Supporting Information

Σχετικά έγγραφα
The Free Internet Journal for Organic Chemistry

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Electronic Supplementary information

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

SUPPLEMENTARY MATERIAL

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting Information for

Supporting Information. Experimental section

Electronic Supplementary Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information. Experimental section

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information for

Supporting Information

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Supporting Information

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

multicomponent synthesis of 5-amino-4-

Supporting Information. for

Experimental procedure

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting information

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supplementary Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

SUPPORTING INFORMATION

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Selective mono reduction of bisphosphine

Supplementary information

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Transcript:

Supporting Information Nano WO3-supported sulfonic acid: New, efficient and high recyclable heterogeneous nano catalyst Ali Amoozadeh* and Salman Rahmani* Department of Chemistry, Semnan University, Semnan, Zip Code: 35131-19111, Iran, Fax: +98 (233) 3354110, Tel.: +98 (233) 3366177, e-mail: aamozadeh@semnan.ac.ir, salmanrahmani64@yahoo.com 1

TABLE OF CONTENTS Contents Page Experimental. 4 Materials and Instruments... 4 Preparation of nano-wo3.. 4 Table 1. Reusability of n-wsa for the synthesis of octahydroxanthenes... 5 Table 2. Optimization of catalyst for the synthesis of tetrahydrobenzoxanthenes.. 5 Table 3. Reusability of n-wsa for the synthesis of tetrahydrobenzoxanthenes 5 Table 4. Optimization of catalyst for the synthesis of benzoimidazolo quinazolinones.. 6 Table 5. Reusability of n-wsa for the synthesis of benzoimidazolo quinazolinones. 6 Fig 1. 1 H NMR of (3a).. 7 Fig 2. 13 C NMR of (3a).... 8 Fig 3. 1 H NMR of (3c).. 9 Fig 4. 13 C NMR of (3c).... 10 Fig 5. 1 H NMR of (3d).. 11 Fig 6. 13 C NMR of (3d).... 12 Fig 7. 1 H NMR of (4a).. 13 Fig 8. 13 C NMR of (4a).... 14 Fig 9. 1 H NMR of (4c).. 15 Fig 10. 13 C NMR of (4c)...... 16 Fig 11. 1 H NMR of (4d).... 17 Fig 12. 13 C NMR of (4d)...... 18 Fig 13. 1 H NMR of (4e).... 19 Fig 14. 13 C NMR of (4e)...... 20 Fig 15. 1 H NMR of (4h).... 21 Fig 16. 1 H NMR of (4l).... 22 Fig 17. 13 C NMR of (4l)...... 23 Fig 18. 1 H NMR of (4m)...... 24 Fig 19. 13 C NMR of (4m)..... 25 Fig 20. 1 H NMR of (4n).... 26 Fig 21. 13 C NMR of (4n)...... 27 Fig 22. 1 H NMR of (5a).... 28 Fig 23. 13 C NMR of (5a)...... 29 Fig 24. 1 H NMR of (5b).... 30 Fig 25. 13 C NMR of (5b)...... 31 Fig 26. 1 H NMR of (5c).... 32 Fig 27. 13 C NMR of (5c)...... 33 Fig 28. 1 H NMR of (5d).... 34 Fig 29. 13 C NMR of (5d)...... 35 Fig 30. 1 H NMR of (7f).... 36 Fig 31. 13 C NMR of (7f)...... 37 Fig 32. 1 H NMR of (7j).... 38 Fig 33. 13 C NMR of (7j)...... 39 Fig 34. 1 H NMR of (8l).... 40 Fig 35. 13 C NMR of (8l)...... 41 2

Fig 36. 1 H NMR of (9a).... 42 Fig 37. 13 C NMR of (9a)...... 43 Fig 38. 1 H NMR of (9b).... 44 Fig 39. 13 C NMR of (9b)...... 45 Fig 40. 1 H NMR of (9c).... 46 Fig 41. 13 C NMR of (9c)...... 47 Fig 42. 1 H NMR of (9d).... 48 Fig 43. 13 C NMR of (9d)...... 49 Fig 44. 1 H NMR of (9e).... 50 Fig 45. 13 C NMR of (9e)...... 51 Fig 46. 1 H NMR of (9f).... 52 Fig 47. 13 C NMR of (9f)..... 53 Fig 48. 1 H NMR of (11a)...... 54 Fig 49. 13 C NMR of (11a)..... 55 Fig 50. 1 H NMR of (11e)...... 56 Fig 51. 13 C NMR of (11e)..... 57 Fig 52. 1 H NMR of (12).... 58 Fig 53. 13 C NMR of (12)...... 59 Fig 54. 1 H NMR of (13)...... 60 Fig 55. 13 C NMR of (13)...... 61 3

