Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
|
|
- Ιλαρίων Δασκαλοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture:
2 Strategy of Numerical Simulatios Pheomea Error modelize Nostatioary temperature distributio i uiform metal bar heat coservatio Fourier s law Mathematical Model Error discretizatio Approximate Problem Nostatioary heat equatio I time: forward/backward Euler Crak-Nicolso I space: cetral differece Liear Systems
3 Heat equatio Heat equatio (1-D i space) u t 2 u = 0, x2 x, t 0, 1 0, T, t u 0, t = u 1, t = 0, t 0, T, u x, 0 = si πx, x 0, 1, has the uique solutio u u x, t = e π2t si πx x
4 Space-Time grid t T t N =N Δt t = Δt Δt u i t 1 t 1 =Δt t 0 =0 O 1 x 0 =0 x 1 =h x h i 1 x i =ih x M 1 x x M =Mh=1
5 Cotiuous problem (1H) Heat equatio (cotiuous problem; 1H): u t 2 u x 2 = f, x, t 0, 1 0, T, u = 0, x = 0, t 0, T, u = 0, x = 1, t 0, T, u, 0 = a, x 0, 1, t = 0. We focus ourselves o time variatio u t t = F t, u t ; f t f t + 2 u t. x2
6 Time discretizatio [1/5] Time discretizatio with the same argumet i ODE: 1. Set N equal divisio of time iterval 0, T, ad time icremet Δt is defied by Δt T/N. 2. Itroduce the fuctio Φ from the temperature at t = t N to oe at t = t N+1. u u N u u 0 Φ Φ 2 u u 1 Φ u t u t N u t u t 2 0 u t 1 u t Δt Δt Δt t t 0 = 0 t 1 t 2 t t N = T t
7 Time discretizatio [2/5] How to decide? u t Φ t = F t, u t ; f t Itegrate o t, t u t = u t + t t F s, u s ; f s ds Itroduce umerical itegratio forward/backward Euler method; Crak-Nicolso method, etc. have bee itroduced correspodig to the type of umerical itegratios. u = u + Φ t, t ; u, u ; f, f u u t, f f t
8 Time discretizatio [3/5] u t = u t + t t F s, u s ; f s ds u = u + Δt F t, u ; f piecewise costat as the value at t = t. Forward Euler method: Set u 0 = a; For = 0,, N 1, compute u s.t. D Δt u 2 u x 2 = f, x 0, 1, u = 0, x = 0, u Here = 0, x = 1. D Δt u u u Δt
9 Time discretizatio [4/5] u t = u t + t t F s, u s ; f s ds u = u + Δt F t, u ; f piecewise costat as the value at t = t. Backward Euler method: Set u 0 = a; For = 0,, N 1, fid u s.t. D Δt u 2 u x 2 = f, x 0, 1, u = 0, x = 0, u Here = 0, x = 1. D Δt u u u Δt
10 Time discretizatio [5/5] u t = u t + t u = u Δt k=0 t F s, u s ; f s 1 ds piecewise 1st order polyomial as the value at t = t ad t = t (trapezoidal formula). F t +k, u +k ; f +k Crak Nicolso method: Set u 0 = a; For = 0,, N 1, fid u s.t. D Δt u 2 u /2 x 2 = f /2, x 0, 1, u /2 Here = 0, x = 0, u /2 = 0, x = 1. D Δt u u u Δt v /2 v + v 2
11 Space discretizatio [1/2] Set M equal divisio of iterval 0,1, ad apply the 2d order cetral differece ito the approximatio of the Laplace operator for grid poit fuctio u u j : Discrete Laplace operator: L h u i u i+1 2 u i + u i 1 h 2 d2 u dx 2 x i x i ih h 1/M u i u x i u 2 u 3 u 4 u 0 h u 1 h h h x x 0 =0h=0 x 1 =h x 2 =2h x 3 =3h x 4 =4h=1
12 Space discretizatio [2/2] How to realize the homogeeous Neuma boudary coditio? 1. Set virtual grid poit x = x M+1 = 1 + h ad virtual approximate value u M Approximate u/ x at x = x M = 1 by the cetral differece with u M 1 ad u M+1 : 0 = u x 1 u M+1 u M 1 2h 3. Impose the followigs: u M+1 = u M 1 v x = u x 0 x 1 u 2 x 1 < x 2 v i = u i i = 0, 1,, M u 2M i i = M + 1,, 2M x=1
