 C(8)-C(9)-H(9) 106.4 C(20)-C(17)-C(13) 124.1(4) C(20)-C(17)-C(16) 110.1(4) C(13)-C(17)-C(16) 102.7(4) C(20)-C(17)-H(17) 106.2 C(13)-C(17)-H(17) 106.2 C(16)-C(17)-H(17) 106.2 C(6)-C(5)-C(4) 120.4(5) C(6)-C(5)-C(10) 122.7(5) C(4)-C(5)-C(10) 116.9(5) C(6)-C(7)-C(8) 112.4(5) C(6)-C(7)-H(7A) 109.1 C(8)-C(7)-H(7A) 109.1 C(6)-C(7)-H(7B) 109.1 S42

C(8)-C(7)-H(7B) 109.1 H(7A)-C(7)-H(7B) 107.9 C(22)-C(21)-C(20) 123.5(6) C(22)-C(21)-H(21) 118.3 C(20)-C(21)-H(21) 118.3 N(28)-C(20)-C(21) 126.4(5) N(28)-C(20)-C(17) 119.0(5) C(21)-C(20)-C(17) 114.5(5) C(5)-C(10)-C(19) 108.9(4) C(5)-C(10)-C(1) 107.4(4) C(19)-C(10)-C(1) 110.1(5) C(5)-C(10)-C(9) 110.4(4) C(19)-C(10)-C(9) 111.6(4) C(1)-C(10)-C(9) 108.4(4) C(5)-C(6)-C(7) 125.2(5) C(5)-C(6)-H(6) 117.4 C(7)-C(6)-H(6) 117.4 C(5)-C(4)-C(3) 112.2(5) C(5)-C(4)-H(4A) 109.2 C(3)-C(4)-H(4A) 109.2 C(5)-C(4)-H(4B) 109.2 C(3)-C(4)-H(4B) 109.2 H(4A)-C(4)-H(4B) 107.9 C(22)-C(27)-C(16) 108.7(4) C(22)-C(27)-C(26) 111.8(5) C(16)-C(27)-C(26) 110.1(4) C(22)-C(27)-H(27) 108.8 C(16)-C(27)-H(27) 108.8 C(26)-C(27)-H(27) 108.8 C(13)-C(18)-H(18A) 109.5 C(13)-C(18)-H(18B) 109.5 H(18A)-C(18)-H(18B) 109.5 C(13)-C(18)-H(18C) 109.5 H(18A)-C(18)-H(18C) 109.5 H(18B)-C(18)-H(18C) 109.5 C(12)-C(11)-C(9) 114.6(4) C(12)-C(11)-H(11A) 108.6 C(9)-C(11)-H(11A) 108.6 S43

C(12)-C(11)-H(11B) 108.6 C(9)-C(11)-H(11B) 108.6 H(11A)-C(11)-H(11B) 107.6 C(35)-C(30)-C(31) 120.7(5) C(35)-C(30)-S(29) 120.9(4) C(31)-C(30)-S(29) 117.5(4) C(33)-C(32)-C(31) 120.5(6) C(33)-C(32)-H(32) 119.8 C(31)-C(32)-H(32) 119.8 C(21)-C(22)-C(27) 124.2(5) C(21)-C(22)-C(23) 119.6(6) C(27)-C(22)-C(23) 116.2(5) C(14)-C(15)-C(16) 104.8(4) C(14)-C(15)-H(15A) 110.8 C(16)-C(15)-H(15A) 110.8 C(14)-C(15)-H(15B) 110.8 C(16)-C(15)-H(15B) 110.8 H(15A)-C(15)-H(15B) 108.9 O(1)-C(3)-C(2) 106.2(4) O(1)-C(3)-C(4) 109.6(5) C(2)-C(3)-C(4) 112.0(5) O(1)-C(3)-H(3) 109.6 C(2)-C(3)-H(3) 109.6 C(4)-C(3)-H(3) 109.6 C(13)-C(12)-C(11) 111.0(4) C(13)-C(12)-H(12A) 109.4 C(11)-C(12)-H(12A) 109.4 C(13)-C(12)-H(12B) 109.4 C(11)-C(12)-H(12B) 109.4 H(12A)-C(12)-H(12B) 108.0 C(30)-C(35)-C(34) 118.4(6) C(30)-C(35)-H(35) 120.8 C(34)-C(35)-H(35) 120.8 C(32)-C(33)-C(34) 119.1(6) C(32)-C(33)-C(36) 120.1(6) C(34)-C(33)-C(36) 120.8(7) C(2)-C(1)-C(10) 114.4(5) C(2)-C(1)-H(1A) 108.7 S44

