Journa l of Aerospace Power A p r. 1995

Σχετικά έγγραφα
T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

1. 1. R (n) = f (n, S m ax, R ) (1) S m ax. R = S m in. V o l. 16 N o. 3 A ugust A CTA M A T ER IA E COM PO S ITA E S IN ICA ,,,

GPS, 0. 5 kg ( In tegrated Fertility Index, IF I) 1. 1 SPSS 10. IF I =

V o l122, N o13 M ay, 2003 PRO GR ESS IN GEO GRA PH Y : (2003) , : TU 984. , (Eco logy fo r evil) [1 ] (R ich Boyer), 2.

BAY ES IAN INFERENCE FO R CO INTEGRATED SY STEM S

Fo recasting Stock M arket Q uo tation s via Fuzzy N eu ral N etw o rk Based on T 2S M odel

Im pact of capac ity a lloca tion on bullwh ip effect in supply cha in

Bank A ssetgl iab ility Sheet w ith Em bedded Op tion s

V o l. 20, N o. 4 D ec., 2001 PRO GR ESS IN GEO GRA PH Y : (2001) (B rugess) , (L sch, 1954) [2 ], (2001) [7 ] : ( )

U (x, y ) = : K (x i- x k) K (x i- x k, y j- y l), 2. 1

26 3 V o l. 26 N o A cta Eco logiae A n im alis Dom astici M ay ,

6 cm, 1. 2 IAA, NAA, 2. 1

(H ipp op hae rham noid es L. ) , ; SHB 2g , 1. 0, 2. 0, 3. 0, 4. 0, 5. 0 ml mm. : Y = X - 0.

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

, E, PRO GR ESS IN GEO GRA PH Y. V o l122, N o15 Sep t1, 2003 : (2003) , 263, (0 1m ) P93511; P42616

, 4, 6, 8 m in; 30%, 50%, 70%, 90% 100% 15, 30, 45, 60, s V c

( , ,

China Academic Journal Electronic Publishing House. All rights reserved. O ct., 2005

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

ZrO 2, ZrO 2. (M ) W O 3g ( 100% ) SO 4 2- W O 3 M oo 3, SO ( Zr (OH ) 4 ) ( ( 0. 1 mo l. L - 1 A gno 3 ), Zr (OH ) 4 SO (0.

, cm ; C (h), , cm 3 g cm - 3 g d - 1, , cm ; E (t), cm g d - 1 ; hl (t) 1 h (z, t) h 2. ], d - 1 ; T p ; L nrd (z ) h (L, t) = hl (t) t > 0 (4)

hm 2,, , hm 2, A CTA GEO GRA PH ICA S IN ICA

M in ing the Com pa tib ility Law of M ultid im en siona l M ed ic ines Ba sed on D ependence M ode Sets

A GC, 中国科技论文在线. AGC 2 A GC A GC A GC ( ),A GC : TM 73; F : (A GC) (A GC au tom atic generation ,, A GC A GC 1.

A Knowledge M odel for D esign of Population Nutr ien t Index D ynam ics in W heat

A R, H ilbert2h uang T ran sfo rm and A R M odel

S im p lifie d L ine 2S ha pe M a c rom o le cula r D ynam ics M ode ling a nd S im ula tion

17 1 V o l. 17 N o CH IN ESE JOU RNAL O F COM PU TA T IONAL M ECHAN ICS February 2000 : A

F ig. 1 Flow chart of comprehen sive design in the research of com patibil ity. E2m ail: ac. cn

(T rip tery g ium w ilf ord ii Hook) ,Beroza [6 ] 4 W ilfo rine W ilfo rdine W ilfo rgine W il2. Euon ine 1. 0% 1980, 1. 1 ; 1. 0%, ; 0.

:,UV IKON 810, 700 nm. DU 27Spectropho to neter 1. 1 U S2KT P

Το άτομο του Υδρογόνου

, ( , (P anax qu inquef olius) ) ; L C2V P series U H PE), M Pa R E252. C18 (5 Λm, 250 mm 4. 6 mm ) ( )

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

D esign and Imp lem en tation of Parallel Genetic A lgo rithm

1999, 17 (1): J ourna l of W uhan B otan ica l Resea rch ( ) ( ) 2, 3. (Celosia cristata L. ),

A Study of the O rigin of Comp lex ity in the Science of Comp lex ity

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

M athem aticalm odel and A lgo rithm of In telligen t T est Paper

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

, ( CO 2+ O 2+ N 2, ], N 2 [ 14, 15 ] O 2. ( 0. 1 ml ) ; (23 Jayasingh h atm ) (2001) [ 7 ]