13 Fiite differece equatio [1/4] Forward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, compute u i s.t. D Δt u i + L h u i = f i, u 0 u M+1 = 0, = u M 1. i = 1,, M, Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i
14 Fiite differece equatio [2/4] Backward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. D Δt u i + L h u i = f i, u i = 1,, M, 0 = 0, u M+1 = u M 1. Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i
15 Fiite differece equatio [3/4] Crak Nicolso method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. D Δt u /2 /2 i + L h u i = fi, u i = 1,, M, 0 = 0, u M+1 = u M 1. Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i v /2 v + v 2
16 Fiite differece equatio [4/4] θ method θ 0, 1 : Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. D Δt u i + L h u +θ i = f +θ i, u i = 1,, M, 0 = 0, u M+1 = u M 1. θ = 0: forward Euler θ = 1: backward Euler θ = 1/2: Crak-Nicolso Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i v +θ θv + 1 θ v
17 Discretized equatio [1/4] Forward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, compute u i u i u 0 = t h 2 u i t h 2 u i = 0, s.t. + t h 2 u i 1 + t f i, i = 1,, M, u M+1 = u M 1. u i Explicit scheme: Do ot require to solve the liear system at eqch time step. Require the stability coditios betwee Δt ad h to satisfy. u i 1 u i u i+1
18 Discretized equatio [2/4] Backward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i t h 2 u i t h 2 u i u 0 = 0, s.t. t h 2 u i 1 = u i + t f i, i = 1,, M, u M+1 = u M 1. u i Implicit scheme: Require to solve the liear system at eqch time step. Do ot require the stability coditios betwee Δt ad h to satisfy. u i 1 u i u i+1
19 Discretized equatio [3/4] Crak Nicolso method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. 1 t 2 h 2 u i t h 2 ui 1 t 2 h 2 u i 1 = 1 t 2 h 2 u i t h 2 ui + 1 t 2 h 2 u i 1 + t f +θ i, i = 1,, M, u 0 = 0, u M+1 = u M 1. u i Implicit scheme: Require to solve the liear system at eqch time step. Do ot require the stability coditios betwee Δt ad h to satisfy. u i 1 u i 1 u i u i+1 u i+1
20 Discretized equatio [4/4] θ method θ 0, 1 : Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i θ t h 2 u i θ t h 2 u i θ t = 1 θ t h 2 u i θ t h 2 u i + t f +θ i, = 0, u 0 u M+1 s.t. i = 1,, M, = u M 1. θ = 0: forward Euler θ = 1: backward Euler θ = 1/2: Crak-Nicolso h 2 u i θ t h 2 u i 1 u i u i 1 u i+1 Hereafter we call the above equatio (1H) h. u i 1 u i u i+1
21 Mathematical justificatios Cosistecy of D t ad L h Stability of (1H) h Covergece of (1H) h
22 Extetio u ito R [1/3] u = u x u = 0 u = 0 v x = u x 0 x 1 u 2 x 1 < x 2 x=0 x=1 x= 2 x= 1 x=0 x=1 x=2 w x = v x v x 0 x 2 2 x < 0
23 Extetio u ito R [2/3] l u x l k u x k 0 = 0, l = 0, 2,, 2m; 1 = 0, k = 1, 3,, 2m 1 v x = u x 0 x 1 u 2 x 1 < x 2 u C 2m 2, 2 Replace w ito the same otatio u. x= 2 x= 1 x=0 x=1 x=2 w x = v x v x 0 x 2 2 x < 0
24 Extetio u ito R [3/3] x= 2 x= 1 x=0 x=1 x=2 Defiitio: u is L periodic fuctio u x + L = u x, x R u is exteded ito R to become 4 periodic fuctio. u x = u x 4 x x= 6 x= 2 x=0 x=2 x=6 l u x l 0 = 0, l = 0, 2,, 2m; u C 2m R k u x k 1 = 0, k = 1, 3,, 2m 1
25 Cotiuous problem i R Heat equatio (cotiuous problem i R): Fid 4 periodic fuctio u: R 0, T R s.t. u t 2 u x 2 = f, x, t R 0, T, u, 0 = a, x R, t = 0.