C(10)-C(1)-H(1A) 108.7 C(2)-C(1)-H(1B) 108.7 C(10)-C(1)-H(1B) 108.7 H(1A)-C(1)-H(1B) 107.6 C(3)-C(2)-C(1) 110.1(5) C(3)-C(2)-H(2A) 109.6 C(1)-C(2)-H(2A) 109.6 C(3)-C(2)-H(2B) 109.6 C(1)-C(2)-H(2B) 109.6 H(2A)-C(2)-H(2B) 108.2 C(24)-C(25)-C(26) 110.1(5) C(24)-C(25)-H(25A) 109.6 C(26)-C(25)-H(25A) 109.6 C(24)-C(25)-H(25B) 109.6 C(26)-C(25)-H(25B) 109.6 H(25A)-C(25)-H(25B) 108.2 O(2)-C(37)-O(1) 121.6(6) O(2)-C(37)-C(38) 126.5(7) O(1)-C(37)-C(38) 111.8(6) C(25)-C(26)-C(27) 113.3(5) C(25)-C(26)-H(26B) 108.9 C(27)-C(26)-H(26B) 108.9 C(25)-C(26)-H(26A) 108.9 C(27)-C(26)-H(26A) 108.9 H(26B)-C(26)-H(26A) 107.7 C(10)-C(19)-H(19A) 109.5 C(10)-C(19)-H(19B) 109.5 H(19A)-C(19)-H(19B) 109.5 C(10)-C(19)-H(19C) 109.5 H(19A)-C(19)-H(19C) 109.5 H(19B)-C(19)-H(19C) 109.5 C(35)-C(34)-C(33) 121.2(6) C(35)-C(34)-H(34) 119.4 C(33)-C(34)-H(34) 119.4 C(22)-C(23)-C(24) 111.7(6) C(22)-C(23)-H(23B) 109.3 C(24)-C(23)-H(23B) 109.3 C(22)-C(23)-H(23A) 109.3 S45

C(24)-C(23)-H(23A) 109.3 H(23B)-C(23)-H(23A) 107.9 C(37)-C(38)-H(38A) 109.5 C(37)-C(38)-H(38B) 109.5 H(38A)-C(38)-H(38B) 109.5 C(37)-C(38)-H(38C) 109.5 H(38A)-C(38)-H(38C) 109.5 H(38B)-C(38)-H(38C) 109.5 C(25)-C(24)-C(23) 110.8(7) C(25)-C(24)-H(24A) 109.5 C(23)-C(24)-H(24A) 109.5 C(25)-C(24)-H(24B) 109.5 C(23)-C(24)-H(24B) 109.5 H(24A)-C(24)-H(24B) 108.1 C(33)-C(36)-H(36A) 109.5 C(33)-C(36)-H(36B) 109.5 H(36A)-C(36)-H(36B) 109.5 C(33)-C(36)-H(36C) 109.5 H(36A)-C(36)-H(36C) 109.5 H(36B)-C(36)-H(36C) 109.5 Symmetry transformations used to generate equivalent atoms. S46

