A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Σχετικά έγγραφα
Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Structural Expression of Exo-Anomeric Effect

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information

Supporting Information for

Electronic Supplementary Information

Accessory Publication

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Electronic Supplementary Information for

Electronic Supplementary Information

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Supporting Information

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Supporting Information

Electronic Supplementary Information (ESI) for

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Synthesis, characterization and luminescence studies of

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Supporting Information

Supporting Information

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Chemical Communications. Electronic Supporting Information

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Electronic Supplementary Information (ESI)

Supporting Information for:

Supporting Information

Electronic Supplementary Information

Supporting Information

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

SUPPORTING INFORMATION

Supplementary Information

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Supplementary Information

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Amplification of a metallacyclic receptor out of a dynamic combinatorial library. - Supporting Information -

Supporting Information

Electronic Supplementary Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Sequential Addition of Phosphine to Alkynes for the Selective. Synthesis of 1,2-Diphosphinoethanes under Catalysis. Well-Defined

Supplementary Figures

The generation and reactivity of aza-oxyallyl cationic intermediates: aza- [4+3] cycloaddition reactions for heterocycle synthesis

A turn-off emission based chemosensor for HSO formation of a hydrogen-bonded complex

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Disulfide-based metal free sulfanylation of ketones

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Deprotonative Cadmation of Functionalized Aromatics

Table of Contents 1 Supplementary Data MCD

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

The role of exchange in systematic DFT errors for some organic reactions: Electronic supplementary information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora

Supporting Information

Supporting Information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Composed of Thiophene, Pyrrole and Methylthio

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Transcript:

Supporting Information for A Selective, Sensitive, Colorimetric and Fluorescence Probe for Relay Recognition of Fluoride and Cu (II) ions with OFF-ON-OFF Switching in Ethanol-Water Solution Yu Peng,* Yu-Man Dong, Ming Dong and Ya-Wen Wang* State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (P. R. China) pengyu@lzu.edu.cn ywwang@lzu.edu.cn Table of Contents 1. 2. 3. 1 H, 13 C NMR and ESI-MS copies of the compound 3 (Figures S1-S3)...S3 1 H, 13 C NMR, IR, ESI-MS and HRMS copies of the probe 1 (Figures S4-S8)..S6 1 H, 13 C NMR, IR and ESI-MS copies of the compound 2 (Figures S9-S12)...S11 4. Fluorescence spectral changes of 1 + F system with various anions in ethanolwater solution (Figure S13)...S15 5. The ph dependence of the fluorescence intensity change of 1 and 1 + F system (Figure S14)...S16 6. The detection limit of the probe 1 with F in ethanol-water solution (Figure S15)...S17 7. The kinetic study of the response of F to 1 in ethanol-water solution at 25 C (Figure S16)...S18 8. Job s plot for 1 + F system with Cu 2+ in ethanol-water solution (Figure S17)....S19 9. ESI-MS spectrum of 2 with Cu 2+ in ethanol-water solution (Figure S18)...S20 10. Benesi-Hildebrand plots of 1 + F system with Cu 2+ in ethanol-water solution (Figure S19)...S21 11. The detection limit of the 1 + F system with Cu 2+ in ethanol-water solution S1

(Figure S20)......S22 12. Plots of fluorescence intensity against time for 1 + F system upon addition of Cu 2+ (Figure S21)...S23 13. The UV-vis spectra of 1, 1 + F, 1 + F + Cu 2+ and 1 + F + cations in ethanol-water solution (Figures S22 and S23).......S24 14. The changes of UV-vis spectra of 1 + F system upon addition of Cu 2+ in ethanol-water solution (Figure S24)....S26 15. Fluorescence spectra of 1 and 1 + F in ethanol with different proportions of H 2 O (Figure S25)...S27 16. The detection limit of the probe 1 with F in ethanol (Figure S26)...S28 17. The kinetic study of the response of F to 1 in ethanol at 25 C (Figure S27).. S29 18. The UV-vis spectra of 1 with various anions in ethanol (Figure S28)....S30 19. Fluorescence spectra of 2 and 2 + Cu 2+ in ethanol with different proportions of H 2 O (Figure S29)...........S31 20. The ph dependence of the fluorescence intensity change of 2 and 2 + Cu 2+ (Figure S30)...... S32 21. The detection limit of the 2 with Cu 2+ in water solution (Figure S31)..S33 22. Job s plot for 2 with Cu 2+ in water solution (Figure S32)...S34 23. Benesi-Hildebrand plots of 2 with Cu 2+ in water solution (Figure S33)...S35 24. Fluorescence spectral changes of 2 with various ions in water solution (Figures S34 and S35)...S36 25. Plots of fluorescence intensity against time for 2 upon addition of Cu 2+ (Figure S36)...S38 26. The changes of UV-vis spectra of 2 upon addition of various cations in water solution (Figures S37 and S38)...S39 27. ORTEP plot of 1 (Figure S39)...S41 28. Optimized structures, cartesian coordinates and computed total energies of 1, 2 2 Cu 2+ and [2 Cu 2+ ] (Figures S40-S43)...S42 29. HOMO-LUMO energy levels and the molecular orbital plots of [2 Cu 2+ ] (Figure S44)......S50 S2

