Xiangya International Academy of Translational Medicine, Central South University, 172 Tongzipo Rd., Changsha, Hunan province, China,

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Electronic Supplementary Information

Supporting Information

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information. Experimental section

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Supporting Information for

Supporting Information for

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting information

Supplementary Information for

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

The Free Internet Journal for Organic Chemistry

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information for

Supporting Information

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information

Supporting Information. Experimental section

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Divergent synthesis of various iminocyclitols from D-ribose

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Jing-Yu Guo, Rui-Han Dai, Wen-Cong Xu, Ruo-Xin Wu and Shi-Kai Tian*

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information for

Supporting Information

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information

Supporting information

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Supporting Information

Supporting information

Supporting Information

The Asymmetric Synthesis of CF3- Containing. Spiro[pyrrolidin-3,2 -oxindole] through the Organocatalytic. 1, 3-dipolar Cycloaddition Reaction

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supplementary Material

Supporting Information

Chiral Phosphoric acid Catalyzed Enantioselective N- Alkylation of Indoles with in situ Generated Cyclic N-Acyl Ketimines

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Supplementary Material

Supplementary information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supplementary!Information!

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information

Selective mono reduction of bisphosphine

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Aminofluorination of Fluorinated Alkenes

Transcript:

Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Enantioselective Oxidative Functionalization of Csp3-H Bond Adjacent to Nitrogen Atom for Rapid Access to β-hydroxyl-α-amino Acid Derivatives Lin Qiu, a,b Xin Guo, a Yu Qian, a Changcheng Jing, a Chaoqun Ma, a Shunying Liu, a * Liping Yang a and Wenhao Hu a * a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, China, 200062. E-mail: syliu@sist.ecnu.edu.cn; whu@chem.ecnu.edu.cn, Fax: (+86)-021-6222-1237 b Xiangya International Academy of Translational Medicine, Central South University, 172 Tongzipo Rd., Changsha, Hunan province, China, 410013 Contents pages General and Materials S2 General procedure for multi-component reaction S2 Notes and references S2 The direct oxidation of N-aryl glycine esters to imines. S3-S6 Crystal data of 3d.. S7 Characterization Data of Products S8- S14 NMR spectra for the Compounds...S15-S34 Chiral HPLC analysis figures of the Products.....S35-S52 1

General and Materials: HRMS spectra were recorded on a Bruker microtof II instrument. NMR spectra were recorded on a Brucker-400 MHz spectrometer. HPLC analysis was performed on Waters-Breeze (2487 Dual Absorbance Detector and 1525 Binary HPLC Pump) & Shimadzu (SPD-20AV UV-VIS Detector and LC-20AT Liquid Chromatograph Pump). Chiralpak IC was purchased from Daicel Chemical Industries. The racemic standards used in HPLC studies were prepared according to the general procedure by using a racemic BINOL derivatived phosphoric acid catalyst. Dichloromethane, chloroform, 1, 2-dichloroethane and toluene were commercial sources and used without further purification. Chiral phosphoric acids 4a-g 1, the diazo compound 1 2 and N-aryl glycine ester 2 3 were prepared according to the literature. The other chemicals were obtained from commercial sources and used without further purification. General procedure for multi-component reaction: A suspension of Rh2(OAc)4 (1 mol%), chiral phosphoric acid 4 (5 mol%), N-aryl glycine ester 2 (0.10 mmol, 1.0 eq), DDQ (0.10 mmol, 1.0 eq) and 0.05 ml water in 1.5 ml DCE was stirred at room temperature for 1 h, then cooled to -10 o C, and diazo compound 1 (0.15 mmol, 1.5 eq) in 0.5 ml DCE was added over 3 h via syringe pump. After completion of the addition, the reaction was stirred for additional 12 hours, and then allowed to warm to room temperature slowly. Solvent was removed and the crude products were purified by flash chromatography on silica gel (eluent : EtOAc / light petroleum ether = 1:20~ 1:5) to give the products 3. Notes and references: 1. (a) Uraguchi, D.; Terada, M.; J. Am. Chem. Soc. 2004, 126, 5356-5357; (b) Akiyama, T.; Morita, H.; Itoh, J.; uchibe, K. Org. Lett. 2005, 7, 2583-2585; (c) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84-86; (d) Uraguchi, D.; Sorimachi, K.; Terada, M. Angew. Chem. Int. Ed. 2006, 45, 2254-2257; (e) Yamanaka, M.; Junji Itoh, M.; Fuchibe, K.; Akiyama, T. J. Am Chem. Soc. 2007, 129, 6756-6764; (f) Guo, Q.; Liu, H.; Luo, S.; Guo, C.; Gu, Y.; Gong, L. J. Am.Chem. Soc. 2007, 129, 3790-3791; (g) Jiang, J.; Yu, J.; Sun, X.; Rao, Q.; Gong, L. Angew. Chem., Int. Ed. 2008, 47, 2458-2462; (h) Masahiro, T.; Daisuke, U.; Keiichi, S.; Hideo, S. PCT Int. Appl. 2005 WO2005070875. 2. M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998, Chapter 1. 3. J. Xie and Z. Z. Huang, Angew. Chem. Int. Ed. 2010, 49, 10181-10185. 2