Table 5. Anisotropic displacement parameters (Å 2 x 10 3 )for 4a. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 S(29) 49(1) 51(1) 41(1) 4(1) 1(1) 7(1) O(3) 67(3) 70(3) 58(3) -18(2) -23(2) 18(2) O(1) 98(3) 59(3) 42(2) -4(2) -23(2) 11(3) N(28) 40(2) 51(3) 37(3) 3(2) -3(2) 8(2) O(4) 58(2) 62(3) 63(3) 14(2) 20(2) 5(2) C(14) 33(3) 41(3) 47(3) 4(3) -3(3) 0(3) C(8) 34(3) 34(3) 51(3) 3(3) -6(3) 1(2) C(13) 36(3) 41(3) 41(3) -1(3) -6(3) 4(3) C(31) 39(3) 54(4) 49(4) 4(3) 2(3) -1(3) C(16) 34(3) 44(3) 48(3) -6(3) 5(3) 7(2) C(9) 40(3) 43(3) 45(3) 3(3) -1(3) -3(3) C(17) 36(3) 40(3) 41(3) -4(3) 4(3) -2(3) C(5) 44(3) 46(3) 42(3) -1(3) -8(3) -4(3) C(7) 48(3) 57(4) 55(4) 0(3) 3(3) 12(3) C(21) 55(4) 56(4) 40(4) 1(3) 0(3) 6(3) C(20) 34(3) 49(3) 47(3) 0(3) -2(3) -7(3) C(10) 38(3) 44(3) 42(3) -2(3) -7(3) -5(3) C(6) 47(4) 55(4) 58(4) 11(3) -8(3) 10(3) C(4) 59(4) 67(4) 50(4) 5(3) -18(3) 13(4) C(27) 54(4) 36(3) 52(4) -10(3) 4(3) 2(3) O(2) 153(5) 67(3) 66(3) -2(3) -10(3) 21(3) C(18) 58(4) 52(3) 49(4) -1(3) -1(3) -11(3) C(11) 43(3) 60(4) 49(4) 8(3) 0(3) 15(3) C(30) 39(3) 49(4) 40(3) 9(3) 7(3) 4(3) C(32) 42(3) 58(4) 68(4) 7(3) 6(3) 6(3) C(22) 53(4) 59(4) 48(4) -15(3) 0(3) 2(3) C(15) 39(3) 70(4) 51(4) -5(3) 3(3) 16(3) C(3) 72(4) 50(3) 40(3) -1(3) -5(3) 1(4) C(12) 38(3) 59(4) 46(3) 3(3) -1(3) 11(3) C(35) 50(4) 79(5) 51(4) -14(4) -6(3) 0(3) C(33) 54(4) 59(4) 59(4) -1(3) 19(3) 6(3) C(1) 48(4) 77(4) 45(4) 1(3) -8(3) 5(3) C(2) 65(4) 81(5) 40(4) 6(3) -2(3) 6(4) S47

C(25) 76(5) 76(5) 69(5) -30(4) 25(4) 8(4) C(37) 80(5) 71(5) 56(4) 5(4) 2(4) 9(4) C(26) 53(4) 68(4) 67(5) -10(4) 12(3) 10(3) C(19) 90(5) 53(4) 61(4) -6(3) -21(4) 1(4) C(34) 75(5) 80(5) 60(5) -23(4) 7(4) 2(4) C(23) 81(5) 107(6) 52(4) -21(4) 6(4) 18(4) C(38) 129(6) 111(6) 39(4) 0(4) -12(4) 46(5) C(24) 99(6) 94(5) 60(4) -15(4) 7(5) 14(5) C(36) 110(6) 90(5) 112(7) -26(5) 21(6) 32(5) S48

