Supporting Information To: Synthesis of a xylo-puromycin Analogue

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Divergent synthesis of various iminocyclitols from D-ribose

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supplementary information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information

Supporting Information

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Supporting Information

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Aminofluorination of Fluorinated Alkenes

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Electronic Supplementary Information

Supporting Information for

Supporting Information. Experimental section

Supporting Information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information. Experimental section

Supporting Information

Electronic Supplementary Information (ESI)

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Supporting Information For

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Supporting Information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Effect of uridine protecting groups on the diastereoselectivity

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Aqueous MW eco-friendly protocol for amino group protection.

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides

SUPPORTING INFORMATION

multicomponent synthesis of 5-amino-4-

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Supporting Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Supporting Information

Transcript:

Supporting Information To: Synthesis of a xylo-puromycin Analogue Benoît Y. Michel, Kollappillil S. Krishnakumar and Peter Strazewski* Laboratoire de Synthèse de Biomolécules, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR ), Université Claude Bernard Lyon 1, 9, Villeurbanne, FRACE. Tel: (+33) 7--3 E-mail: strazewski@univ-lyon1.fr Table of contents Pages General methods and experimental procedures for the synthesis of,, 9 and 10... MR spectra of:... 11...1 17...1,-di-n-butylformamidine dimethylacetal (distilled)...3 7... 31...3 0 9...1...9 10...7 1 Page 1

General Methods 1 H-MR spectra (300 and 00 MHz) were obtained from solutions in CDCl 3 and CD 3 D, with the residual protonated solvent signals as internal reference (7. ppm for CHCl 3, 3.31 ppm for CD HD). The chemical shifts δ H are given in ppm; the coupling constants J are given in Hertz (Hz); the signals are described as follows: ps. = pseudo, br. = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. 13 C-MR spectra (7 and 1 MHz) were measured in CDCl 3 ; δ C (central signal) = 7 ppm and in CD 3 D δ C (central signal) = 9. ppm. The assignments of 1 H- and 13 C-MR signals were achieved with the help of D/H exchange, CSY, HSQC, HMBC and DEPT experiments. Mass spectra (MS and HRMS) were obtained using Fast Atom Bombardment (FAB from CH Cl or H /MeH 9:1) and Electro Spray Ionization (ESI, from CH Cl or DMS). Thin Layer Chromatography (TLC) was performed on pre-coated silica gel F plates with fluorescent indicator. The compounds were visualized using UV light ( nm). Free amines were visualised on TLC plates by spraying with 0% ninhydrin solutions in ethanol, followed by heating. ucleosides were visualised on TLC plates by subsequent spraying with concentrated H S followed by % naphtoresorcinol (for the ribose intermediates) or phosphomolybdic acid solutions in ethanol, followed by heating. Column chromatography was performed with flash silica gel (10-3 µm). Page

Experimental procedures ',-Anhydro-adenosine (). To a suspension of adenosine 3 ( g, 1.7 mmol) in dry CH 3 C (30 ml) were sequentially added H /CH 3 C (1:9; ml, mmol), then α-acetoxyisobutyryl bromide (11. ml, 7 mmol) and stirring was continued at ambient temperature. A clear solution resulted after min (and adenine as a fine colorless precipitate began to separate shortly thereafter). After 1 h, saturated ahc 3 solution (0 ml) was added cautiously and the solution was extracted with EtAc ( x 0 ml). The combined organic phase was washed (brine), dried (MgS ), filtered, and evaporated to give a colorless solid foam, which was dissolved in dry MeH (10 ml) and stirred for 1 h with 0 ml of Dowex 1 x (H ) resin (previously exchanged against Cl, washed with dry MeH and thoroughly dried under oil pump vacuum). The resin was filtered and rinsed with MeH. Evaporation of the combined filtrate and crystallization of the residue (EtH) gave microcrystalline epoxide (. g, 91%). C 10 H 11 3 (9.7). R f (DCM/MeH 9:1) = 0.17. 1 H-MR (d -DMS, 300 MHz): δ H = 3. (dd, 1 H, J = 11.7 Hz, 3 J =.0 Hz, H A '), 3. (dd, 1 H, J = 11.7 Hz, 3 J =. Hz, H B '),.19 (t, 1 H, 3 J =.1 Hz, H'),.3 (d, 1 H, 3 J =. Hz, H),.7 (d, 1 H, 3 J =. Hz, H'),.09 (br. s, 1 H, H),.3 (s, 1 H, H), 7.3 (br. s, H, H ),.19 (s, 1 H, H),.3 (s, 1 H, H). 13 C-MR (d - DMS, 300 MHz): δ C = 7. (C'),.7 (C3 ), 0.9 (C'), 1.1 (C'),.0 (C), 11.7 (C) 139. (C), 19.1 (C), 1.7 (C), 1.0 (C). LRMS (ESI + ): m/z = 0.0 (calculated for [M+H] + : 0.1). ',-Anhydro-'--(tert-butyldiphenylsilyl)-adenosine(). TBDPSCl (3.3 ml, 3.7 g, 13.mmol) was added to epoxide (3. g, 1. mmol) in anhydrous pyridine ( ml), and the solution was stirred for 1 h at ambient temperature. H (3 ml) was added, stirring was continued for 30 min, and the volatiles were evaporated. The residue was partitioned (H /CHCl 3 ), and the organic phase was washed [(H, x 100 ml); Page 3