Experimental Materials and Instruments Chemicals were purchased from the Merck chemical companies. Thin-Layer Chromatography (TLC) on commercial plates of silica gel 60 F254 was used to monitor the progress of reactions. The products were characterized by FT-IR spectra, 1 HNMR, 13 CNMR and CHN analyzer. FT-IR spectra were recorded on Shimadzo FT-IR 8400 instrument. 1 H and 13 CNMR spectra were recorded on Bruker Advance Spectrometer 400 & 500 MHz using CDCl3-d and DMSO-d6 as solvent. The chemical shifts are expressed in parts per million (ppm) and tetramethylsilane (TMS) was used as an internal reference. Elemental analyses were performed by Perkin Elmer CHN analyzer, 2400 series II. Melting points were recorded on a THERMO SCIENTIFIC 9100 apparatus. X-ray diffraction analyses were conducted using a Siemens D5000 (Siemens AG, Munich, Germany) diffractometer using Cu-Ka radiation of wavelength 1.54 Å (Cu-Ka radiation, k = 1.54) were obtained for characterization of the heterogeneous catalyst. Field emission scanning electron microscopy (FE-SEM) was carried out with a Philips XL30 (Royal Philips Electronics, Amsterdam, The Netherlands) instrument. Thermo gravimetric analyses (TGA) were conducted on a Du Pont 2000 thermal analysis apparatus under air atmosphere at a heating rate of 5 C/min. Preparation of nano-wo3 10 ml of ammonia solution (25 wt%) was added to the CTAB solutions while stirring. After getting a homogenous solution, 0.117 mol of WCl6 1000 ml 1 of CTAB solution was added with vigorous stirring. After stirring for 4 h, the products were aged at ambient temperature for 72 h. The final product was filtered, washed with deionized water and absolute ethanol in order to remove surfactant, residual reactants and by products and then calcinated at 500 C for 2 h [1]. 4

Table 1. Reusability of n-wsa for the synthesis of octahodroxanthenes a. Number of Cycle Yield b (%) 1 93 2 93 3 93 4 92 5 92 6 92 7 91 8 91 9 91 10 90 a Reaction condition: para-chlorobenzaldehyde (1 mmol), dimedone (2 mmol), reaction time: 1 h at 100 ºC in solvent free condition. b Isolated yield. Table 2. Optimization of the catalyst for the synthesis of tetrahydrobenzoxanthenes a. Entry Catalyst (g) Yield b (%) 1 Catalyst Free 15 2 Nano WO 3 (0.019) 31 3 Nano-WO 3-SO3H (0.019) 91 a Reaction condition: benzaldehyde (1 mmol), dimedone (1 mmol), β-naphtole (1 mmol) at 100 ºC in solvent free condition. b Isolated yield. Table 3. Reusability of n-wsa for the synthesis of tetrahydrobenzoxanthenes a. Number of Cycle Yield b (%) 1 91 2 91 3 91 4 90 5 90 6 90 7 90 8 89 9 89 10 89 a Reaction condition: benzaldehyde (1 mmol), dimedone (1 mmol), β-naphtole (1 mmol), reaction time: 85 min at 100 ºC in solvent free condition. b Isolated yield. 5

Table 4. Optimization of catalyst for the synthesis of benzoimidazolo quinazolin a. Entry Catalyst (g) Yield b (%) 1 Catalyst Free 12 2 Nano WO 3 (0.019) 34 3 Nano-WO 3-SO 3H (0.019) 94 a Reaction condition: benzaldehyde (1 mmol), dimedone (1 mmol), β-naphtole (1 mmol) at 100 ºC in solvent free condition. b Isolated yield. Table 5. Reusability of n-wsa for the synthesis of benzoimidazolo quinazolin a. Number of Cycle Yield b (%) 1 94 2 94 3 94 4 94 5 93 6 93 7 92 8 92 9 92 10 91 a Reaction condition: benzaldehyde (1 mmol), dimedone (1 mmol), 2-amino benzimidazole (1 mmol), reaction time: 15 min at 100 ºC in solvent free condition. b Isolated yield. 6