Table 6. Torsion angles [ ] for 4a. O(3)-S(29)-N(28)-C(20) 64.4(4) O(4)-S(29)-N(28)-C(20) -68.5(4) C(30)-S(29)-N(28)-C(20) 179.5(4) C(15)-C(14)-C(8)-C(7) -56.4(6) C(13)-C(14)-C(8)-C(7) 177.5(4) C(15)-C(14)-C(8)-C(9) -176.6(5) C(13)-C(14)-C(8)-C(9) 57.2(6) C(8)-C(14)-C(13)-C(12) -62.9(6) C(15)-C(14)-C(13)-C(12) 164.3(4) C(8)-C(14)-C(13)-C(17) 175.6(4) C(15)-C(14)-C(13)-C(17) 42.8(5) C(8)-C(14)-C(13)-C(18) 58.7(6) C(15)-C(14)-C(13)-C(18) -74.1(5) C(14)-C(8)-C(9)-C(11) -46.8(6) C(7)-C(8)-C(9)-C(11) -168.9(4) C(14)-C(8)-C(9)-C(10) -175.0(4) C(7)-C(8)-C(9)-C(10) 62.9(6) C(12)-C(13)-C(17)-C(20) 74.0(6) C(18)-C(13)-C(17)-C(20) -54.4(6) C(14)-C(13)-C(17)-C(20) -172.6(5) C(12)-C(13)-C(17)-C(16) -160.6(5) C(18)-C(13)-C(17)-C(16) 70.9(5) C(14)-C(13)-C(17)-C(16) -47.2(5) C(27)-C(16)-C(17)-C(20) -60.6(6) C(15)-C(16)-C(17)-C(20) 169.6(4) C(27)-C(16)-C(17)-C(13) 165.4(4) C(15)-C(16)-C(17)-C(13) 35.6(5) C(14)-C(8)-C(7)-C(6) -166.7(5) C(9)-C(8)-C(7)-C(6) -45.2(6) S(29)-N(28)-C(20)-C(21) -2.0(7) S(29)-N(28)-C(20)-C(17) -178.0(4) C(22)-C(21)-C(20)-N(28) 178.7(5) C(22)-C(21)-C(20)-C(17) -5.2(8) C(13)-C(17)-C(20)-N(28) -23.9(7) C(16)-C(17)-C(20)-N(28) -146.0(5) C(13)-C(17)-C(20)-C(21) 159.7(5) S49

C(16)-C(17)-C(20)-C(21) 37.6(6) C(6)-C(5)-C(10)-C(19) -109.2(6) C(4)-C(5)-C(10)-C(19) 69.5(6) C(6)-C(5)-C(10)-C(1) 131.6(5) C(4)-C(5)-C(10)-C(1) -49.7(6) C(6)-C(5)-C(10)-C(9) 13.7(7) C(4)-C(5)-C(10)-C(9) -167.6(5) C(11)-C(9)-C(10)-C(5) -174.1(4) C(8)-C(9)-C(10)-C(5) -46.1(6) C(11)-C(9)-C(10)-C(19) -52.9(6) C(8)-C(9)-C(10)-C(19) 75.1(6) C(11)-C(9)-C(10)-C(1) 68.5(6) C(8)-C(9)-C(10)-C(1) -163.5(4) C(4)-C(5)-C(6)-C(7) -176.3(5) C(10)-C(5)-C(6)-C(7) 2.4(9) C(8)-C(7)-C(6)-C(5) 14.5(8) C(6)-C(5)-C(4)-C(3) -130.9(6) C(10)-C(5)-C(4)-C(3) 50.4(7) C(15)-C(16)-C(27)-C(22) 169.8(4) C(17)-C(16)-C(27)-C(22) 47.5(6) C(15)-C(16)-C(27)-C(26) -67.5(6) C(17)-C(16)-C(27)-C(26) 170.2(5) C(10)-C(9)-C(11)-C(12) 174.0(5) C(8)-C(9)-C(11)-C(12) 46.4(6) C(32)-C(31)-C(30)-C(35) 1.2(8) C(32)-C(31)-C(30)-S(29) -168.8(4) O(3)-S(29)-C(30)-C(35) 174.0(5) O(4)-S(29)-C(30)-C(35) -58.2(5) N(28)-S(29)-C(30)-C(35) 56.0(5) O(3)-S(29)-C(30)-C(31) -16.0(5) O(4)-S(29)-C(30)-C(31) 111.7(4) N(28)-S(29)-C(30)-C(31) -134.0(4) C(30)-C(31)-C(32)-C(33) 0.0(9) C(20)-C(21)-C(22)-C(27) -7.2(9) C(20)-C(21)-C(22)-C(23) 172.0(5) C(16)-C(27)-C(22)-C(21) -14.7(7) C(26)-C(27)-C(22)-C(21) -136.4(6) C(16)-C(27)-C(22)-C(23) 166.1(5) S50