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

A study on generalized absolute summability factors for a triangular matrix

) V o l. 40 N o. 6 : A : Q ,, W ard [ 1 ] (A v icenn ia m a rina) (K and elia cand el)

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Jou rnal of M athem atical Study

G IS N N E E, , km 2, 92% A CTA GEO GRA PH ICA S IN ICA

CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

MECHANICAL PROPERTIES OF MATERIALS

= R s - jx s = R 1 +

O verlay A lgo rithm of H ierarch ical M ap s

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

On Inclusion Relation of Absolute Summability

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E

G IS A CTA GEO GRA PH ICA S IN ICA. V o l. 55, N o. 1 Jan., 2000 : (2000) E2m ail: lreis1ac1cn

A multipath QoS routing algorithm based on Ant Net

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

1998, 18 (1): 1 7. A cta T heriolog ica S inica (,, ) (Grow th layer group s, GL Gs) 168, 42,

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

,, 1 mm,, : 250 g, 200 g, 120 g, 50 g g T, 80, , ;,, ,,,,, %, 2%, 3% , 15 d, 60 d ( )

(g ) A quanau tics,, , 33. 1%. O , O CH EM ICAL JOU RNAL O F CH IN ESE UN IV ERS IT IES (,,, )

Homework for 1/27 Due 2/5

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

1. 2 , N RC (1998) d m g 1


Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

C.S. 430 Assignment 6, Sample Solutions

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Jeux d inondation dans les graphes

TR IBOLO GY N ov, T EER Coating L td, U K) M H 25 [4 ] ( [6 ] ). (SEM ),. V G %. PS2168

COMPLICITY COLLECTION autumn / winter

Studies on the Athena Parthenos of Pheidias

The Changes of Card iova scular Respon se to O rthosta tic Stress Caused by Hypovolem ia Inuced by W e ightlessness: A Sim ula tion Study

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

«ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ Μ., ΜΑΥΡΙΔΟΥ Μ. «Gentrification Friendly» γειτονιές στο κέντρο της Αθήνας(;)

(2006) ,A RD S. AL Ig A RD S. AL IgA RD S A RD S A RD S A RD S , A RD S 25% 50%, 11% 25%, 9% 26% 1 AL IgARD S , A RD S 50% 6815%

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Pro duction Technology and Technical Efficiency in ( k, y) Sp ace

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ. Σπουδαστές: Δεληλίγκα Αργυρούλα, ΑΜ:

( P- V EP, ER G K8,A g- A gc1. V EP s. : oh z 30H z; : 0. 24, 0. 48, 0. 96, 1. 85, %

On- l ine com puter detecting system of p ipel ine leak and its algor ithm

IRBB 4 (Xa24) IRBB 7 (Xa27) IRBB 21 (Xa221) 6

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

B id irectional Ind irect Coupled F in ite Elem en tm ethod for Estimating Am pac ity of Power Cable

Numerical Analysis FMN011

Coupling strategies for compressible - low Mach number flows

V o l. 53, N o. 3 M ay, 1998 A CTA GEO GRA PH ICA S IN ICA ) m 3 gs,

ECE 468: Digital Image Processing. Lecture 8

Transcript:

10 2 V o l110 N o12 1995 4 Joura l of Aerospace Power A p r. 1995 3 3 3 3,,,,, : : V 215155 1 [ 1 ],, [2-3 ],, [ 4 ], W - SO TM,, W - SFEM, 2 2. 1 : Y = g (X 1,, X ) (1) X 1,, X, [ 4 ], : (1) (2) Y M Y, Ρ 2 y S ky 1994 6 ; 1994 8 3 3 3 702 710072