Table S1. The direct oxidation of N- aryl glycine esters to imines. a Time (min) Conversion (%) b 2a 2b 2e 0 0 0 0 5 64 74 41 15 95 86 45 35 97 91 86 75 97 90 94 a The reaction was carried out in NMR tube 0.05 mmol N-aryl glycine esters and 0.05 mmol DDQ with 0.5 ml CDCl3, NMR tube keep in ultrasonic cleaner. b Determined by 1 H NMR spectroscopy of the reaction mixture in the NMR tube. 100 80 conversion(%) 60 40 2a 2b 2e 20 0 0 20 40 60 80 time(min) Figure S1. The direct oxidation of N- aryl glycine esters to imines. Scheme S1. The Mannich addition of diazoketone 1a, water and imines 5a. 3

5 min 4

15 min 35 min 5

75 min Crude NMR of 3a 6

Crystal data of (2R, 3S)-anti-3c (CCDC 918137): The relative stereochemistry of the product was confirmed by single crystal X-ray analysis of 3c, and the data for compound 3c is consistent with that reported for the same compound in our previous work.8f Reference 8f) : Y. Qian, C. Jing, S. Liu, W. Hu, Chem. Commun. 2013, 49, 2700. 7

Characterization Data of Products: Ethyl (2R, 3S)-2-((4-chlorophenyl)amino)-3-hydroxy-4-oxo-4-phenylbutanoate (anti -3a): 76% yield; 86:14 dr (anti:syn); 93% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol =50:10, 254 nm, Retention time: tminor = 10.5 min, tmajor = 13.2 min); 1 H NMR (CDCl3, 400 MHz) δ 1.12 (t, J = 7.2 Hz, 3H), 3.99-4.10 (comp, 3H), 4.50 (m, 1H), 4.81 (d, J = 10.7 Hz,1H), 5.39 (m, 1H), 6.61 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.55 (t, J = 7.7Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.94 (d, J = 7.7 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 13.88, 60.52, 61.62, 74.24, 115.52, 123.90, 128.28, 129.09, 129.24, 134.15, 134.21, 144.86, 169.08, 198.20; HRMS (ESI) calcd for C18H18ClNNaO4 [M+Na] + : 370.0822, found 370.0802. Ethyl (2R, 3R)-2-(4-Chlorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (syn -3a): 76% yield; 86:14 dr (anti:syn); 69% ee (syn); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol =50:10, 254 nm, Retention time: tminor = 9.0 min, tmajor = 11.0 min); 1 H NMR (CDCl3, 400 MHz) δ 7.77 (d, J = 7.3 Hz, 1H), 7.65 (dd, J = 6.2, 1.8 Hz, 2H), 7.44 7.32 (m, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.21 (d, J = 8.9 Hz, 2H), 5.60 (d, J = 1.2 Hz, 1H), 4.40 (s, 1H), 4.27 (dq, J = 10.5, 3.7 Hz, 3H), 1.29 (t, J = 7.2 Hz, 4H); 13 C NMR (CDCl3, 100 MHz) δ 198.09, 170.52, 145.01, 134.34, 133.07, 129.24, 128.89, 128.46, 123.70, 115.54, 74.14, 62.10, 60.23, 14.19; HRMS (ESI) calcd for C18H18ClNNaO4 [M+Na] + : 370.0822, found 370.0801. Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-3-hydroxy-4-oxo-4-p-tolylbutanoate (3b): 85% yield; 90:10 dr (anti:syn); 94% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 11.7 min, tmajor = 13.0 min); 1 H NMR (CDCl3, 400 MHz) δ 1.03 (t, J = 8.0 Hz, 3H), 2.39 (s, 3H), 3.90-3.99 (comp, 3H), 4.40 (dd, J = 4.0, 8.0 Hz, 1H), 4.70(d, J = 12.0 Hz, 1H), 5.29 (d, J = 2.0 Hz, 1H), 6.53 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 13.90, 21.80, 60.67, 61.59, 74.09, 115.55, 123.93, 128.41, 129.26, 129.83, 131.53, 144.92, 145.43, 169.12, 197.63; HRMS (ESI) calcd for C19H20ClNNaO4 [M+Na] + : 384.0979, found 384.0983. 8

Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-3-hydroxy-4-(4-methoxyphenyl)-4-oxobutanoate (3c): 78% yield; 92:8 dr (anti:syn); 95% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 15.8 min, tmajor = 16.8 min); 1 H NMR (CDCl3, 400 MHz) δ 1.10 (t, J = 8.0 Hz, 3H), 3.91 (s, 3H), 3.97-4.09 (comp, 3H), 4.46 (dd, J =4.0, 12.0 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 5.34 (d, J = 4.0 Hz, 1H), 6.60 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.93 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 13.90, 55.60, 60.75, 61.54, 73.75, 114.38, 115.52. 123.89, 126.79, 129.24, 130.70, 144.98, 164.45, 169.21, 196.23; HRMS (ESI) calcd for C19H20ClNNaO5[M+Na] + : 400.0928, found 400.0911. Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-3-hydroxy-4-(naphthalen-2-yl)-4- oxobutanoate (3d): 74% yield; 85:15 dr (anti:syn); 89% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tminor = 28.7 min, tmajor = 23.9 min); 1 H NMR (CDCl3, 400 MHz) δ 7.74 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.13 6.98 (m, 2H), 6.55 (d, J = 8.8 Hz, 2H), 5.25 (dd, J = 6.9, 2.9 Hz, 1H), 4.66 (d, J = 10.8 Hz, 1H), 4.39 (dd, J = 10.7, 2.9 Hz, 1H), 3.98 (dddd, J = 17.9, 10.8, 7.2, 3.6 Hz, 2H), 3.81 (d, J = 7.0 Hz, 1H), 1.06 (t, J = 7.1 Hz, 3H); 13 C NMR (CDCl3, 100 MHz) δ 197.17, 168.02, 144.30, 133.29, 133.14, 131.17, 128.16, 127.30, 114.99, 110.09, 73.24, 60.70, 59.43, 12.92; HRMS (ESI) calcd for C18H17BrClNNaO4[M+Na] + :447.9927, found 447.9942. Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-3-hydroxy-4-(naphthalen-2-yl)-4- oxobutanoate (3e): 78% yield; 76:24 dr (anti:syn); 89% ee (anti); determined by HPLC (Daicel Chirapak IA, flow rate 1.0 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tminor = 28.7 min, tmajor = 23.9 min); 1 H NMR (CDCl3, 400 MHz) δ 7.83 (d, J = 7.7 Hz, 2H), 7.47 (d, J = 7.7 Hz, 2H), 7.09 (d, J = 7.5 Hz, 2H), 6.55 (d, J = 7.7 Hz, 2H), 5.26 (s, 1H), 4.67 (d, J = 10.7 Hz, 1H), 4.39 (d, J = 10.0 Hz, 1H), 3.98 (dd, J = 12.9, 6.3 Hz, 2H), 3.82 (d, J = 6.2 Hz, 1H), 1.06 (t, J = 7.0 Hz, 3H); 13 C NMR (CDCl3, 100 MHz) δ 196.12, 168.10, 143.84, 139.86, 131.56, 128.76, 9