26 Extetio u ito R [1/2] u = u i u M+1 = u M 1 u 0 = 0 x=0 x=1 v i = u i i = 0, 1,, M u 2M i i = M + 1,, 2M x= 2 x= 1 x=0 x=1 x=2 w i = v i v i i = 0, 1,, 2M i = 2M, 2M + 1,, 1
27 Extetio u ito R [2/2] x= 2 x= 1 x=0 x=1 x=2 u is exteded ito the all grid poits i R to become 4M periodic grid poit fuctio. Defiitio: u is L periodic grid poit fuctio u i+l = u i, i Z u j = u j 4M j+2m 4M x= 6 x= 2 x=0 x=2 x=6
28 Discretized equatio i R [1/3] θ method θ 0, 1 : Give M periodic grid poit fuctio a = a i i Z ; Set u i 0 = a i i Z ; For = 0,, N 1, fid M periodic grid poit fuctio u = u i i Z s.t. θ t h 2 u i θ t h 2 u i θ t h 2 u i 1 = 1 θ t h 2 u i θ t h 2 u i + 1 θ t h 2 u i 1 + t f i +θ, i = 1,, M. NOTE: I the previous sheet, the periodic of u is equal to 4M. However, to avoid cumbersomes, we replace the period with M.
29 Discretized equatio i R [2/3] u i p1 u i 1 u i u i+1 u i+q1 t = t Δt u i p0 u i 1 u i u i+1 u i+q0 t = t Fiite differece operator: B L t q L b m L t S m Summatio of the +L, coefficiets of u i+m which ifluece u i m= p L L = 0, 1; p L, q L N 0 : costat; t R + : time icremet; b L m t R: coefficiet correspodig to u +L i+m ; S m : v i S m v i v i+m : shifted operator i space for the grid poit fuctios
30 Discretized equatio i R [3/3] Whe a exteral heat source f = 0, the discretize equatio ca be writte geerally as follows: Give M periodic grid poit fuctio a = a i i Z ; Set u i 0 = a i i Z ; For = 0,, N 1, fid M periodic grid poit fuctio u = u i i Z s.t. B 1 t u i = B 0 t u i, i Z. (FD) EX) θ method: For p 0, q 0 = 1 b 1 t = b 1 1 t = θ t p 1, q 1 = 1, 1 h 2, b L 1 t = 1 + 2θ t h 2 0 b 1 t = b 0 1 t = 1 θ t h 2, b 1 L t = θ t h 2
31 Stability [1/4] Discretized equatio i geeral form: Set u 0 i = a i i Z ; For = 0,, N 1, fid u = u i B 1 t u i = B 0 t u i, i Z. i Z s.t. (FD) Here B L t q L b m L t S m m= p L Amplitude factor of (FD) g k; t q 0 bm 0 t e 2πi m= p 0 q 1 bm 1 t e 2πi m= p 1 mk M mk M k = 0, 1,, M
32 Stability [2/4] Defiitio (FD) is stable def c > 0 s.t. u 0, t 0, 1, = 0,, N T u h c a h M 1 Here v h 1 M j=0 v j 2 1/2
33 Stability [3/4] vo Neuma coditio (FD) is stable c 0 > 0 s.t. g k; t 1 + c 0 t k Z, t 0, 1. EX) I case of θ method, g k; t = if g k; t 1 1 2θ t πk 2 si2 h t θ h2 si2πk M 1+4θ t h2 si2πk M M < 1 2. Therefore,, (FD) is stable. That is, θ 1, 1 : without ay coditios betwee t ad h 2 θ 0, 1 t : with the stability coditios < 1 2 h θ
34 Stability [4/4] Stability of (1H) h u: the solutio of (1H) h Assume t < 1 h θ u h a h 1 + t t 1 θ f 0 2 h + t k=1 f k 2 + tθ f h 2 h 1 2 = 0, 1,, N Here v h 1 M 1 2 v M 1 j=1 v j v M 2 1 2
35 Cosistecy of differece operator u: the solutio of (1H) l u x l C 0, 1 0, T, l = 0, 1, 2, 3, 4; k u = 0, k = 0, 1, 2, 3 tk l u x l 0, t = 0, l = 0, 2, 4; k u x k 1, t = 0, k = 1, 3 g i θ 1 2 tm 0,2 u t2 M 0,3 u h2 M 4,0 u i = 1, 2,, M, = 0, 1,, N 1 Here l+k u M l,k v max x l x, t ; x, t 0, 1 0, T tk g i D Δt u i + L h u +θ +θ i f i u i u x i, t, f i f x i, t, v +θ θv + 1 θ v
36 Covergece u: the solutio of (1H) u: the solutio of (1H) h Assumptios of Stability ad Cosistecy max u x i, t u i ; i = 0, 1,, M, = 0, 1,, N θ 1 2 tm 0,2 u t2 M 0,3 u h2 M 4,0 u θ 1 2 O t + h2 θ = 1 2 O t2 + h 2