Spectral data of some selected compound 9-phenyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione (3a) M. P.: 213-215 C; IR (KBr, Cm -1 ) ν max: 3001, 1661, 1532, 1367, 1332, 1221, 1160, 1134, 1091, 841, 739. 1 H NMR (400 MHz, DMSO): δ 1.90-2.09 (m, 4H), 2.26-2.28 (m, 2H), 2.30-2.38 (m, 2H), 2.51-2.64 (m, 4H), 4.79 (s, 1H), 7.05-7.09 (t, J= 7.6, 2H), 7.11-7.12 (d, J= 8.4 Hz, 1H), 7.23-7.31 (dd, J= 8, 24.2, 2H). 13 C NMR (100 MHz, DMSO-d 6 ): δ 20.42, 21.22, 27.19, 31.32, 37.08, 113.62, 117.13, 128.28, 128.93, 129.36, 135.97, 136.87, 141.76, 163.67, 196.62. Anal. Calcd for C19H18O3: C, 77.53; H, 6.16; O, 16.31; Found: C, 77.58; H, 6.19; O, 16.37. Fig. 1. 1 H NMR of 3a. 7

Fig. 2. 13 C NMR of 3a. 8

9-(4-bromophenyl)-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione (3c) M. P.: 222-225 C; IR (KBr, Cm -1 ) ν max: 2976, 1662, 1518, 1375, 1329, 1226, 1159, 1138, 1089, 829, 737. 1 H NMR (400 MHz, DMSO): δ 1.92-2.08 (m, 4H), 2.28-2.32 (m, 2H), 2.34-2.40 (m, 2H), 2.53-2.65 (m, 4H), 4.76 (s, 1H), 7.13-7.27 (m, 2H), 7.33-7.43 (dd, J= 30.6, 8.4 Hz, 2H). 13 C NMR (100 MHz, DMSO-d 6 ): δ 20.10, 20.27, 27.13, 31.39, 36.76, 36.90, 116.41, 120.28, 129.43, 130.21, 131.17, 131.66, 131.83, 133.08, 143.47, 158.49, 164.12, 196.51. Anal. Calcd for C19H17BrO3: C, 61.14; H, 4.59; O, 12.86; Found: C, 61.19; H, 4.65; O, 12.93. Fig. 3. 1 H NMR of 3c. 9

Fig. 4. 13 C NMR of 3c. 10

9-(p-tolyl)-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione (3d) M. P.: 244-246 C; IR (KBr, Cm -1 ) ν max: 2973, 1667, 1531, 1362, 1328, 1224, 1158, 1132, 1081, 832, 739. 1 H NMR (400 MHz, DMSO): δ 1.96-2.07 (m, 4H), 2.26 (s, 3H), 2.29-2.42 (m, 4H), 2.52-2.69 (m, 4H), 4.79 (s, 1H), 7.03-7.05 (d, J= 8 Hz, 2H), 7.12-7.21 (d, J= 7.6 Hz, 2H). 13 C NMR (100 MHz, DMSO-d 6 ): δ 20.31, 21.06, 27.15, 31.22, 36.98, 55.14, 113.52, 117.03, 128.25, 128.84, 129.33, 135.86, 136.88, 141.53, 163.77, 196.52. Anal. Calcd for C20H20O3: C, 77.90; H, 6.54; O, 15.57; Found: C, 77.97; H, 6.59; O, 15.64. Fig. 5. 1 H NMR of 3d. 11

Fig. 6. 13 C NMR of 3d. 12

3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9-phenyl-2H-xanthene-1,8(5H,9H)-dione (4a) M. P.: 203-204 C; FT-IR (KBr, Cm -1 )νmax: 2950, 1660, 1648, 1360, 1200, 1162, 1141, 998, 694. 1 H NMR (500 MHz, DMSO-d 6 ): δ: 0.90 (s, 6H), 1.04 (s, 6H), 2.07-2.10 (d, J= 6.4 Hz, 2H), 2.25-2.28 (d, J= 6.5 Hz, 2H), 2.51-2.60 (m, 3H), 4.53 (s, 1H), 7.09-7.12 (t, J= 2.8 Hz, 1H), 7.17-7.18 (d, J= 2.8 Hz,1H), 7.20-7.23 (t, J= 2.9 Hz, 3H). 13 C NMR (DMSO, 125 MHz), δ: 26.45, 29.13, 32.14, 32.88, 50.24, 111.47, 125.46, 127.56, 127.63, 147.15, 149.32, 194.36. Anal. Calcd for C23H26O3: C, 78.83; H, 7.48; O, 13.70; Found: C, 78.92; H, 7.59; O, 13.83. Fig. 7. 1 H NMR of 4a. 13