ahc 3 /H ; brine] and dried (MgS ). The volatiles were evaporated to give in almost quantitative yield, which was used in the next step without chromatography. C H 9 3 Si (7.3). R f (DCM/MeH 9:1) =0.70. 1 H-MR (CDCl 3, 300 MHz): δ H = 1.03 (s, 9 H, Si-C(CH 3 ) 3 ), 3.73 (dd, 1 H, J = 10. Hz, 3 J = 7., H A '), 3. (dd, 1 H, J = 10. Hz, 3 J =.3 Hz, H B '),.11 (d, 1 H, 3 J =.3 Hz, H),.0 (ps. t, 1 H, 3 J =.3, 7. Hz, H'),.0 (d, 1 H, 3 J =.3 Hz, H'),.01 (br. s, H, H ),.1 (s, 1 H, H), 7.9 7.3 (m, H, H-m-Ar & H-p-Ar), 7.3 7.1 (d, H, 3 J = 7. Hz, H-o-Ar), 7. (s, 1 H, H),.3 (s, 1 H, H). 13 C-MR (CDCl 3, 7 MHz): δ C = 19.0 (Si-C(CH 3 ) 3 ),.7 (3 C, Si-C(CH 3 ) 3 ), 7.9 (C'),.9 (C3 ), 3. (C'), 0.7 (C'), 3.9 (C), 119.7 (C), 17.7 ( C, C-m-Si-Ph), 19. ( C, C-p-Si-Ph), 13., 13. ( C, C-i-Si- Ph), 13.3 ( C, C-o-Si-Ph), 13.9 (C), 19.1 (C), 1.9 (C), 1.7 (C). LRMS (ESI + ): m/z =. (calculated for [M+H] + :.). 9-['--tert-Butyldiphenylsilyl---(α--fluorenylmethoxycarbonyl-p-methoxy-L-phenylalanyl)amido--deoxy-β-D-xylofuranos-1- yl]adenine (9). The procedure to obtain 9 (7 mg, 0% from 93.9 mg of 7) is the same as for. 1 H-MR (CDCl 3, 300 MHz): δ H = 0.9 (s, 9 H, Si-C(CH 3 ) 3 ),.79 (dd, 1 H, J = 13. Hz, 3 J =. Hz, Hβ1),.9 (dd, 1 H, J = 13. Hz, 3 J = 9.0 Hz, Hβ), 3.1 (s, 3 H, CH 3 ), 3. 3.9 (m, H, H A ', H B '),.0.10 (m, 3 H, H aliph. Fl., H', CH -Fl.),.13. (m, H, Hα, CH -Fl.),.37. (m, 1 H, H'),.0 (d, 1 H, 3 J =. Hz, H),.7 (d, 1 H, 3 J =. Hz, H),. (d, H, 3 J =. Hz, H-o-Ph(Me)),.9 (d, H, 3 J =. Hz, H-m-Ph(Me)), 7.11 (ps. t, H, 3 J = 7., 7. Hz, H-m -Fl.), 7.19 7. (m, H, H-m-Si-Ph, H-p-Si-Ph), 7.31 7.39 (m, H, H-p 3 -Fl.), 7. 7. (m, H, H-o 1 -Fl., H-o-Si-Ph), 7.7 (d, H, 3 J = 7. Hz, H-m -Fl.),.11 (s, 1 H, H),.1 (s, 1 H, H). 13 C-MR (CD 3 D, 7 MHz): δ C =. (3 C, Si-C(CH 3 ) 3 ), 37.7 (Cβ), 7. (CH aliph. Fl.),.7 (Me), 7. (C),. (Cα),.3 (C'), 7. (CH -Fl.), 1. (C'),.0 (C'), 93. (C), 113. ( C, C-o-Ph(Me)), 119.9 ( C, C-m -Fl.), 1.0 ( C, C-o 1 -Fl.), 1.7 (C), 1 ( C, C-m -Fl.), 17.3 ( C, C-p 3 -Fl.), 17.9 ( C, C-m-Si-Ph), 1.0 (C-p- Page