128.53, 128.34, 123.25, 114.67, 73.28, 60.75, 59.64, 12.95; HRMS (ESI) calcd for C18H17Cl2NNaO4[M+Na] + : 404.0432, found 404.0438. Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-3-hydroxy-4-(naphthalen-2-yl)-4- oxobutanoate (3f): 68% yield; 84:16 dr (anti:syn); 90% ee (anti); determined by HPLC (Daicel Chirapak IA, flow rate 1.0 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tminor = 28.7 min, tmajor = 23.9 min); 1 H NMR (CDCl3, 400 MHz) δ 7.51 (d, J = 8.4 Hz, 1H), 7.44 (s, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.3 Hz, 1H), 6.57 (d, J = 8.5 Hz, 2H), 5.29 (d, J = 6.9 Hz, 1H), 5.23 (s, 1H), 4.71 (d, J = 11.0 Hz, 1H), 4.44 (d, J = 10.9 Hz, 1H), 3.98 (dd, J = 16.7, 7.3 Hz, 2H), 3.93 (s, 3H), 3.89 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); 13 C NMR (CDCl3, 100 MHz) δ 195.29, 168.22, 153.35, 148.60, 143.92, 128.29, 125.90, 122.97, 121.87, 114.54, 109.43, 109.31, 72.65, 60.57, 60.00, 55.22, 55.07, 12.97; HRMS (ESI) calcd for C18H17BrClNNaO4[M+Na] + : 430.1033, found 430.1039. Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-3-hydroxy-4-(naphthalen-2-yl)-4-oxobutanoate (3g): 83% yield; 82:18 dr (anti:syn); 91% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 15.7 min, tmajor = 13.9 min); 1 H NMR (CDCl3, 400 MHz) δ 1.11 (t, J = 8.0 Hz, 3H), 3.96-4.12 (comp, 3H), 4.58 (m, 1H), 4.82 (m, 1H), 5.54 (d, J = 4.0 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.62 (m, 2H), 7.92 (d, J = 8.0 Hz, 2H), 7.98 (m, 3H), 8,46 (s, 1H); 13 C NMR (CDCl3, 100 MHz) δ 13.92, 60.78, 61.65, 74.32, 115.60, 123.70, 123.98, 127.37, 127.96, 129.23, 129.29, 129.53, 130.03, 131.43, 132.37, 136.01, 144.86, 169.08, 198.06; HRMS (ESI) calcd for C22H20ClNNaO4 [M+Na] + : 420.0979, found 420.0981. Ethyl (2R, 3S)-2-(4-Chlorophenylamino)-4-cyclohexyl-3-hydroxy-4-oxobutanoate (3h): 81% yield; 76:24 dr (anti:syn); 73% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 5.9 min, tmajor = 7.0 min); 1 H NMR (CDCl3, 400 MHz)δ 1.17 (t, J = 8.0 Hz, 3H), 1.24-1.88 (m, 12H), 2.75 (m, 1H), 3.71 (br, 1H), 4.11-4.15(m, 2H ), 4.50 (dd, J = 4.0, 12.0 Hz, 1H), 4.64 (s, 1H), 4.70 (d, J = 12.0 Hz, 1H), 6.63(d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 14.06, 25.12, 25.64, 25.90, 27.24, 30.08, 46.74, 59.56, 61.92, 75.32, 115.25, 123.88, 129.31, 129.66, 144.75, 169.34, 211.13; 10