Fig. 8. 13 C NMR of 4a. 14

3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9-(3-nitrophenyl)-2H-xanthene-1,8(5H,9H)-dione (4c) M. P.: 168-169 C; FT-IR (KBr, Cm -1 )νmax: 2950, 1659, 1619, 1520, 1360, 1200, 1180, 1000. 1 H NMR (500 MHz, CDCl3): δ: 0.91 (s, 6H), 1.05 (s, 6H), 2.09-2.12 (d, J= 4.4 Hz, 2H), 2.27-2.30 (d, J= 6.4 Hz, 2H), 2.55-2.63 (dd, J= 7.2 Hz,4H), 4.64 (s, 1H), 7.55-7.58 (t, J= 3.1 Hz, 1H), 7.65-7.67 (d,j= 3 Hz, 1H), 7.99-8.02 (d, J= 5.1 Hz, 2H). 13 C NMR (125 MHz, CDCl3) δ: 27.24, 29.56, 32.03, 32.72, 50.02, 56.65, 60.77, 106.31, 115.13, 136.85, 140.75, 153.22, 163.89, 197.01. Anal. Calcd. for C23H25NO5: C, 69.86; H, 6.37; N, 3.54; O, 20.23; Found: C, 69.91; H, 6.49; N, 3.68; O, 20.35. Fig. 9. 1 H NMR of 4c. 15

Fig. 10. 13 C NMR of 4c. 16

3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9-(4-nitrophenyl)-2H-xanthene-1,8(5H,9H)-dione (4d) M. P.: 222-224 C; FT-IR (KBr, Cm -1 )νmax: 2950, 1658, 1614, 1508, 1360, 1340, 1196, 1160, 1136. 1 H NMR (500 MHz, CDCl3) δ: 0.90 (s, 6H), 1.05 (s, 6H), 2.08-2.11 (d, J= 6.5 Hz, 2H), 2.27-2.30 (d, J= 6.5 Hz, 2H), 2.50-2.63 (m, 4H), 4.63 (s, 1H), 7.45-7.48 (m, 2H), 8.10-8.12 (m, 2H). 13 C NMR (125 MHz, CDCl3) δ: 27.24, 29.57, 32.13, 32.74, 50.96, 56.69, 60.80, 106.33, 115.15, 136.86, 140.77, 153.26, 163.89, 197.11. Anal. Calcd for C23H25NO5: C, 69.86; H, 6.37; N, 3.54; O, 20.23; Found: C, 69.91; H, 6.49; N, 3.68; O, 20.35. Fig. 11. 1 H NMR of 4d. 17

Fig. 12. 13 C NMR of 4d. 18

9-(4-fluorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione (4e) M. P.: 222-224 C; FT-IR (KBr, Cm -1 )νmax: 2980, 1672, 1512, 1373, 1333, 1218, 1166, 1135, 1086, 835, 733. 1 H NMR (400 MHz, CDCl3) δ: 0.99 (s, 6H), 1.11 (s, 6H), 2.15-2.26 (dd, J= 16, 28.6 Hz, 4H), 2.46 (s, 4H), 4.73 (s, 1H), 6.88-6.92 (t, J- 8.8 Hz, 2H), 7.24-7.27 (d, J=10.8 Hz, 2H). 13 C NMR (125 MHz, CDCl3) δ: 27.22, 29.53, 32.00, 32.74, 50.05, 56.62, 60.79, 106.34, 115.16, 136.89, 140.71, 153.26, 163.56, 197.05. Anal. Calcd for C23H25FO3: C, 74.98; H, 6.84; O, 13.03; Found: C, 74.93; H, 6.82; O, 13.09. Fig. 13. 1 H NMR of 4e. 19

Fig. 14. 13 C NMR of 4e. 20

3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9-o-tolyl-2H-xanthene-1,8(5H,9H)-dione (4h) M. P.: 230-232 C; FT-IR (KBr, Cm -1 )νmax: 2910, 1660, 1620, 1350, 1200, 1160, 1020, 853. 1 H NMR (500 MHz, CDCl3): δ: 0.88 (s, 6H), 1.04 (s, 6H), 2.03-2.06 (d, J= 6.5 Hz, 2H), 2.24-2.27 (d, J=6.5 Hz, 2H), 2.48-2.51 (d, J=6.5 Hz, 2H), 2.57-2.60 (d, J=7 Hz, 2H) 2.71 (s, 3H), 4.63 (s, 1H), 7.09-7.11 (t, J= 5.6 Hz, 1H), 7.17-718 (d, J= 2.8 Hz, 1H) 7.20-7.23 (t, J= 6.0 Hz, 2H). Anal. Calcd for C24H28O3: C, 79.09; H, 7.74; O, 13.17; Found: C, 79.18; H, 7.89; O, 13.31. Fig. 15. 1 H NMR of 4h. 21