Ph(Me)), 19. ( C, C-p-Si-Ph), 130. ( C, C-m-Ph(Me)), 13., 13.9 ( C, C-o-Si-Ph), 11. (C), 13.0 (C), HRMS (ESI + ): m/z = 90.39 (calculated for [M+H] + : 90.3). 9-(-Bromo-'--tert-butyldiphenylsilyl--deoxy-β-D-xylofuranos-1-yl)adenine (10). Et 3 (1 µl,.0 mg, 0.3 mmol) and Me BBr/CH Cl (0.33 M, 7. ml,. mmol) were added to a cold (-7 C) solution of the protected epoxide (0 mg, 1. mmol) in CH Cl (3 ml). Stirring was continued for 1 h, and the reaction mixture was poured into a stirred solution of aqueous saturated ahc 3 /H. The organic layer was separated, and the aqueous layer was extracted (CH Cl ). The combined organic phase was washed (brine) and dried (MgS ). Evaporation of volatiles gave a white solid (1mg, 9%) that was crystallized (THF/MeC) to give the bromo product (1 mg, 9%). C H 30 Br 3 Si (.). Mp (uncorr.): 09 11 C. R f (EtAc/CyHex :1) = 0.0. 1 H-MR (d -DMS, 300 MHz): δ H = 1.00 (s, 9 H, Si-C(CH 3 ) 3 ), 3.9 (dd, 1 H, J = 11.0 Hz, 3 J =. H A '),.03 (dd, 1 H, J = 11.0 Hz, 3 J =. Hz, H B '),.3 (dd, 1 H, 3 J =.,. Hz, H'),.0 (dd, 1 H, 3 J =.1,.3 Hz, H),.9 (q ddd, 1 H, 3 J =.1,.9 Hz, H'),.9 (d, 1 H, 3 J = 3.9 Hz, H),. (d, 1 H, 3 J =.1 Hz, H), 7.33 (br. s, H, H ), 7.3 7.7 (m, H, H-m-Ar & H-p-Ar), 7.3 7.7 (m, H, H-o-Ar),.09 (s, 1 H, H),.1 (s, 1 H, H). 13 C-MR (d -DMS, 7 MHz): δ C = 1. (Si-C(CH 3 ) 3 ),. (3 C, Si-C(CH 3 ) 3 ), 3.1 (C),. (C'), 79.9 (C'), 0.0 (C'),. (C), 11.9 (C), 17.9, 1.0 ( C, C-m-Si-Ph), 130.0 ( C, C-p-Si-Ph), 13., 13.7 ( C, C-i-Si-Ph), 13.0, 13.1 ( C, C-o-Si-Ph), 13.3 (C), 19.3 (C), 1. (C), 1.0 (C). LRMS (ESI + ): m/z = 70.1 (calculated for [M+H] + : 70.1). Page