144 10 Λy = Y Λ + 1 2 (5Y g5x i) ΛΡ 2 i Ρ 2 y = Y 2 Λ + [ (5Y g5x i) 2 + Y 5 2 Y g5x 2 i ]ΛΡ 2 i + S ky = {Y 3 Λ + 3 2 [ 2Y (5Y g5x i) 2 + Y 2 5 2 Y g5x 2 i ]ΛΡ 2 i + (5Y g5x ig 5 2 Y g5x 2 i ) ΛS k iρ 3 i - Λ 2 y [ (5Y g5x i) 3 (2) + 3Y g 5Y g5x ig 5 2 Y g5x 2 i ]ΛS k iρ 3 i - Λ 3 y - 3ΛY Ρ 2 y }gρ 3 y, Λi, Ρ 2 i, S k i- X i (,, ) ; Y Λ- g (Λ1,, Λ) ; () Λ- x i= Λi (,, ) (2) (3) Y Γ, Β X 0 Λy = Γ# (1 + 1gΒ) + X 0 Ρ 2 y = Γ 2 [# (1 + 2gΒ) - # 2 (1 + 1gΒ) ] S ky = Γ 3 [# (1 + 3gΒ) - 3# (1 + 2gΒ) # (1 + 1gΒ) + 2# 3 (1 + 1gΒ) ]gρ 3 y, # () Gamm a ; Β, Γ, 6 0- W eibu ll (3) (4) R = P {g (X ) > 0} = exp [ - (- X 0gΓ) Β ] (4) 2. 2 [K ] : [K ]{u} = {f } (5) [K ] = [D ] [B ]d 8 (6) b1,, b,, Λi Ρ 2 i S k i (,, ), (5) bi : [K ]5{u}g5bi = 5{f }g5bi - 5[K ]g5bi{u} i = 1,, (7) [K ]5 2 {u}g5b 2 i = 5 2 {f }g5b 2 i - 5 2 [K ]g5b 2 i {u} - 25[K ]g5big 5{u}g5bi i = 1,, (8) ( ) bi : {Ρ} = [D ] [B ]{u} (9) 5{Ρ}g5bi = 5[D ]g5big [B ]{u} + [D ]5[B ]g5big {u} + [D ] [B ]5{u}g5bi i = 1,, Ρ}g5b 2 i = 5 2 [D ]g5b 2 i g [B ]{u} + [D ]5 2 [B ]g5b 2 i g {u} + [D ] [B ]5 2 {u}g5b 2 i (3) (10) 25[D ]g5big 5[B ]g5big {u} + 25[D ]g5big [B ]g 5{u}g5bi + 2[D ]5[B ]g5big 5{u}g5bi i = 1,, (5) (10) (11) (Λ1,, Λ) T (11) {u}, 5{u}g5bi, 5 2 {u}g5b 2 i, {Ρ}, 5{Ρ}g 5bi 5 2 {Ρ}g5b 2 i (,, ),, (2), (3) (4) R, E, : 5 {Ρ}g5E = 5 2 {Ρ}g5E 2 = {0}, E 3 [ 5 ],,

2 145,, [ 5 ], : x = (r - x c - Θ0co sχ) co sυ+ (x ctg Χ+ Θ0siΧ) siυ- rf co sπgz y = (r - x c - Θ0co sχ) siυ- (x ctg Χ+ Θ0siΧ) co sυ Χ : 0 Φ ΧΦ (Πg2 - Αt) ) (13) Υ : Υ= (y c + x ctg Χ) gr (14) (12) (14), Z ; r ; rf ; m t ; Αt ; x i ; Θ0 ; x c= (h 3 at - x i)m t- Θ0siΑt; y 0= (Πg4+ x itgαt)m t; y c= y 0+ x ctgαt+ Θ0gco sαt;, : dx cgdθ0= - (12) siαt, dy cgdθ0= co sαt (12) (14), dx g dθ0, dy gdθ0, d 2 x gdθ 2 0 d 2 y gdθ 2 0 4 ; Z = 20, m = 1 mm, Α= 20., 1, : g (X ) = ΡL - Ρef f, ΡL - ; Ρef f -, ΡB : X - X i (,, ) P, V, Θ0, ΡL 1 1 (1) 1 1 P ΡL V (1) (2) Θ0 g Θ0 g N 140 N 561 M PA 0. 3 0. 38 mm 84. 28349 0. 38 84. 38973 Ρ 10 45 0. 03 0. 038 56. 43594 56. 42733 S K 0. 1 0 0 0-0. 016139-0. 021797 R 0. 927817 0. 927957 Θ0 P, ΡL V, Θ0 1 (2) : Θ0 ; V P, ΡL Θ0, V : Λg= 84128654 M P a, Ρg= 56. 43514, S kg = - 0. 016303, R = 0. 927822 1 (1) : V C, P, ΡL Θ0 C, 2 2,,, P ΡL