1. 1 H, 13 C NMR and ESI-MS copies of the compound 3. CHO Et 2 N 3 OTBS Figure S1. 1 H NMR (CDCl 3, 400 MHz) spectrum of 3. S3

CHO Et 2 N 3 OTBS Figure S2. 13 C NMR (CDCl 3, 100 MHz) spectrum of 3. S4

[M + H] + CHO Et 2 N 3 OTBS Figure S3. ESI mass spectrum of 3. S5

2. 1 H, 13 C NMR, IR, ESI-MS and HRMS copies of the probe 1. S Et 2 N CN O TBS 1 N Figure S4. 1 H NMR (CDCl 3, 400 MHz) spectrum of 1. S6

S Et 2 N O TBS 1 CN N Figure S5. 13 C NMR (CDCl 3, 100 MHz) spectrum of 1. S7

S Et 2 N O TBS 1 CN N Figure S6. IR spectrum of 1. S8

[M + H] + S Et 2 N CN O TBS 1 N Figure S7. ESI mass spectrum of 1. S9

[M + H] + [M + Na] + Figure S8. HRMS of 1. S10

3. 1 H, 13 C NMR, IR and ESI-MS copies of the compound 2. S N Et 2 N O 2 C NH Figure S9. 1 H NMR (CDCl 3, 400 MHz) spectrum of 2. S11

S N Et 2 N O 2 C NH Figure S10. 13 C NMR (CDCl 3, 100 MHz) spectrum of 2. S12

S N Et 2 N O 2 C NH Figure S11. IR spectrum of 2. S13

[M + H] + S N Et 2 N O 2 C NH Figure S12. ESI mass spectrum of 2. S14

4. Fluorescence spectral changes of 1 + F system with various anions in ethanol-water solution. Figure S13. Fluorescence spectral changes of 1 + TBAF (25.0 µm + 125.0 µm) with various anions (125.0 µm) in ethanol-water (v/v = 1:1) solution (λ ex = 460 nm). S15

5. The ph dependence of the fluorescence intensity change of 1 and 1+F system. Figure S14. Fluorescence intensity 1 (25.0 µm) in ethanol-water (1:1, v/v) solution of different ph in the absence (square) and presence (dot) of 25.0 µm F, respectively (λ ex = 460 nm). S16

6. The detection limit of the probe 1 with F in ethanol-water solution. Figure S15. Plot of the intensity at 523 nm for a mixture of probe 1 (25.0 µm) and F in ethanol-water (v/v = 1:1) solution in the range 0 2.5 µm (λ ex = 460 nm). The result of the analysis as follows: Linear Equation: Y = 67.4182 X +19.9091 R = 0.9976 S = 6.74 10 7 δ = ( F0 N 1 LOD = K δ / S = 1.177 10-7 M F 0 is the fluorescence intensity of 1. 2 F0 ) = 2.5467 (N = 10) K = 3 S17

7. The kinetic study of the response of F to 1 in ethanol-water solution at 25 C. Figure S16. The kinetic study of the response of 1 (25.0 µm) to F (250.0 µm) in ethanol-water (v/v = 1:1) solution at 25 o C under pseudo-first-order condition. S18

8. Job s plot for 1 + F system with Cu 2+ in ethanol-water solution. Figure S17. Job s plot for 1 + F with Cu 2+ in ethanol-water (v/v = 1:1) solution. S19