3. 3.7 3. 3.3 3.7.7..33..11.19.177 3.0.0.09.00 1 H MR H' H H' ppm (t1).0 ' DMS ' ' H' A H' B H H Page.13.09 1.00 H 0.9.0. H 1.03 7.30 H.1.17.3 H H.0 0.9 1.03

ppm (t1) 10 100 1.71 139..0 1.13 0.3.71 7.71 C C DEPT MR H ' ' ' H C C' C' C C' Page 7

ppm (t1) 10 100 0 1.0 1.71 19.119 139.3 11.9.0 1.13 0..71 7.71 39.9 39.70 39.30 39.1 3.7 C C C C 13 C MR H ' ' C ' H C C' C' C C' DMS Page

3.0.0.0.0 CSY H ' ' ' H.0 ppm (t1 ppm (t).0.0.0.0 Page 9

0 100 HSQC H ' ' ' H 10 ppm (t1 ppm (t).0.0.0.0 3.0 Page 10

0 100 HMBC H ' ' ' H 10 ppm (t1 ppm (t).0.0.0.0 Page 11

1.0 t Bu H ' 9.0 1.0.0 Page 1 3.71 3.7 3.7 3.70 3.3 3.9 3.7 3.3..07.00.33.11.110 1 H MR TBDPS H' H' ' ' H H' A H' B.0 0.9.01 3.0.0.0.0.1.00 H H 1.9 1.00 7.10 7. 7.3 7.3 7.3 7.371 7.33 7.337 7.31. 7.7 7.77 7.7 7.7 CHCl 3 H H x H-m-Ph x H-p-Ph x H-o-Ph.3.03 1. 1.0 1.03.0 ppm (t1)

ppm (t1) 10 100 0 1.91 13.93 13.7 13.71 19.33 19. 17.701 17.7 3.93 0.97 7 3.19.93 7.7.93. C x H-m-Ph x H-p-Ph x H-o-Ph C C DEPT MR C' TBDPS ' ' C C' CHCl 3 C' ' H t Bu Page 13

ppm (t1) 10 100 0 1.71 1.90 19.0 13.93 13. 13.77 13.70 13.7 13.39 19.3 19.1 17.700 17. 17.7 119.707 3.93 0.9 77.3 700 7.7 3.19.91 7..93 19.001 C C C x C-m-Ph x C-p-Ph x C-o-Ph x C-i-Ph C C 13 C MR TBDPS ' ' CDCl 3 ' H C C' C' C C' t Bu C- t Bu Page 1

1.0.0 3.0.0.0 CSY TBDPS ' ' ' H.0.0 ppm (t1.0.0.0.0 3.0.0 1.0 Page 1

0 100 HSQC TBDPS ' ' ' H 10 ppm (t1.0 ppm (t).0.0.0 3.0.0 1.0 Page 1

0 100 HMBC TBDPS ' ' ' H 10 ppm (t1.0 ppm (t).0.0.0 3.0.0 1.0 Page 17

1.3 1.00 0.99 0.91 0.97 0 9 1.30 3.07.0.00.9.07 1.971 3.0 3.7.3.30.1.01.09..7.3.3.31.00 3.9 3.971 3.901 3.7 3. 3.0.91.99.3.3 7.7 7. 7.33 7.1 7.3 7.3 7.11 7.3 7.31 7.33.1.13 x H-m-Ph x H-p-Ph H t Bu H' x H-o-Ph 1 H MR 3 H H TBDPS ' H ' H H H ' H DMS EtAc H' A H' B H H' EtAc 9.01 1. 1.31.10 1.0 1.00 1.00..30 0.97 0.99 Page 1 alkane 1.0.0.0.0.0 3.0.0 ppm (t1)

ppm (t1) 10 100 0 1.71 13.0 13.101 13.007 19.979 17.91 17.7 79.3 71.007.99 39.9.17 C x C-o-Ph x C-m-Ph x C-p-Ph C C C' DEPT MR C' C TBDPS ' ' 3 C' ' H DMS H t Bu Page 19

ppm (t1) 10 100 0 1.031 1.7 19.37 13. 13.101 13.009 13.71 13.3 19.979 17.93 17.77 11.7 7.39 79.3 71.007.99 0. 39.9 39.70 39.30 39.11 3.73 3.9.17 1.73 C C C x C-o-Ph x C-m-Ph x C-i-Ph x C-p-Ph C C 13 C MR TBDPS ' ' 3 C ' H C' C' H C C' DMS t Bu C- t Bu Page 0