HRMS (ESI) calcd for C18H24ClNNaO4 [M+Na] + :376.1292, found 376.1284. Ethyl (2R, 3R)-2-(4-fluorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (3i) 88% yield; 90:10 dr (anti:syn); 92% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 25.6 min, tmajor = 29.1 min); 1 H NMR (CDCl3, 400 MHz) δ 7.99 7.78 (m, 2H), 7.67 7.52 (m, 1H), 7.48 (t, J = 7.7 Hz, 3H), 6.83 (dd, J = 11.9, 5.5 Hz, 2H), 6.61 6.49 (m, 2H), 5.32 (d, J = 2.7 Hz, 1H), 4.41 (s, 1H), 4.10 3.82 (m, 3H), 1.05 (t, J = 7.1 Hz, 3H); 13 C NMR (CDCl3, 100 MHz) δ 197.31, 168.30, 157.01, 154.65, 141.50, 133.24, 133.15, 128.12, 127.32, 115.03, 114.86, 114.79, 73.28, 60.59, 60.40, 12.91; HRMS (ESI) calcd for C18H19FNO4 [M+H] + :332.1220, found 332.1465. Ethyl (2R, 3S)-2-(4-bromophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (3j): 82% yield; 88:12 dr (anti:syn); 93% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 9.4 min, tmajor = 11.4 min); 1 H NMR (CDCl3, 400 MHz) δ 1.11 (t, J = 7.0 Hz, 3H), 3.99-4.09 (comp, 3H), 4.50 (dd, J = 2.5, 10.5 Hz, 1H), 4.83(d, J = 10.5 Hz, 1H), 5.39 (dd, J = 2.5, 6.5 Hz, 1H), 6.56 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.66 (t, J = 7.0 Hz, 1H), 7.94 (d, J = 7.7 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 13.89, 60.36, 61.64, 74.23, 110.98, 115.94, 128.29, 129.10, 132.12, 134.15, 134.22, 145.32, 169.04, 198.19; HRMS (ESI) calcd for C18H18BrNNaO4 [M+Na] + : 414.0317, found 414.0309. Ethyl (2R, 3S)-3-hydroxy-4-oxo-4-phenyl-2-(phenylamino)butanoate (3k): 72% yield; 84:16 dr (anti:syn); 89% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 13.4 min, tmajor = 16.8 min); 1 H NMR (CDCl3, 400 MHz)δ 1.03 (t, J = 8.0 Hz, 3H), 3.93-4.00 (comp, 3H), 4.51 (s, 1H), 4.69 (br, 1H), 5.33 (d, J = 1.6, 1H), 6.62 (d, J = 8.0 Hz, 2H), 6.72 (t, J = 8.0 Hz, 1H), 7.01 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.57 (t, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 13.90, 60.50, 61.51, 74.37, 114.44, 119.27, 128.31, 129.06, 129.40, 134.13, 134.24, 146.14, 169.31, 198.42; HRMS (ESI) calcd for C18H19NNaO4 [M+Na] + : 336.1212, found 336.1210. 11

