The Significance of Thermal Analysis in the Development of Teaching Materials for Chemistry Education

Σχετικά έγγραφα
Temperature Change of Orientation Function of Polymer Crystals Evaluated by the Simultaneous DSC-XRD and DSC-FTIR Methods

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

College of Life Science, Dalian Nationalities University, Dalian , PR China.

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Conductivity Logging for Thermal Spring Well

Supporting Information

Available online at shd.org.rs/jscs/

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

4, Cu( II), Zn( II)

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Supporting Information. Experimental section

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

ΠΑΡΑΣΚΕΥΗ ΝΑΝΟΣΥΝΘΕΤΩΝ ΒΙΟΔΡΑΣΤΙΚΟΥ ΓΥΑΛΙΟΥ/ΠΟΛΥ(D,L-ΓΑΛΑΚΤΙΚΟΥ ΟΞΕΟΣ) ΚΑΙ IN- VITRO ΜΕΛΕΤΗ ΤΗΣ ΒΙΟΣΥΜΒΑΤΟΤΗΤΑΣ

N 2 O 15 N NH + NH 3 Rittenberg mg mmol L - 1 CuSO mg. 10 mol L. Pre-Concentration device PreCon

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting Information

Complex Formation of Large-ring Cyclodextrins with Iodine in Aqueous Solution as Revealed by Isothermal Titration Calorimetry

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ

Electronic Supplementary Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

of the methanol-dimethylamine complex

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

ICT use and literature courses in secondary Education: possibilities and limitations

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Supporting Information

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

By Futoshi Nagata, Katsuya Inoue, Kozo Shinoda, Shigeru Suzuki and Yoshio Waseda

Το Η 2 διότι έχει το μικρότερο Mr επομένως τα περισσότερα mol ή V=αx22,4/Mr V ( H2) =11,2α...

The Free Internet Journal for Organic Chemistry

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Table of Contents 1 Supplementary Data MCD

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene


REDOX (2) pe as a master variable. C. P. Huang University of Delaware CIEG 632

High Speed, Low Loss Multi-layer Materials

16 2 Vol. 16 No ELECTROCHEMISTRY May CO DSC200PC NETZSCH. min min 2. 1

100 khz 45 khz 28 khz

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

ΟΝΟΜΑΣΙΑ F - HF Υδροφθόριο S 2- H 2 S Υδρόθειο Cl - HCl Υδροχλώριο OH - H 2 O Οξείδιο του Υδρογόνου (Νερό) NO 3 HNO 3. Νιτρικό οξύ SO 3 H 2 SO 3

Γεωπονικό Πανεπιςτήμιο Αθηνών Τμήμα Αξιοποίηςησ Φυςικών Πόρων και Γεωργικήσ Μηχανικήσ

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

Selective mono reduction of bisphosphine

Electronic Supplementary Information

Εύη Καραγιαννίδου Χημικός Α.Π.Θ. ΟΙ ΕΠΟΞΕΙΔΙΚΕΣ ΚΟΛΛΕΣ ΣΤΗΝ ΑΠΟΚΑΤΑΣΤΑΣΗ ΕΡΓΩΝ ΤΕΧΝΗΣ ΑΠΟ ΓΥΑΛΙ ή ΚΕΡΑΜΙΚΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supplementary Information

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Nguyen Hien Trang* **

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

SUPPORTING INFORMATION

Electronic Supplementary Information (ESI)

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΜΕ ΧΡΗΣΗ ΤΟΥ ASPEN HYSYS: ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΕΡΟΠΟΡΙΚΗ ΒΙΟΜΗΧΑΝΙΑ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Supporting Information. Experimental section

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Supporting Information

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Finite Field Problems: Solutions

Development of a basic motion analysis system using a sensor KINECT

Electronic Supplementary Information

Data Sheet High Reliability Glass Epoxy Multi-layer Materials (High Tg & Low CTE type) Laminate R-1755V Prepreg R-1650V

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

Table of contents. 1. Introduction... 4

MSM Men who have Sex with Men HIV -

2. Chemical Thermodynamics and Energetics - I

Transcript:

@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@ @?h@?e @?h@?@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @?@?f@?@?@? @?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@? @?@?f@?@ @?@?@@@?@?@?@? @@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@? @?@?@@@?@?@?@? @?e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e? @?@?@@@?@?@?@? @?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@? @?@?@@@?@?@ @?@?f@?@?@? @?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@? @?@?f@?@ @@? @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?@@@@@@@? @?h@?e @?h@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @?h@?@h?@?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?@@@@@@@?@@ @?@?f@?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@?@?@f?@?@ @?@?@@@?@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@?@?@@@?@?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@??@ @?@?@@@?@?@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@?@@@?@?@ @?@?f@?@?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@?@f?@?@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@? @?h@?@h?@ @@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ Netsu Sokutei 31 3 108-116 2004 5 10 2004 6 24 The Significance of Thermal Analysis in the Development of Teaching Materials for Chemistry Education - As Exemplified by the Precipitation Reactions of Zinc Salts and their Thermal Decompositions - Haruhiko Tanaka, Yoshinobu Matsuda, Nobuyoshi Koga, and Yoshihiro Furukawa (Received May 10, 2004; Accepted June 24, 2004) Thermoanalytical studies of reactions involving basic zinc salts were made as an example of application of thermal analysis to the fundamental research on developing teaching materials for chemistry education. The studies were complemented by ph titrimetry, thermometric titrimetry, chemical analysis, IR spectrometry, and X-ray diffractometry. On the basis of the results, the possibility was suggested that some investigative teaching materials are developed by introducing the precipitation reactions and thermal decomposition of the basic zinc salts into chemistry courses at a secondary education level. It was proposed that the thermoanalytical measurements for the basic zinc salts applied in the present study are also utilized successfully as teaching materials for educating thermal analysis at universities and colleges. 1) * 39 2003 11 13 15 p.136. III II Fe 3O 4 X TG Fe 2O 3 Fe 3O 4 Fe 2O 3 2) 2004 The Japan Society of Calorimetry and Thermal Analysis. 108

3) 4-7) II 8-12) II II 13) II II 14,15) II II 16-24) II TG 25-28) Table 1 Reactions for the precipitation from solutions. Reaction Zinc salt Titrant solution t / Titration speed solution / ml min 1 I 0.1M-ZnSO 4 0.2M-NaOH 25 0.5 II 0.1M-Zn(NO 3) 2 0.2M-NaOH 25 0.5 III 0.1M-ZnSO 4 0.1M-Na 2CO 3 25 0.5 IV 0.1M-Zn(NO 3) 2 0.1M-Na 2CO 3 25 0.5 *1M 1 mol l 1. Table 1 I IV 100 ml ph ph I 0.5M- ZnSO 4 20 ml 1M-NaOH 0.36 ml 29) 30) 0.1M-ZnCl 2 500 ml 0.2M-NaOH 500 ml 6M-NH 3 X XRD IRTG-DTA XOedta Zn 2 XRD RINT-2200 Cu-K α, 40 kv, 109

ph ph n(oh ) / n(zn 2 ) n(co 3 2 ) / n(zn 2 ) Fig.1 Typical ph titration curves for Reactions I and II, together with a thermometric titration curve for Reaction I. Fig.2 Typical ph titration curves for Reactions III and IV. 20 ma Shimadzu FT-IR8100 KBr IR 10 mg 10 TG-DTA III IV IIJIMA LX-720 NTK HT20 TG-DTA TG-DTA- EGA Fig.1ZnSO 4 Zn(NO 3) 2 NaOH I II ph ZnSO 4 NaOH I OH /Zn 2 1.5 Zn 2 :OH 2:3 Fig.1 Zn(NO 3) 2 NaOH II OH /Zn 2 2.0 ZnSO 4 Zn(NO 3) 2 ph Fig.2 ZnSO 4 Zn(NO 3) 2 Na 2CO 3 III IV ph III IV ph CO 2 3 /Zn 2 1.0 Na 2CO 3 Table 2 ph I Zn 2 :SO 2 4 4:1 Zn 4(OH) 6SO 4 4H 2O II Na 2CO 3 III IV ZnSO 4 Zn 2 Zn 2 ph Zn 5(CO 3) 2(OH) 6 Zn 4CO 3(OH) 6 H 2O Zn 2 III IV [Zn(NH 3) 4] 2 Zn 2 Zn(OH) 2 Fig.3 IR I 1134 604 cm 1 SO 2 4 Fig.3(a) 3303 cm 1 O-H OH 1633 cm 1 H-O-H 110