CSY TBDPS ' ' 3 ' H H 1000 00 pt (t1) pt (t) 00 1000 Page 1

0 100 HSQC TBDPS ' ' 3 ' H H 10 ppm (t1 ppm (t).0.0.0.0 3.0.0 1.0 Page

0.9 0.9 1. 0.91 1.73 1.97 1.31 1.31 1.37 1.03 1.7.3..11 1 H MR (CH CH CH CH 3 ) Me Me (CH CH CH CH 3 ).9...3.0.00 1.0 1.00 3.99.3.00 3.00 3.0 Page 3 (CH CH CH CH 3 ) (CH CH CH CH 3 ) xme.07.0 RCH(Me) 1.00 ppm (t1)

11.1 3.9 0 30.937 0. 13. 13 C MR (CH CH CH CH 3 ) (CH CH CH CH 3 ) RCH(Me) Me Me (CH CH CH CH 3 ) (CH CH CH CH 3 ) x Me CDCl 3 ppm (t1) 100 0 Page

1 0 371 3 07 99 97 97 3.7 3.73 3.77 3.737 3.71 3. 3. 3.37 3.1 3.19 3.39 3.370 1.90 1. 1.0 1.31 1.1 1.3 1.07 1.39 1.390 1.30 3.9 3.90 3.93 3.91 3.900 3. 3.3 3..7.1.3.1.390.37.3.91.901..11.797.7 7.39 7.390 7.39 7.3 7.3 9.00.0 7. 7.9 7. 7. 7.3 7.1 Bu H H t Bu 7 1 H MR (CH CH CH CH 3 ) x H-o-Ph x H-m-Ph x H-p-Ph CH-dbf 3 TBDPS ' ' ' (CH CH CH CH 3 ) H CHCl 3 (CH CH CH CH 3 ) H (CH CH CH CH 3 ) H' A H' B H H' H' TMS H 1..17..3.1. 1.09 1.0 0.9 1.0 0.0 7.1.0 0.99 1.00 1.09.0 0.0 ppm (t1) Page

ppm (t1) 10 100 0 1.77 1.0 139.3 13.31 13.0 13.3 19. 17.1 17.70 1.9. 30.9 9.1. 0.11 19.709 13. 13.7 90.3 1.333 79.70.1.13 x C-o-Ph x C-m-Ph x C-p-Ph CH-dbf C C 7 DEPT MR TBDPS 3 ' ' ' H Bu t Bu (CH CH CH CH 3 ) C C' C' C C' (CH CH CH CH 3 ) (CH CH CH CH 3 ) (CH CH CH CH 3 ) Page

.1.13 1.9.3 30.9 9.1. 0.139 19.70 19.0 13. 13. t Bu 7 13 C MR (1) TBDPS ' ' 3 ' H Bu (CH CH CH CH 3 ) (CH CH CH CH 3 ) (CH CH CH CH 3 ) C- t Bu C C' (CH CH CH CH 3 ) 70 ppm (t1) 0 0 0 30 0 Page 7

10 ppm (t1) 10 10 130 10 110 100 90 0 19.91 1.7 1.01 10.19 139.30 13.30 13.79 13.7 13.7 19.00 17.71 1.77 90.3 1.33 79.70 77. 700 7.77 CH-dbf C x C-o-Ph x C-m-Ph x C-p-Ph C C C x C-i-Ph C 7 13 C MR () TBDPS 3 ' ' H ' Bu C CDCl 3 C' C' Page

1.0.0 3.0.0.0 Bu.0 7 CSY TBDPS ' ' 3 ' H.0 9.0 ppm (t1 ppm (t) 9.0.0.0.0.0 3.0.0 1.0 Page 9