9. ESI-MS spectrum of 2 with Cu 2+ in ethanol-water solution. [2 + Cu + ClO 4 ] + Figure S18. ESI-MS spectrum of 2 with Cu 2+ in ethanol-water (v/v = 1:1) solution. S20

10. Benesi-Hildebrand plots of 1 + F system with Cu 2+ in ethanol-water solution. Figure S19. Benesi-Hildebrand plot of 1+ F, assuming 1:1 stoichiometry for association between 1 + F and Cu 2+ in ethanol-water (v/v = 1:1) solution. The binding constant was determined using a reported procedure for a 1:1 binding mode. The result of the analysis as follows: Equation: Y = A +B X Y = 5.8995 1.2178 X R = 0.9916 F F lg F F max = lg K + lg[cu min 2+ K =7.93 10 5 M -1 ] S21

11. The detection limit of the 1 + F system with Cu 2+ in ethanol-water solution. Figure S20. Plot of the intensity at 544 nm for a mixture of 1 + F and Cu 2+ in ethanol-water (v/v = 1:1) solution in the range 0 2.5 µm (λ ex = 460 nm). The result of the analysis as follows: Linear Equation: Y = 57.1636 X+1662.090 R = 0.9931 S = 5.72 10 7 δ = ( F0 1 N 2 F0 ) LOD = K δ / S = 1.786 10-6 M F 0 is the fluorescence intensity of 1 + F. = 34.034 (N = 10) K = 3 S22

12. Plots of fluorescence intensity against time for 1 + F system upon addition of Cu 2+. Figure S21. Plots of fluorescence intensity against time for 1+ F upon addition of 1.0 equiv of molar ratio of Cu 2+ in ethanol-water (v/v = 1:1) solution. S23

13. The UV-vis spectra of 1, 1 + F, 1 + F + Cu 2+ and 1 + F + cations in ethanol-water solution. Figure S22. UV-vis spectra of 1 (25.0 µm), 1 + F (25.0 µm + 25.0 µm), and 1 + F + Cu 2+ (25.0 µm + 25.0 µm + 25.0 µm) in ethanol-water (1:1, v/v) solution. S24

Figure S23. UV-vis spectra of 1 + F (25.0 µm + 25.0 µm), and 1 + F + cations (25.0 µm + 25.0 µm + 125.0 µm) in ethanol-water (1:1, v/v) solution. S25

14. The changes of UV-vis spectra of 1 + F system upon addition of Cu 2+ in ethanol-water solution. Figure S24. UV-vis spectra of 1 + F (25.0 µm + 25.0 µm) upon the addition of Cu 2+ in ethanol-water (1:1, v/v) solution. S26

15. Fluorescence spectra of 1 and 1 + F in ethanol with different proportions of H 2 O. Figure S25. Fluorescence spectra of 1 (25.0 µm) and 1 (25.0 µm) + F (25.0 µm) in ethanol with different proportions of H 2 O (λ ex = 460 nm). S27

16. The detection limit of the probe 1 with F in ethanol. Figure S26. Plot of the intensity at 510 nm for a mixture of probe 1 (25.0 µm) and F in ethanol in the range 0 2.5 µm (λ ex = 460 nm). The result of the analysis as follows: Linear Equation: Y = 0.6818+33.945 X R = 0.99812 S = 3.3945 10 7 δ = ( F0 N 1 LOD = K δ / S = 1.958 10-8 M F 0 is the fluorescence intensity of 1. 2 F0 ) = 2.2161 (N = 10) K = 3 S28

17. The kinetic study of the response of F to 1 in ethanol at 25 C. Figure S27. The kinetic study of the response of 1 (25.0 µm) to F (250.0 µm) in ethanol at 25 o C under pseudo-first-order condition. S29

18. The UV-vis spectra of 1 with various anions in ethanol. 3.0 Absorbance 2.5 2.0 1.5 1.0 0.5 1+NaF 1+TBAF 1, 1+other anions 0.0 250 300 350 400 450 500 550 600 Wavelength (nm) Figure S28. UV-vis spectra of 1 (25.0 µm) with various anions (F, Cl, Br, I, AcO, ClO 4, CF 3 SO 3, NO 3, HSO 4, H 2 PO 4, BF 4, N 3, CN, SCN, and OH, 100.0 µm) in ethanol. S30