Ethyl (2R, 3S)-2-(3,4-difluorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (3l): 86% yield; 95:5 dr (anti:syn); 95% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 8.2 min, tmajor = 9.1 min); 1 H NMR (CDCl3, 500 MHz) δ 1.12 (t, J = 7.0 Hz, 3H), 3.98-4.10 (comp, 3H), 4.31 (d, J = 2.5 Hz, 1H), 5.39 (s, 1H), 6.37 (m, 1H), 6.47 (m, 1H), 6.97 (m, 2H), 7.56 (t, J = 7.5 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.93 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl3, 100 MHz) δ 13.94, 60.88, 61.80, 74.26, 103.28, 103.48, 109.76, 117.66, 117.84, 128.31, 129.22, 134.06, 134.39, 143.24, 169.00, 198.10; HRMS (ESI) calcd for C18H17F2NNaO4[M+Na] + : 372.1023, found 372.1036. Ethyl (2R, 3S)-2-(3-chloro-4-fluorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (3m): 79% yield; 90:10 dr (anti:syn); 95% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 19.0 min, tmajor = 22.1 min); 1 H NMR (CDCl3, 400 MHz) δ 7.87 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.3 Hz, 1H), 7.50 (t, J = 7.4 Hz, 2H), 6.90 (t, J = 8.7 Hz, 1H), 6.63 (d, J = 3.1 Hz, 1H), 6.54 6.34 (m, 1H), 5.31 (d, J = 4.2 Hz, 1H), 4.63 (d, J = 10.4 Hz, 1H), 4.37 (d, J = 10.5 Hz, 1H), 3.98 (dd, J = 15.3, 7.3 Hz, 2H), 3.88 (d, J = 6.7 Hz, 1H), 1.07 (t, J = 7.1 Hz, 3H); 13 C NMR (CDCl3, 100 MHz) δ 197.11, 167.92, 142.17, 133.35, 133.09, 128.21, 127.28, 116.20, 115.98, 114.68, 113.09, 113.02, 73.21, 60.78, 59.89, 12.92; HRMS (ESI) calcd for C18H17NO4FNaCl [M+Na] + : 388.0728, found 388.0733. Ethyl (2R, 3S)-2-(3,4-dichlorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (3n): 85% yield; 84:16 dr (anti:syn); 94% ee (anti); determined by HPLC (Daicel Chirapak IA, flow rate 1.0 ml/min, hexane/isopropanol/alcohol = 240:15:50, 254 nm, Retention time: tminor = 16.3 min, tmajor = 13.9 min); 1 H NMR (CDCl3, 500 MHz) δ 7.87 (dd, J = 8.3, 1.2 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.36 (m, 1H), 7.16 (d, J = 8.7 Hz, 1H), 6.68 (d, J = 2.8 Hz, 1H), 6.50 6.41 (m, 1H), 5.31 (dd, J = 6.5, 2.7 Hz, 1H), 4.78 (d, J = 10.5 Hz, 1H), 4.40 (dd, J = 10.5, 2.7 Hz, 1H), 4.09 3.83 (m, 3H), 1.08 (t, J = 7.2 Hz, 3H); 13 C NMR (CDCl3, 100 MHz) δ 197.01, 167.68, 144.76, 133.38, 133.06, 132.01, 129.87, 128.24, 127.25, 120.86, 114.32, 113.12, 73.15, 60.87, 59.18, 12.92; 12

HRMS (ESI) calcd for C18H17Cl2NNaO4 [M+Na] + : 404.0432, found 404.0430. Methyl (2R, 3R)-2-(4-chlorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (3o) 86% yield; 80:20 dr (anti:syn); 80% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol = 50:10, 254 nm, Retention time: tminor = 10.6min, tmajor = 12.0 min); 1 H NMR (CDCl3, 400 MHz) δ 7.87 (d, J = 7.2 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 5.32 (dd, J = 7.0, 2.9 Hz, 1H), 4.67 (d, J = 10.7 Hz, 1H), 4.45 (dd, J = 10.8, 2.9 Hz, 1H), 3.86 (d, J = 7.0 Hz, 1H), 3.50 (s, 3H); 13 C NMR (CDCl3, 100 MHz) δ 197.21, 168.67, 143.78, 133.31, 133.15, 128.31, 128.17, 127.25, 123.06, 114.50, 73.14, 59.76, 51.12; HRMS (ESI) calcd for C17H16NO4NaCl [M+Na] + : 356.0666, found 356.0666. Benzyl (2R, 3S)-2-(4-chlorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (anti-3p) 68% yield; 79:21 dr (anti:syn); 85% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tminor = 15.0 min, tmajor = 23.9 min); 1 H NMR (CDCl3, 400 MHz) δ 7.71 (d, J = 7.9 Hz, 2H), 7.55 (m, 1H), 7.40 (t, J = 7.5 Hz, 3H), 7.23 (m, 3H), 7.05 (m, 4H), 6.53 (d, J = 8.3 Hz, 2H), 5.32 (s, 1H), 4.92 (s, 2H), 4.72 (d, J = 10.8 Hz, 1H), 4.47 (d, J = 10.8 Hz, 1H), 3.90 (s, 1H); 13 C NMR (CDCl3, 100 MHz) δ 197.02, 168.09, 143.81, 133.50, 133.20, 132.93, 128.29, 128.04, 127.77, 127.65, 127.53, 127.46, 127.32, 123.07, 114.59, 73.21, 66.48, 59.67; HRMS (ESI) calcd for C23H20NO4NaCl [M+Na] + : 432.0979, found 432.0981. Benzyl (2R, 3R)-2-(4-chlorophenylamino)-3-hydroxy-4-oxo-4-phenylbutanoate (syn-3p) 68% yield; 79:21 dr (anti:syn); 78% ee (syn); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tminor = 15.7 min, tmajor = 26.0 min); 1 H NMR (CDCl3, 400 MHz) δ 7.98 (dd, J = 8.5, 7.2 Hz, 2H), 7.73 7.63 (m, 3H), 7.51 7.46 (m, 1H), 7.39 7.31 (m, 3H), 7.13 (d, J = 8.7 Hz, 2H), 7.01 6.90 (m, 3H), 6.21 (dd, J = 8.9, 2.4 Hz, 2H), 5.60 (d, J = 7.4 Hz, 1H), 5.33 5.18 (m, 2H), 4.53 (s, 1H), 4.34 4.25 (m, 2H), 4.25 4.17 (m, 1H); 13 C NMR (CDCl3, 100 MHz) δ 197.87, 169.47, 143.77, 133.38, 133.26, 132.91, 128.17, 128.03, 127.93, 127.59, 127.44, 127.40, 127.38, 122.73, 114.58, 72.52, 66.64, 61.27; HRMS (ESI) calcd for C23H20NO4NaCl [M+Na] + : 432.0979, found 432.0978. 13