0 7 HSQC TBDPS ' ' 3 ' H Bu 100 10 ppm (t1 ppm (t) 9.0.0.0.0.0 3.0.0 1.0 Page 30

0 100 7 HMBC TBDPS ' ' 3 ' H Bu 10 ppm (t1 ppm (t) 9.0.0.0.0.0 3.0.0 1.0 Page 31

0.93 0.99 0.9 1.33 1.7 1. 1.0 1.39 1.3 1.37 1.37 1.9 1.7 1. 1.79 1.70.7..9.91.901 3.3 3.10 3.3 3.09 3.713 3.739 3.73 3.91 3.99 3.90 3.93.130.10.9.173.7.3.97.1.0.79.79.73.7.71.70..3 t Bu Page 3 (CH Me CH CH CH 3 ) (CH CH CH CH 3 ) 1 H MR (1) 3 1 H (CHCHCHCH3) Me (CH CH CH CH 3 ) β dbf α H H ' ' ' H RC()CH Fluorenyl H-aliph. Fl. H' CH α H' H' A H β1 H β H' B H 1.0..0 1.91 1..91.91 1.01 1.1 1.77.90 1.00 1.0.0.0 3.0.0 ppm (t1) alkane

..3..77.73 1 H MR () β Me H dbf α H H H HFmoc H 1.9 0.93.0.1 7.199 07 7..91. 7.33 7.319 7.300 7.9 7. 7.7 7. 1.9 1.9.0 7.3 7.377 11.33 7.9 7.3 0.0 7.70 7. 7.7 7. 7.7 7.1 7.7.30. 7.97 7.73. 1 3 ' ' ' H Page 33 x H-m-Ph(Si) x H-p-Ph(Si) x H-m -Fl x H-p 3 -Fl x H-m-Ph(Me) x H-o-Ph(Me) x H-o-Ph(Si) x H-o 1 -Fl H x H-m -Fl H -H.0 0. 1.1.0 9.017 CH-dbf 0.9 9.0 ppm (t1)

ppm (t1) 90 0 70 0 0 0 30 0 10 91.7 0. 0...39 7.173.703.03.00 7.101.3 3. 30.91 9.1.70 0.1 19.737 13.90 13. C 3 1 C' C' H ' ' DEPT MR (1) H β Me α dbf H H ' Me CH Fluorenyl C CH α C' RC()CH Fluorenyl (CH CH CH CH 3 ) t Bu (CH CH CH CH 3 ) CH β (CH CH CH CH 3 ) (CH CH CH CH 3 ) alkane Page 3

1.37 19.3 11.31 13.7 130.310 19.7 17.3 17. 17.1 11 1.0 119.91 119.9 113.0 3 1 DEPT MR () x C-o-Ph(Si) x C-p-Ph(Si) x C-m-Ph(Si) x C-p 3 -Fl H H ' ' α β H ' H dbf Me x C-m-Ph(Me) x C-m -Fl x C-o-Ph(Me) x C-m -Fl x C-o 1 -Fl CH-dbf C C 10 ppm (t1) 10 10 130 10 110 Page 3

90 ppm (t1) 0 0 70 0 0 0 30 91..700 0.1 19.73 1.99 13.90 13.1 0. 0. 77. 7 700 7.77..39 7.17.70.03.00 7.10.3 3.31 30.919 9. 9.0 C t Bu (CH CH CH CH 3 ) (CH CH CH CH 3 ) C- t Bu CDCl 3 C' C' 3 1 13 C MR (1) RC()CH Fluorenyl Me H H ' ' α β H (CH CH CH CH 3 ) CH Fluorenyl ' H dbf Me (CH CH CH CH 3 ) C' CH α C CH β alkane Page 3

ppm (t1) 170 10 10 10 130 10 110 171.373 1.9 1.99 1.3 1.33 11.1 10.0 13.7 13.3 11.7 13. 13.71 13.0 130.317 19.771 17.779 17. 17. 119 1.0 1.03 119.91 113.11 3 1 H β 13 C MR () H ' ' α H H ' C-i-Ph(Me) C CH-dbf -HC()R RC()CH Fluorenyl Me dbf C C x C-o-Ph(Si) x C-m-Ph(Si) x C-m-Ph(Me) x C-p-Ph(Si) x C-p 3 -Fl C x C-o -Fl x C-m -Fl x C-o-Ph(Me) C-p-Ph(Me) x C-m -Fl x C-o 1 -Fl x C-i-Ph(Si) x C-i-Fl C Page 37

ppm (t) 1.0.0 3.0.0.0.0.0 9.0 1.0.0 3.0.0.0.0.0 9.0 ppm (t1 CSY ' ' ' dbf H H H Me H 1 3 α β Page 3

ppm (t) 1.0.0 3.0.0.0.0.0 9.0 0 100 10 ppm (t1 HSQC ' ' ' dbf H H H Me H 1 3 α β Page 39

ppm (t) 1.0.0 3.0.0.0.0.0 9.0 0 100 10 ppm (t1 HMBC ' ' ' dbf H H H Me H 1 3 α β Page 0