19. Fluorescence spectra of 2 and 2 + Cu 2+ in ethanol with different proportions of H 2 O. Figure S29. Fluorescence spectra of 2 (25.0 µm) and 2 (25.0 µm) + Cu 2+ (25.0 µm) in ethanol with different proportions of H 2 O (λ ex = 460 nm). S31

20. The ph dependence of the fluorescence intensity change of 2 and 2 + Cu 2+. Figure S30. Fluorescence intensity 2 (25.0 µm) in H 2 O solution of different ph in the absence (square) and presence (dot) of 25.0 µm Cu 2+, respectively (λ ex = 460 nm). S32

21. The detection limit of the 2 with Cu 2+ in water solution. Figure S31. Plot of the intensity at 533 nm for a mixture of 2 and Cu 2+ in PBS buffer (ph = 7.0) solution in the range 0 2.5 µm (λ ex = 460 nm). The result of the analysis as follows: Linear Equation: Y = 9.4182 X+137.1364 R = 0.9808 S = 9.418 10 6 δ = ( F0 1 LOD = K δ / S = 1.148 10-6 M F 0 is the fluorescence intensity of 2. N 2 F0 ) = 3.6055 (N = 10) K = 3 S33

22. Job s plot for 2 with Cu 2+ in water solution. Figure S32. Job s plot for 2 with Cu 2+ in PBS buffer (ph = 7.0) solution. S34

23. Benesi-Hildebrand plots of 2 with Cu 2+ in water solution. Figure S33. Benesi-Hildebrand plot of 2, assuming 1:1 stoichiometry for association between 2 and Cu 2+ in PBS buffer (ph = 7.0) solution. The binding constant was determined using a reported procedure for a 1:1 binding mode. The result of the analysis as follows: Equation: Y = A +B X Y = 6.604 1.295 X R = 0.9916 F F lg F F max = lg K + lg[cu min 2+ K =4.01 10 6 M -1 ] S35

24. Fluorescence spectral changes of 2 with various ions in water solution. Figure S34. Fluorescence spectral changes of 2 (25.0 µm) with various cations (125.0 µm) in PBS buffer (ph = 7.0) solution (λ ex = 460 nm). S36

Figure S35. Fluorescence spectral changes of 2 (25.0 µm) with various anions (125.0 µm) in PBS buffer (ph = 7.0) solution (λ ex = 460 nm). S37

25. Plots of fluorescence intensity against time for 2 upon addition of Cu 2+. Figure S36. Plots of fluorescence intensity against time for 2 upon addition of 1.0 equiv of molar ratio of Cu 2+ in PBS buffer (ph = 7.0) solution. S38

26. The changes of UV-vis spectra of 2 upon addition of various cations in water solution. Figure S37. UV-vis spectra of 2 (25.0 µm) upon the addition of various cations (125.0 µm) in PBS buffer (ph = 7.0) solution. S39

Figure S38. UV-vis spectra of 2 (25.0 µm) upon the addition of Cu 2+ in PBS buffer (ph = 7.0) solution. S40

27. ORTEP plot of 1. Figure S39. ORTEP plot of 1 with thermal ellipsoids at 50% probability. S41

28. Optimized structures, cartesian coordinates and computed total energies of 1, 2, 2 Cu 2+ and [2 Cu 2+ ]. Figure S40. Optimized structure of 1. B3LYP/6-31G * in gas phase, E = -1937.87315290 a. u. Charge = 0 Multiplicity = 1 C -2.640565-2.574567 0.213172 C -3.524355-1.522939-0.152377 C -2.939262-0.281597-0.497787 C -1.560936-0.097125-0.484595 C -0.669328-1.154005-0.128447 C -1.274721-2.384969 0.219561 N -4.888927-1.705310-0.175607 C -5.799607-0.679205-0.681337 C -5.511224-2.947151 0.287127 C -5.627988-4.023752-0.798821 C -6.255820 0.324640 0.385168 O -1.018000 1.093964-0.848644 C 0.745181-0.898334-0.171166 C 1.833209-1.655756 0.185766 C 3.204567-1.168975 0.029842 Si -1.349159 2.741403-0.589799 C 0.003329 3.571439-1.599496 C -3.033326 3.220800-1.305653 C -1.227181 3.151520 1.277124 C -1.339947 4.683154 1.456358 C -2.361812 2.471947 2.074924 C 0.131585 2.675077 1.834772 S42