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
The Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
Data Dependence of New Iterative Schemes
Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Inertial Navigation Mechanization and Error Equations
Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for
Tired Waiting in Queues? Then get in line now to learn more about Queuing!
Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with
Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities
Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time
Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives
America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo
Lecture 3: Asymptotic Normality of M-estimators
Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
, - [1]. - [2]., - - 2:10:20,. -,. -,. -,, -,. -, 1/3,,, [5] -. -
53.5.03 DOI: 10.1459/mmph17006..,..,., E-mail: demi@psu.ru. - -. -, -. : ; ; - ;.. -., - -,. - [1]. - []., -- :10:0,. -. -,. -, -. [3 5], - :0:40,. -,, -,. -,.., 1/3,,,...,, -.,, [5] -. -. «..» 017, 9,,.
Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case
J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Three Classical Tests; Wald, LM(Score), and LR tests
Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Certain Sequences Involving Product of k-bessel Function
It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.
Gauss Radau formulae for Jacobi and Laguerre weight functions
Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,
A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators
Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet
Proof of Lemmas Lemma 1 Consider ξ nt = r
Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =
ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE
ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig
Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
Fiboacci Notatios Traditioal ame Fiboacci umber Traditioal otatio F Ν Mathematica StadardForm otatio FiboacciΝ Primary defiitio 04..0.000.0 F Ν ΦΝ cosν Π Φ Ν Specific values Specialized values 04..03.000.0
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
DERIVATION OF MILES EQUATION Revision D
By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory
Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
- 1+x 2 - x 3 + 7x4. 40 + 127x8. 12 - x5 4 + 31x6. 360 - x 7. - 1+x 2 - x 3 - -
a.bergara@ehu.es - 1 x 2 - - - - - - - Ο - 1x 2 - x 3 - - - - - - 1 x 2 - x 3 7 x4 12-1x 2 - x 3 7x4 12 - x5 4 31x6 360 - x 7 40 127x8 20160 - - - Ο clear; % Coefficients of the equation: a x'b x c
4. ELECTROCHEMISTRY - II
4. ELETROHEMISTRY - II Molar coductace, Equivalet coductace, cell cetat ad Kohlraush Law :. Give : l 0.98 cm a.3 cm cell cost. cell cost. a l cell cost. a l 0.98.3 0.7538 cm As : ell costat for the cell
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
physicsandmathstutor.com
physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ.
Ακουστική AcP4 ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. ΣΥΓΚΡΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΜΕ ΜΕΘΟ Ο ΠΕΠΕΡΑΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and