0.93 0.99 t Bu 1.7 9.3.0 1.0 alkane Page 1 3.1 3.31 3.31 3.310 3.30 3.99.9 3.9 3.930 3.91 3.90 3.900 3.79 3.3.09.090.00.0.0 3.9.9.1.179..3.1.790.7..10.0.0.90..17.03.39.3 Me CD 3 H 9 1 H MR (1) EtAc CD HD H H ' ' H ' H Me H 1 3 α β H' H-aliph. Fl. H' H H' B H' A CH α H β1 H β RC()CH Fl..13 3.0 0.9. 1.3.93 1.9.1 1.0.0.0 3.0.71.733 H 0.97 ppm (t1)

.0.33.0 7.133 7.109.97.9 7.193 7.1 7. 7.3 7.13 7.31 7.313 7.3 7.33 7.33 9 1 H MR () 1 3 β x H-m-Ph(Si) x H-p-Ph(Si) Me H H α ppm (t1) H H ' ' ' H x H-o-Ph(Me) x H-m -Fl H x H-m-Ph(Me) 0..00..3 0.0 7.11 7.73 7. 7. 7.1 7.37 9 7.3 7.379 7.3.00.073 7. 7.9 7.7 7.70 7.771 7.7 7.9 CHCl 3 x H-p 3 -Fl x H-o-Ph(Si) x H-o 1 -Fl x H-m -Fl 1..1.110.0.1 H H 3.3 Page

ppm (t1) 90 0 0 70 0 0 30 9.7.3 3.9 3.3..1.93.33 0.077 9.19 9.31.0.97.9 0.93.79 7.7 C 3 1 9 DEPT MR (1) Me C' C' H β Me α H H ' ' H H ' CD HD CH Fluorenyl CH α C CH β RC()CH Fluorenyl C' t Bu Page 3

ppm (t1) 10 10 110 130 10 13.03 11.9 113.79 13.9 13.7 13. 13.1 130.09 19.9 19.1 17.907 17.7 17. 1. 10.0 3 1 C 9 DEPT MR () H H β Me α H ' ' H H ' C x C-m-Ph(Si) x C-p 3 -Fl x C-o-Ph(Me) x C-o-Ph(Si) x C-m-Ph(Me) x C-m -Fl x C-p-Ph(Si) x C-m -Fl x C-o 1 -Fl Page

ppm (t1) 90 0 70 0 0 0 30 93.3.13.037 1.397 7.171.39 3.091.3.7.09 7.. 9.00 7.3 37.707.0 C RC()CH Fluorenyl C' C' C' Me CH α C 3 1 9 13 C MR (1) H H ' ' β Me α H H H ' CH Fluorenyl CD 3 D CH β t Bu Page

13.0 11.11 10.9 13.7 13.71 130.0 19.10 1.00 17.907 17.9 17. 17. 1.9 10.0 113.79 x C-m-Ph(Si) 3 1 9 13 C MR () H β α H H ' ' ' H Me H x C-o-Ph(Si) x C-m-Ph(Me) x C-p-Ph(Si) x C-p 3 -Fl x C-m -Fl x C-m -Fl C-p-Ph(Me) x C-o-Ph(Me) C x C-o 1 -Fl C 1.0 ppm (t1) 10.0 1.0 10.0 13.0 130.0 1.0 10.0 11.0 Page

ppm (t) 1.0.0 3.0.0.0.0.0 1.0.0 3.0.0.0.0.0 ppm (t1 9 CSY ' ' ' H H H H Me H 1 3 α β Page 7