146 10,, S k, P, ΡL Θ0 S k, 3 3, ΡL Θ0,, ΡL P, x 0 ( ), x 0, 4 4, 2 C, x 0,, 3 S k 4 x 0,, 1,,.., 1992, 16 (2) : 1-4 2 Yam azak i F. Sh iozuka,m, et al. N eum a Expasio fo r Stochastic F iite E lem et A alysis, J. Egrg. M ech., A SCE, 1987, 114 (8) : 1335-1354. 3 Ghaem R ad Spao s PD. Specbral Stochastic F iite E lem et Fo rm ulatio fo r Reliabllity A alysis, J. Egrg. M ech., A S2 CE, 1991, 117 (10) : 2351-2372 4 W ul iya et al. A A p roach to Icrease the P recisio of Reliability A alysis, P roceedig of the F irst Ch iagjapa Itera2 tioal Sympo sium o M achie Elem ets. Beijig. i Chia, 1993. 5.,, 1982 ( )

200 Joural of A ero space Pow er V o l. 10 dam age stregth, w e ca determ ie its overall fatigue qua tity i the w o rk ig life. A d based o the fatigue cum u lative dam age p robab ilistic model, the part s fatigue reliab ility ad life ca be p redicted. A aeroegie comp resso r is take fo r examp le to show how to u se the su r2 p lu s fatigue dam age stregth fo r p redictig the b lade s fatigue reliab ility ad life. Key words Comp resso rs B lades R eliab ility Fatigue life A NEW REL IAB IL ITY ANALY T ICAL M ETHOD FOR BEND ING FAT IGUE STRENGTH OF GEARS Peg X iogq i, L iu Geg, W u L iya (5th D ep ṫ N ortherwest Polytech ica l U iversity, X ia 710072) ABSTRACT Based o the th ree2param eters reliab ility aalysis model ad the fa2 tigue theo ry of gears, a ew reliab ility aalytical m ethod fo r the bedig fatigue stregth of too th roo t is p ropo sed by u se of b ledig stochastic fi ite elem e t m ethod. T h is m ethod takes i to accou t such radom facto rs fo r the reliab ility of gears, as load, fatigue lim it, the m ateri2 al param eters ad radiu s cham fer of too l. A alyses comp leted w ith th is m ethod idicate: T he radiu s cham fer of too l has u igo rab le effect o the reliab ility of gears bedig fatigue stregth; I the liear elastic p rob lem s, the Youg s modu lu s has o effect o the structu re reliab ility; T he Po isso ratio has a little leverage o the gears reliab ility; But the gears relia2 b ility reduces w ith the icrease of variatio coefficie ts of the above2m e tioed radom fac2 to rs; So the gear s reliab lity w ill icrease as the skew esses of fatigue lim it ad the radiu s cham fer of too l rise. But the skew ess of load has a iverse ifluece. T h is paper also co2 siders the modified coefficie t s (o radom facto r) effect o the gears reliab ility. Key words Stochastic fi ite elem e t m ethod R eliab ility Gears Bedig fatigue M EASUREM ENT AND EXPRESSION OF M A IN CHARACTER IST ICS OF N it i SHAPE M EMORY ALLOY W IRES D u Ya liag ad N ie J igxu (4the D ep ṫ B eij ig U iversity of A eroautics ad A stroautics, B eij ig 100083) ABSTRACT Experim e ts ad aalyses of the m ai characteristics of N it i alloy w ires w ere comp leted to research their ab ility i active detectio ad co tro l of crack s grow th as the special requ irem e ts of the i tellige t m aterial structu res. T he exp ressio s of the m ai characteristics as recovery fo rce ad o ther param eters are deduced o the basis of m easu re2 m e tṡ T he research resu lts show that the N it i alloys w ires are very good fuctioal m ateri2 als fo r m aufactu rig the i tellige t structu res capab le of actively detectig ad co tro llig the grow th of crack s ad vib ratio. Key words Shape m emo ry alloys Characteristic m easu rem e t R ecovery effect OPTIM IZATION FOR RED UC ING V IBRATION OF ENGINE P IPEL INE L il i (4the D ep ṫ B eij ig U iversity of A eroautics ad A stroautics, B eij ig 100083) ABSTRACT T he paper deals w ith structu ral op tim izatio fo r reducig vib ratio of egie p ipelie. T he m ethod ca give the best po stio, stiffess ad damp ig of clip s to be attached o coditio that p ipe system s structu re has bee give. Based o the fi it elem e t aalysis of o rigial structu re, the aalytical p rocess is lim ited betw ee the locatio s w here are to be attached clip s, excited po i ts ad dagerou s po i ts. It is o t ecessary to m ake agai a fi it elem e t aalysis fo r the imp roved system. A exemp le fo r reducig the vib ratio of a egie p ipelie is p rese ted. Key words Op tim izatio Egie P ipelies V ib ratio