10 2 V o l110 N o12 1995 4 Joura l of Aerospace Power A p r. 1995 3 3 3 3,,,,, : : V 215155 1 [ 1 ],, [2-3 ],, [ 4 ], W - SO TM,, W - SFEM, 2 2. 1 : Y = g (X 1,, X ) (1) X 1,, X, [ 4 ], : (1) (2) Y M Y, Ρ 2 y S ky 1994 6 ; 1994 8 3 3 3 702 710072
144 10 Λy = Y Λ + 1 2 (5Y g5x i) ΛΡ 2 i Ρ 2 y = Y 2 Λ + [ (5Y g5x i) 2 + Y 5 2 Y g5x 2 i ]ΛΡ 2 i + S ky = {Y 3 Λ + 3 2 [ 2Y (5Y g5x i) 2 + Y 2 5 2 Y g5x 2 i ]ΛΡ 2 i + (5Y g5x ig 5 2 Y g5x 2 i ) ΛS k iρ 3 i - Λ 2 y [ (5Y g5x i) 3 (2) + 3Y g 5Y g5x ig 5 2 Y g5x 2 i ]ΛS k iρ 3 i - Λ 3 y - 3ΛY Ρ 2 y }gρ 3 y, Λi, Ρ 2 i, S k i- X i (,, ) ; Y Λ- g (Λ1,, Λ) ; () Λ- x i= Λi (,, ) (2) (3) Y Γ, Β X 0 Λy = Γ# (1 + 1gΒ) + X 0 Ρ 2 y = Γ 2 [# (1 + 2gΒ) - # 2 (1 + 1gΒ) ] S ky = Γ 3 [# (1 + 3gΒ) - 3# (1 + 2gΒ) # (1 + 1gΒ) + 2# 3 (1 + 1gΒ) ]gρ 3 y, # () Gamm a ; Β, Γ, 6 0- W eibu ll (3) (4) R = P {g (X ) > 0} = exp [ - (- X 0gΓ) Β ] (4) 2. 2 [K ] : [K ]{u} = {f } (5) [K ] = [D ] [B ]d 8 (6) b1,, b,, Λi Ρ 2 i S k i (,, ), (5) bi : [K ]5{u}g5bi = 5{f }g5bi - 5[K ]g5bi{u} i = 1,, (7) [K ]5 2 {u}g5b 2 i = 5 2 {f }g5b 2 i - 5 2 [K ]g5b 2 i {u} - 25[K ]g5big 5{u}g5bi i = 1,, (8) ( ) bi : {Ρ} = [D ] [B ]{u} (9) 5{Ρ}g5bi = 5[D ]g5big [B ]{u} + [D ]5[B ]g5big {u} + [D ] [B ]5{u}g5bi i = 1,, Ρ}g5b 2 i = 5 2 [D ]g5b 2 i g [B ]{u} + [D ]5 2 [B ]g5b 2 i g {u} + [D ] [B ]5 2 {u}g5b 2 i (3) (10) 25[D ]g5big 5[B ]g5big {u} + 25[D ]g5big [B ]g 5{u}g5bi + 2[D ]5[B ]g5big 5{u}g5bi i = 1,, (5) (10) (11) (Λ1,, Λ) T (11) {u}, 5{u}g5bi, 5 2 {u}g5b 2 i, {Ρ}, 5{Ρ}g 5bi 5 2 {Ρ}g5b 2 i (,, ),, (2), (3) (4) R, E, : 5 {Ρ}g5E = 5 2 {Ρ}g5E 2 = {0}, E 3 [ 5 ],,
2 145,, [ 5 ], : x = (r - x c - Θ0co sχ) co sυ+ (x ctg Χ+ Θ0siΧ) siυ- rf co sπgz y = (r - x c - Θ0co sχ) siυ- (x ctg Χ+ Θ0siΧ) co sυ Χ : 0 Φ ΧΦ (Πg2 - Αt) ) (13) Υ : Υ= (y c + x ctg Χ) gr (14) (12) (14), Z ; r ; rf ; m t ; Αt ; x i ; Θ0 ; x c= (h 3 at - x i)m t- Θ0siΑt; y 0= (Πg4+ x itgαt)m t; y c= y 0+ x ctgαt+ Θ0gco sαt;, : dx cgdθ0= - (12) siαt, dy cgdθ0= co sαt (12) (14), dx g dθ0, dy gdθ0, d 2 x gdθ 2 0 d 2 y gdθ 2 0 4 ; Z = 20, m = 1 mm, Α= 20., 1, : g (X ) = ΡL - Ρef f, ΡL - ; Ρef f -, ΡB : X - X i (,, ) P, V, Θ0, ΡL 1 1 (1) 1 1 P ΡL V (1) (2) Θ0 g Θ0 g N 140 N 561 M PA 0. 3 0. 38 mm 84. 28349 0. 38 84. 38973 Ρ 10 45 0. 03 0. 038 56. 43594 56. 42733 S K 0. 1 0 0 0-0. 016139-0. 021797 R 0. 927817 0. 927957 Θ0 P, ΡL V, Θ0 1 (2) : Θ0 ; V P, ΡL Θ0, V : Λg= 84128654 M P a, Ρg= 56. 43514, S kg = - 0. 016303, R = 0. 927822 1 (1) : V C, P, ΡL Θ0 C, 2 2,,, P ΡL
146 10,, S k, P, ΡL Θ0 S k, 3 3, ΡL Θ0,, ΡL P, x 0 ( ), x 0, 4 4, 2 C, x 0,, 3 S k 4 x 0,, 1,,.., 1992, 16 (2) : 1-4 2 Yam azak i F. Sh iozuka,m, et al. N eum a Expasio fo r Stochastic F iite E lem et A alysis, J. Egrg. M ech., A SCE, 1987, 114 (8) : 1335-1354. 3 Ghaem R ad Spao s PD. Specbral Stochastic F iite E lem et Fo rm ulatio fo r Reliabllity A alysis, J. Egrg. M ech., A S2 CE, 1991, 117 (10) : 2351-2372 4 W ul iya et al. A A p roach to Icrease the P recisio of Reliability A alysis, P roceedig of the F irst Ch iagjapa Itera2 tioal Sympo sium o M achie Elem ets. Beijig. i Chia, 1993. 5.,, 1982 ( )