0 3 1 9 HSQC 100 H β α H H ' ' ' H Me H 10 ppm (t1.0 ppm (t).0.0.0 3.0.0 1.0 Page

3.00.979.9.93.913.9. H β1 H β.10 3.00 Page 9 3.39 3.31 3.31 3.310 3.30 3.99 3.01 3.3 3.1 3.73 3.1 3. 3.7 Me CD HD CH 3 D H' A 1.09 3. 3.0 3.7 3.73 3.73 3.77.31.37.33 1 H MR (1) β Me H H.00 ppm (t1) α H' B CH α.3.00.39.31 H' 1.09.10.0.7.0.7.0.0. H' H 1.00 1.0 CD 3H H H ' ' ' H EtAc

.0.17 7.1 9.70.711.797.71 1 H MR () H H x H-m-Ph(Me) x H-o-Ph(Me) H H ' ' α β H ' H Me H H 1.0.00.13.1 ppm (t1).00 0.0.00 Page 0

ppm (t1) 10 100 0 13.31 1.33 131.71 11.99 0.907 9.01 1.3 79.3.0 7.73.3 9.333 C C x C-m-Ph(Me) x C-m-Ph(Me) DEPT MR H β α H H ' C' ' Me C C' ' H Me H CH α C CD HD CH β C' Page 1

ppm (t1) 90 0 70 0 0 0 9.00 1.0 79.3.0 7.7.37 9.1 9.391 9.1 9.00.1.709.39 0.90 C' C C' 13 C MR (1) H β α H ' ' H H ' Me H C' CH α Me C CD3D CH β Page

10.31 17.71 13.33 19.3 1.33 131.71 19.00 11. 11.00 13 C MR () C H H ' ' α β H C ' H Me H x C-m-Ph(Me) x C-o-Ph(Me) C-i-Ph(Me) C C C-p-Ph(Me) C 10 ppm (t1) 10 10 130 10 Page 3

H H ' ' α β H ' H Me H CSY.0 3.0.0.0.0.0 ppm (t1 ppm (t).0.0.0.0 3.0 Page

0 H H ' ' HSQC α β H ' H Me H 100 ppm (t1.0 ppm (t).0.0.0 3.0 Page

0 H H ' ' α β H ' H HMBC Me H 100 10 ppm (t1.0 ppm (t).0.0.0 3.0 Page

1.001 t Bu 9.3 1.0 Page 7 3.33.1.0.00.9. 3.0.9.909.97.99.93.99.0.0.9.9.1..017.007 3.990.1.09 7.70 7. 7.9 7. 7. 7.3 7.33 7. 7.7 7. 7.1 7.3 7. 7. 7.1 7.30 7.37 7.31 7.330.9.3 H 10 1 H MR H H x H-m-Ph x H-p-Ph TBDPS Br H ' x H-o-Ph ' ' H H H H H' A DMS H' B H' H H'.10 1.09 1.01 1.0 1.01 1.00 1.93..1 0.9 0.99.0.0.0.0 3.0.0 ppm (t1)

ppm (t1) 10 100 0 1.39 13.39 13.13 13.0 130.0 17.99 17.90. 79.93 79.7. 3.1.3 C x C-o-Ph x C-m-Ph x C-p-Ph C 10 DEPT MR TBDPS Br C C' C' ' ' C' ' H H C t Bu Page

ppm (t1) 10 100 0 1.0 1.39 19.71 13.37 13.13 13.03 13.1 13. 130.0 17.993 17.90 11.9. 79.9 79.. 3.1 0. 39.9 39.70 39.30 39.1 3.73 3.9. 1.00 C C C x C-m-Ph x C-o-Ph x C-p-Ph x C-i-Ph C C 10 13 C MR TBDPS Br ' ' C C' C' ' H C' H C DMS t Bu C- t Bu Page 9

10 CSY TBDPS ' ' Br ' H H 1.0.0 3.0.0.0.0.0 ppm (t1.0 ppm (t).0.0.0 3.0.0 1.0 Page 0

0 0 10 HSQC TBDPS ' ' Br ' H H 100 10 ppm (t1.0 ppm (t).0.0.0 3.0.0 1.0 Page 1