N 4.247611-1.826528 0.437857 C 5.420076-1.144900 0.176962 C 5.268290 0.106076-0.471121 S 3.563968 0.405570-0.758045 C 6.705663-1.599725 0.506550 C 7.803346-0.809050 0.187526 C 7.638276 0.429188-0.455885 C 6.369912 0.899969-0.791931 C 1.727666-2.966037 0.753666 N 1.619586-4.030617 1.213205 H -3.023081-3.554860 0.466532 H -3.554205 0.561172-0.779058 H -0.646967-3.224363 0.490220 H -6.672500-1.193874-1.098622 H -5.329140-0.161277-1.523016 H -6.508709-2.690277 0.661270 H -4.957725-3.328149 1.150465 H -6.123201-4.916317-0.399325 H -4.642432-4.316145-1.174129 H -6.217189-3.660791-1.648432 H -6.942302 1.060069-0.050489 H -5.403903 0.859873 0.816398 H -6.779036-0.183471 1.202858 H 0.979287 0.088709-0.558957 H -0.065072 4.664170-1.549085 H 1.001896 3.279005-1.257416 H -0.082124 3.281288-2.653071 H -3.881624 2.863541-0.711977 H -3.142562 2.828298-2.323573 H -3.117009 4.313097-1.366857 H -1.280582 4.943476 2.522778 H -0.530710 5.220515 0.947320 H -2.293460 5.075837 1.080956 H -2.275705 2.723161 3.141805 H -2.327833 1.379901 1.992336 H -3.353426 2.804933 1.743915 H 0.977265 3.143898 1.317628 H 0.249181 1.588907 1.750785 H 0.216685 2.933624 2.899816 H 6.816030-2.558122 1.003731 H 8.803216-1.151856 0.438385 H 8.510287 1.030914-0.696501 H 6.247328 1.857479-1.289223 S43

Figure S41. Optimized structure of 2. B3LYP/6-31G(d) in gas phase, E = -1411.2470209 a. u. Charge = 0 Multiplicity = 1 C 3.423985-1.582912-0.201083 C 3.959462-0.269558-0.038411 C 3.044882 0.800933 0.092988 C 1.677755 0.565029 0.067405 C 1.144206-0.730613-0.094620 C 2.060512-1.792313-0.228328 N 5.319267-0.053007-0.007326 C 6.281727-1.119164-0.283951 C 5.883340 1.264707 0.288281 C 6.055814 2.158001-0.946492 C 6.686739-1.927868 0.954949 O 0.865649 1.640763 0.195245 C -0.271263-0.864401-0.109218 C -1.111373 0.209087 0.021323 C -2.559396 0.038949 0.006288 C -0.534693 1.568955 0.180004 C -4.878384-0.854114-0.083788 C -4.732701 0.545989 0.067303 C -6.137747-1.452174-0.145991 C -7.260012-0.630760-0.054567 C -7.128683 0.760116 0.096041 C -5.874482 1.355713 0.157655 N -1.105169 2.691967 0.306798 H 4.083231-2.437169-0.284224 H 3.369187 1.827664 0.194776 H 1.678006-2.803333-0.347311 H 5.879580-1.777738-1.060170 H 7.169591-0.649787-0.722444 S44

H 6.856456 1.101791 0.765323 H 5.261066 1.761048 1.039314 H 6.496181 3.120474-0.661601 H 5.095582 2.351217-1.434471 H 6.718091 1.687004-1.681671 H 7.423095-2.694367 0.686507 H 7.134919-1.279503 1.716071 H 5.821676-2.424216 1.405870 H -0.681646-1.864896-0.230200 H -6.244235-2.526450-0.262117 H -8.250071-1.075542-0.100607 H -8.020010 1.377144 0.164920 H -5.757174 2.428552 0.273299 H -2.117903 2.557202 0.287279 N -3.430020 1.001874 0.112823 S -3.294218-1.597040-0.166956 S45