200 Joural of A ero space Pow er V o l. 10 dam age stregth, w e ca determ ie its overall fatigue qua tity i the w o rk ig life. A d based o the fatigue cum u lative dam age p robab ilistic model, the part s fatigue reliab ility ad life ca be p redicted. A aeroegie comp resso r is take fo r examp le to show how to u se the su r2 p lu s fatigue dam age stregth fo r p redictig the b lade s fatigue reliab ility ad life. Key words Comp resso rs B lades R eliab ility Fatigue life A NEW REL IAB IL ITY ANALY T ICAL M ETHOD FOR BEND ING FAT IGUE STRENGTH OF GEARS Peg X iogq i, L iu Geg, W u L iya (5th D ep ṫ N ortherwest Polytech ica l U iversity, X ia 710072) ABSTRACT Based o the th ree2param eters reliab ility aalysis model ad the fa2 tigue theo ry of gears, a ew reliab ility aalytical m ethod fo r the bedig fatigue stregth of too th roo t is p ropo sed by u se of b ledig stochastic fi ite elem e t m ethod. T h is m ethod takes i to accou t such radom facto rs fo r the reliab ility of gears, as load, fatigue lim it, the m ateri2 al param eters ad radiu s cham fer of too l. A alyses comp leted w ith th is m ethod idicate: T he radiu s cham fer of too l has u igo rab le effect o the reliab ility of gears bedig fatigue stregth; I the liear elastic p rob lem s, the Youg s modu lu s has o effect o the structu re reliab ility; T he Po isso ratio has a little leverage o the gears reliab ility; But the gears relia2 b ility reduces w ith the icrease of variatio coefficie ts of the above2m e tioed radom fac2 to rs; So the gear s reliab lity w ill icrease as the skew esses of fatigue lim it ad the radiu s cham fer of too l rise. But the skew ess of load has a iverse ifluece. T h is paper also co2 siders the modified coefficie t s (o radom facto r) effect o the gears reliab ility. Key words Stochastic fi ite elem e t m ethod R eliab ility Gears Bedig fatigue M EASUREM ENT AND EXPRESSION OF M A IN CHARACTER IST ICS OF N it i SHAPE M EMORY ALLOY W IRES D u Ya liag ad N ie J igxu (4the D ep ṫ B eij ig U iversity of A eroautics ad A stroautics, B eij ig 100083) ABSTRACT Experim e ts ad aalyses of the m ai characteristics of N it i alloy w ires w ere comp leted to research their ab ility i active detectio ad co tro l of crack s grow th as the special requ irem e ts of the i tellige t m aterial structu res. T he exp ressio s of the m ai characteristics as recovery fo rce ad o ther param eters are deduced o the basis of m easu re2 m e tṡ T he research resu lts show that the N it i alloys w ires are very good fuctioal m ateri2 als fo r m aufactu rig the i tellige t structu res capab le of actively detectig ad co tro llig the grow th of crack s ad vib ratio. Key words Shape m emo ry alloys Characteristic m easu rem e t R ecovery effect OPTIM IZATION FOR RED UC ING V IBRATION OF ENGINE P IPEL INE L il i (4the D ep ṫ B eij ig U iversity of A eroautics ad A stroautics, B eij ig 100083) ABSTRACT T he paper deals w ith structu ral op tim izatio fo r reducig vib ratio of egie p ipelie. T he m ethod ca give the best po stio, stiffess ad damp ig of clip s to be attached o coditio that p ipe system s structu re has bee give. Based o the fi it elem e t aalysis of o rigial structu re, the aalytical p rocess is lim ited betw ee the locatio s w here are to be attached clip s, excited po i ts ad dagerou s po i ts. It is o t ecessary to m ake agai a fi it elem e t aalysis fo r the imp roved system. A exemp le fo r reducig the vib ratio of a egie p ipelie is p rese ted. Key words Op tim izatio Egie P ipelies V ib ratio