Table 2 Chemical analysis of the precipitates yielded according to Reactions I IV and from [Zn(NH 3) 4] 2 solution, together with calculated values for the typical zinc salts. Precipitate or typical zinc salt Content / wt % Zn 2 SO 2 4 NO 3 precipitate yielded according to Reaction I 49.6 0.4 18.4 0.1 precipitate yielded according to Reaction II 51 61 0.1 0.3 Not detected precipitate yielded according to Reaction III 58.3 0.3 0.4 0.1 precipitate yielded according to Reaction IV 58.9 0.4 Not detected precipitate yielded from [Zn(NH 3) 4] 2 solution 64.7 0.5 Zn(OH) 2 (FW 99.40) 65.8* Zn 4(OH) 6SO 4 4H 2O (FW 531.65) 49.2* 18.1* ZnCO 3 (FW 125.40) 52.2* Zn 5(CO 3) 2(OH) 6 (FW 549.00) 59.6* Zn 4CO 3 (OH) 6 H 2O (FW 441.60) 59.2* * Calculated values. Transmittance Intensity (a.u.) Fig.3 ν ~ / cm 1 Typical FTIR spectra for the precipitates. 2θ (Cu-K α) / deg II IR 1506 1393 cm 1 ν 3 31) Fig.3(b)[Zn(NH 3) 4] 2 Fig.3(c) Na 2CO 3 III IV IR Fig.3(d) IR II 3318 cm 1 O-H IR III IV Fig.4 Typical XRD patterns for the precipitates. Fig.4 XRD I XRD Fig.4(a) Zn 4(OH) 6SO 4 4H 2O JCPDS 440673 ph Zn 2 SO 2 4 II XRD Zn(OH) 2 JCPDS 380385 Zn 5(CO 3) 2(OH) 6 JCPDS 191458 Zn 4CO 3(OH) 6 H 2O JCPDS 110287 ZnO JCPDS 361451 111

( m / m0) / % T(emf) / µv Exo. ( m / m0) / % T(emf) / µv Exo. Fig.5 Typical TG-DTA curves for the thermal decomposition of Zn(OH) 2. Fig.4(b) XRD ph [Zn(NH 3) 4] 2 XRD Fig.4(c) Zn(OH) 2 JCPDS 380385 Na 2CO 3 III IV XRD Fig.4(d) XRD Zn 5(CO 3) 2(OH) 6 JCPDS 191458 Zn 4CO 3(OH) 6 H 2O JCPDS 110287 32) ZnSO 4 NaOH I 4ZnSO 4 6NaOH 4H 2O Zn 4(OH) 6SO 4 4H 2O 3Na 2SO 4 (1) [Zn(NH 3) 4] 2 [Zn(NH 3) 4] 2 2OH Zn(OH) 2 4NH 3 (2) Zn(NO 3) 2NaOH II ph Na 2CO 3 III IV ph Zn 2 XRD Fig.6 Typical TG-DTA curves for the thermal decomposition of the precipitate yielded according to Reaction I, Zn 4(OH) 6SO 4 nh 2O. Fig.5 [Zn(NH 3) 4] 2 Zn(OH) 2 TG-DTA 100 200 450 18.0 % 18.1 % Zn(OH) 2 ZnO H 2O (3) I TG-DTA Fig.6 IICu 4(OH) 6SO 4 nh 2O 11.5 % 13.5 % 3.4 H 2O SO 3 H 2O/SO 3 3 ZnO Zn 4(OH) 6SO 4 nh 2O Zn 4(OH) 6SO 4 nh 2O (n 4 3) (4) Zn 4(OH) 6SO 4 Zn 4O 3SO 4 3H 2O (5) 112

( m / m0) / % Fig.7 T(emf) / µv Exo. Typical TG-DTA curves for the thermal decomposition of the precipitate yielded according to Reaction II. ( m / m0) / % Concentration / g m 3 T(emf) / µv Exo. Zn 4O 3SO 4 4ZnO SO 3 (6) Zn(NO 3) 2NaOH IIFig.7 TG-DTA Fig.5 Zn(OH) 2 Fig.8III IV TG-DTA-EGA H 2O, CO 2 TG-DTA 110 125 TG 258 DTA 27.6 % Zn 4CO 3(OH) 6 H 2O 26.3 % 25.8 % Zn 5(CO 3) 2(OH) 6 25.9 % TG EGA 125 450 Fig.8 Fig.8 Typical TG-DTA-EGA (H 2O, CO 2) curves for the thermal decomposition of the precipitate yielded according to Reactions III and IV, Zn 5(CO 3) 2(OH) 6 nh 2O. H 2O/CO 2 1.51 III IV Zn 5(CO 3) 2(OH) 6 nh 2O Zn 5(CO 3) 2(OH) 6Na 2CO 3 33) 5Zn 2 5CO 2 3 3H 2O Zn 5(CO 3) 2(OH) 6 3CO 2 (7) Zn 5(CO 3) 2(OH) 6 nh 2O Zn 5(CO 3) 2(OH) 6 nh 2O (8) Zn 5(CO 3) 2(OH) 6 5ZnO 2CO 2 3H 2O (9) III IV 80 Fig.9 113