C(26)-C(27)-C(22)-C(23) 44.4(7) C(8)-C(14)-C(15)-C(16) -151.5(5) C(13)-C(14)-C(15)-C(16) -21.7(5) C(27)-C(16)-C(15)-C(14) -134.3(5) C(17)-C(16)-C(15)-C(14) -8.4(6) C(37)-O(1)-C(3)-C(2) 149.5(6) C(37)-O(1)-C(3)-C(4) -89.3(6) C(5)-C(4)-C(3)-O(1) -168.6(5) C(5)-C(4)-C(3)-C(2) -51.0(7) C(17)-C(13)-C(12)-C(11) 167.0(4) C(18)-C(13)-C(12)-C(11) -64.4(6) C(14)-C(13)-C(12)-C(11) 58.4(6) C(9)-C(11)-C(12)-C(13) -53.3(6) C(31)-C(30)-C(35)-C(34) -1.0(9) S(29)-C(30)-C(35)-C(34) 168.7(5) C(31)-C(32)-C(33)-C(34) -1.2(9) C(31)-C(32)-C(33)-C(36) 177.0(6) C(5)-C(10)-C(1)-C(2) 53.0(6) C(19)-C(10)-C(1)-C(2) -65.4(6) C(9)-C(10)-C(1)-C(2) 172.2(5) O(1)-C(3)-C(2)-C(1) 174.0(5) C(4)-C(3)-C(2)-C(1) 54.3(7) C(10)-C(1)-C(2)-C(3) -57.4(7) C(3)-O(1)-C(37)-O(2) 0.5(10) C(3)-O(1)-C(37)-C(38) 179.2(5) C(24)-C(25)-C(26)-C(27) 57.1(8) C(22)-C(27)-C(26)-C(25) -48.8(7) C(16)-C(27)-C(26)-C(25) -169.6(5) C(30)-C(35)-C(34)-C(33) -0.3(10) C(32)-C(33)-C(34)-C(35) 1.4(10) C(36)-C(33)-C(34)-C(35) -176.9(6) C(21)-C(22)-C(23)-C(24) 133.3(7) C(27)-C(22)-C(23)-C(24) -47.4(8) C(26)-C(25)-C(24)-C(23) -59.0(7) C(22)-C(23)-C(24)-C(25) 54.0(8) Symmetry transformations used to generate equivalent atoms. S51

5. References: 1. Li, H.; Liu, H.-M.; Ge, W.; Huang, L.; Shan, L. Steroids 2005, 70, 970-973. 2. Lopes, S. M. M.; Novais, J. S.; Costa, D. C. S.; Castro, H. C.; Figueiredo, A. M. S.; Ferreira, V. F.; Pinho e Melo, T. M. V. D.; da Silva, F. d. C. Eur. J. Med. Chem. 2018, 143, 1010-1020. 3. G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, 1996. 4. M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori 2014, in preparation. 5. L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854. 6. G. M. Sheldrick, (a) SHELX97 - Programs for Crystal Structure Analysis (Release 97-2), Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998; (b) G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122. 7. A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7 13. S52