Figure S42. Optimized structure of 2 Cu 2+ complex. B3LYP/6-311++G ** in gas phase, E = -3051.584308 a. u. Charge = 2 Multiplicity = 2 C -3.859007-1.755755 0.101219 C -4.363809-0.406310 0.033173 C -3.416506 0.662808-0.034616 C -2.082044 0.374715-0.027885 C -1.576484-0.945359 0.040720 C -2.521522-2.006053 0.100969 N -5.682682-0.163476 0.031250 C -6.697694-1.230774 0.187856 C -6.243956 1.196343-0.125303 C -6.427349 1.916621 1.213368 C -7.135507-1.828557-1.151673 O -1.203828 1.413331-0.084711 C -0.189708-1.126490 0.049139 C 0.722297-0.078849-0.006328 C 2.144525-0.388454 0.023120 C 0.152514 1.281796-0.091200 C 4.324915-1.567561 0.131323 C 4.388915-0.158483 0.000020 C 5.475717-2.346551 0.202794 C 6.694515-1.691861 0.139917 C 6.773628-0.288027 0.008203 C 5.636188 0.483814-0.062188 N 0.804089 2.385709-0.172564 H -4.544531-2.585666 0.134235 H -3.723619 1.694590-0.069922 H -2.164254-3.025971 0.144494 H -6.314429-1.991499 0.861945 S46

H -7.545383-0.766048 0.688149 H -7.205789 1.070577-0.618795 H -5.614507 1.764339-0.805208 H -6.887671 2.886518 1.028542 H -5.476442 2.078642 1.719844 H -7.081687 1.357926 1.881302 H -7.915949-2.565859-0.967016 H -7.544706-1.067649-1.815173 H -6.310023-2.323564-1.662041 H 0.172297-2.144087 0.102300 H 5.426517-3.420978 0.303049 H 7.607629-2.268218 0.192406 H 7.745510 0.182238-0.037482 H 5.695181 1.559335-0.163462 H 0.188284 3.193737-0.220339 N 3.164702 0.457932-0.055007 S 2.666834-2.070291 0.181979 Cu 2.746701 2.374015-0.205252 S47

Figure S43. Optimized structure of [2 Cu 2+ ] complex. B3LYP/6-31++G ** in gas phase, E = -3051.1706003 a. u. Charge = 2 Multiplicity = 2 C 3.830087-1.828268 0.240260 C 4.357461-0.493809 0.073684 C 3.427157 0.586834-0.074602 C 2.083246 0.318613-0.052402 C 1.552433-0.987567 0.112238 C 2.481781-2.056486 0.256152 O 1.224376 1.377430-0.194658 C -0.128775 1.257691-0.207072 C -0.712275-0.063585 0.047091 C 0.153127-1.142116 0.156098 C -2.147837-0.339783 0.096492 N -0.782807 2.340492-0.486939 S -3.408407 0.766308 0.797665 C -4.637308-0.432258 0.397847 C -3.991886-1.579031-0.142392 N -2.628533-1.484376-0.283052 C -6.008004-0.388941 0.615023 C -6.745634-1.521518 0.256289 C -6.127569-2.664194-0.289601 C -4.756753-2.706917-0.492775 N 5.686752-0.272187 0.055059 C 6.271790 1.064211-0.201877 C 6.683231-1.344316 0.293791 C 6.474199 1.874579 1.086348 C 7.095195-2.063400-0.998418 H 4.501409-2.667890 0.335582 H 3.750731 1.610585-0.184201 S48

H 2.105829-3.065676 0.376195 H -0.272828-2.127998 0.298143 H -0.162145 3.129321-0.657886 H -6.497243 0.477950 1.040696 H -7.819037-1.516445 0.403673 H -6.736534-3.520700-0.551012 H -4.265551-3.578221-0.907372 H 7.231098 0.886180-0.689823 H 5.647208 1.595858-0.918548 H 7.548121-0.856161 0.744948 H 6.290790-2.039047 1.034716 H 6.948701 2.824584 0.832378 H 5.526407 2.085443 1.585895 H 7.125650 1.352408 1.789588 H 7.864279-2.800277-0.758363 H 6.253029-2.583316-1.459451 H 7.513728-1.367591-1.728182 Cu -2.712553 2.477748-0.476582 Reference Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision E.01; Gaussian, Inc.: Wallingford, CT, 2004. S49

29. HOMO-LUMO energy levels and the molecular orbital plots of [2 Cu 2+ ]. Figure S44. HOMO-LUMO energy levels and the molecular orbital plots of [2 Cu 2+ ]. S50