Fig.9 A diagram of the precipitation and thermal decomposition reactions of zinc salts. 34,35) ZnSO 4 NaOH I II 27) ph Zn 2 SO 2 4 Na 2CO 3 III IV ph Zn 2 CO 2 3 ph Zn 2 ph Zn 2 Zn 2 ZnO 7) ZnO Zn 2 CO 2 3 Zn 5(CO 3) 2(OH) 6 TG TG-DTA II 1) 114

TG IR XRD II 27) TG 26) 25,28) ph TG IR XRD Zn 4(OH) 6SO 4 nh 2O Zn 4(OH) 6SO 4 nh 2O Zn 5(CO 3) 2(OH) 6 Zn(OH) 2 TG DTA Zn 5(CO 3) 2(OH) 6 TG IRXRD Fig.8 EGA EGA EGA 2 15020242 C 2 15606008 B 2 16300253 C 2 16500553 1),, (1998). 2),,, 43, 260 (1995). 3), 15, 18 (1967). 4) L. C. King and M. J. Cooper, J. Chem. Educ. 42, 464 (1965). 5),,,, 20, 232 (1972). 6), 23, 71 (1972). 7) S. DeMeo, J. Chem. Educ. 81, 119 (2004). 8) H. Tanaka and N. Koga, Thermochim. Acta 133, 221 (1988). 9) H. Tanaka, M. Kawano, and N. Koga, Thermochim. Acta 182, 281 (1991). 10) H. Tanaka and S. Terada, J. Thermal Anal. 39, 1011 (1993). 115

11) H. Tanaka and M. Yamane, J. Thermal Anal. 38, 627 (1992). 12) N. Koga, J. M. Criado, and H. Tanaka, Thermochim. Acta 340/341, 387 (1999). 13),, 36, 300 (1988). 14),, (1995). 15),,,,,, 49, 726 (2001). 16) W. W. Wendtlandt, J. Chem. Educ. 38, 566 (1961). 17) R. S. Botti and P. L. Grace, J. Chem. Educ. 38, 568 (1961). 18) E. G. Malawer and E. R. Allen, J. Chem. Educ. 54, 582 (1977). 19),,, 29, 139 (1981). 20),, 31, 38 (1983). 21) E. Wiederholt, J. Chem. Educ. 60, 431 (1983). 22), 32, 246 (1984). 23) A. M. Wynne, J. Chem. Educ. 64, 180 (1987). 24) J. O. Hill and R. J. Magee, J. Chem. Educ. 65, 1024 (1988). 25),,,, 36 398 (1988). 26),, 37, 310 (1989). 27) H. Tanaka and N. Koga, J. Chem. Educ. 67, 612 (1990). 28) H. Tanaka, N. Koga, and A. K. Galwey, J. Chem. Educ. 72, 251 (1995). 29),,,, II 20, 79(1998). 30) W. A. Herrmann (ed.), Synthetic methods of organometallic and inorganic chemistry, Vol.5, Georg Thieme Verlag, Stuttgart, p.123 (1999). 31) D. Stoilova, V. Koleva, and V. Vassileva, Spectrochim. Acta, Part A 58, 2051 (2002). 32) K. Kanari, D. Mishra, I. Gaballah, and B. Dupre, Thermochim. Acta 410, 93 (2004). 33) S. C. Zhang and X. G. Li, Colloids and Surfaces A 226, 35 (2003). 34),,, 52, 116 (2004). 35),,, 10, 11 (2004). Haruhiko Tanaka, Graduate School of Education, Hiroshima Univ., TEL. & FAX. 0824-24-7092, e-mail: htnk@hiroshima-u.ac.jp Yoshinobu Matsuda, Graduate School of Education, Hiroshima Univ., TEL. & FAX. 0824-24-7092, e-mail: ymatsuda@hiroshimau.ac.jp Nobuyoshi Koga, Graduate School of Education, Hiroshima Univ., TEL. & FAX. 0824-24-7091, e-mail: nkoga@hiroshima-u.ac.jp JUDO Yoshihiro Furukawa, Graduate School of Education, Hiroshima Univ., TEL.&FAX. 0824-24-7090, e-mail: yfuruka@hiroshima-u.ac.jp 116