Isopropyl (2R, 3S)-2-((4-chlorophenyl)amino)-3-hydroxy-4-oxo-4-phenylbutanoate (anti-3q) 76% yield; 72:28 dr (anti:syn); 89% ee (anti); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tminor = 10.6 min, tmajor = 14.7 min); 1 H NMR (CDCl3, 400 MHz) δ 7.96 7.81 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.13 7.01 (m, 2H), 6.62 6.45 (m, 2H), 5.48 (d, J = 3.4 Hz, 1H), 5.30 (dd, J = 6.3, 2.7 Hz, 1H), 4.84 (dt, J = 12.5, 6.3 Hz, 1H), 4.70 (d, J = 10.6 Hz, 1H), 4.40 (d, J = 7.9 Hz, 1H), 3.89 (d, J = 6.6 Hz, 1H), 1.04 (dd, J = 7.5, 6.4 Hz, 6H); 13 C NMR (CDCl3, 100 MHz) δ 197.17, 167.51, 143.94, 133.22, 133.18, 128.28, 128.13, 127.36, 122.96, 114.61, 73.32, 69.02, 59.51, 20.69, 20.45; HRMS (ESI) calcd for C23H20NO4NaCl [M+Na] + : 384.0974, found 384.0962. Isopropyl (2R, 3R)-2-((4-chlorophenyl)amino)-3-hydroxy-4-oxo-4-phenylbutanoate (syn-3q) 76% yield; 72:28 dr (anti:syn); 9% ee (syn); determined by HPLC (Daicel Chirapak IC, flow rate 0.8 ml/min, hexane/isopropanol/alcohol = 90:5:5, 254 nm, Retention time: tmajor = 9.8 min, tminor = 10.8 min); 1 H NMR (CDCl3, 400 MHz) δ 7.89 7.85 (m, 2H), 7.60 (tt, J = 3.1, 2.4 Hz, 1H), 7.52 7.46 (m, 2H), 6.88 (d, J = 8.9 Hz, 2H), 6.23 6.09 (m, 2H), 5.49 (d, J = 1.6 Hz, 1H), 5.05 (dt, J = 12.5, 6.3 Hz, 1H), 4.36 (s, 1H), 4.22 (s, 1H), 1.19 (d, J = 6.1 Hz, 6H); 13 C NMR (CDCl3, 100 MHz) δ 197.15, 169.01, 144.03, 133.35, 132.10, 128.17, 127.90, 127.50, 122.78, 114.58, 73.08, 69.06, 59.35, 20.83, 20.68; HRMS (ESI) calcd for C23H20NO4NaCl [M+Na] + : 384.0974, found 384.0960. 14

NMR spectra for the Compounds: 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Chiral HPLC analysis figures of the Products: 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53