3,3,6,6-tetramethyl-9-(naphthalen-2-yl)-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione (4l) M. P.: 234-235 C; FT-IR (KBr, Cm -1 )νmax: 3053, 2833, 1640, 1585, 1503, 1373, 1276, 1133, 813, 748. 1 H NMR (400 MHz, CDCl3): δ: 0.99 (s, 6H), 1.12 (s, 6H), 2.13-2.06 (d, J= 6.5 Hz, 2H), 2.24-2.27 (d, J=6.5 Hz, 2H), 2.48-2.51 (d, J=6.5 Hz, 2H), 2.57-2.60 (d, J=7 Hz, 2H) 2.71 (s, 3H), 4.63 (s, 1H), 7.09-7.11 (t, J= 5.6 Hz, 1H), 7.17-718 (d, J= 2.8 Hz, 1H) 7.20-7.23 (t, J= 6.0 Hz, 2H). 13 C NMR (125 MHz, CDCl3) δ: 21.47, 27.80, 29.69, 31.86, 32.62, 41.30, 51.20, 116.19, 128.66, 129.20, 136.17, 141.63, 162.51, 196.80. Anal. Calcd for C27H28O3: C, 80.97; H, 7.05; O, 11.98; Found: C, 80.91; H, 7.09; O, 12.05. Fig. 16. 1 H NMR of 4l. 22

Fig. 17. 13 C NMR of 4l. 23

9-(5-bromo-2-hydroxyphenyl)-3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-2H-xanthene- 1,8(5H,9H)-dione (4m) M. P.: 268-271 C; FT-IR (KBr, Cm -1 )νmax: 3000, 1660, 1510, 1415, 1356, 1340, 912. 1 H NMR (500 MHz, CDCl3) δ: 0.90 (s, 6H), 0.97 (s, 3H), 1.05 (s. 3H), 2.02-2.06 (d, J= 8.3 Hz, 2H), 2.23-2.35 (dd, J=6.3, 4H), 2.51-2.56 (t, J=3.9, 2H), 5.54 (s, 1H), 6.94-6.96 (d, J=3.4 Hz, 1H), 7.04 (s, 1H), 7.27-7.29 (d, J=3.4 Hz, 2H), 10.56 (OH, 1H). 13 C NMR (125 MHz, CDCl3) δ: 26.99, 28.41, 30.02, 32.48, 43.70, 51.22, 100.39, 111.30, 116.32, 118.61, 129.15, 130.56, 131.44, 149.83, 165.34, 196.05, 196.50. Anal. Calcd for C24H28O3: C, 79.09; H, 7.74; O, 13.17; Found: C, 79.18; H, 7.89; O, 13.31. Fig. 18. 1 H NMR of 4m. 24

Fig. 19. 13 C NMR of 4m. 25

(E)-3,3,6,6-tetramethyl-9-styryl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione (4n) M. P.: 256-258 C; FT-IR (KBr, Cm -1 )νmax: 3412, 3000, 1630, 1610, 1380, 1200, 1160, 1140, 1000, 958. 1 H NMR (500 MHz, CDCl3) δ: 1.04-1.06 (d, 12H), 2.23-2.26 (d, J= 16.17 Hz, 2H), 2.30-2.33 (d, J= 16.02 Hz, 2H), 2.52 (s, 4H), 4.15-4.16 (d, J= 5.29 Hz, 1H), 6.16-6.22 (m, 2H), 7.19-7.28 (m, ArH, 5H). 13 C NMR (125 MHz, CDCl3) δ: 27.68, 28.33, 29.41, 32.79, 50.98, 114.08, 126.82, 129.19, 129.45, 130.41, 132.21, 137.48, 164.38, 197.15. Anal. Calcd for C25H28O3: C, 79.75; H, 7.50; O, 12.75; Found: C, 79.82; H, 7.52; O, 12.78. Fig. 20. 1 H NMR of 4n. 26

Fig. 21. 13 C NMR of 4n. 27

3,4,6,7-tetrahydro-3,6,9-triphenyl-2H-xanthene-1,8(5H,9H)-dione (5a) M. P.: 196-198 C; FT-IR (KBr, Cm -1 )νmax: 3031, 1667, 1365, 1188, 1134, 995, 694. 1 H NMR (400 MHz, CDCl3) δ: 2.57-2.75 (m, 4H), 2.80-3.01 (m, 4H), 3.30-3.55 (d, J= 3.9 Hz, 2H), 4.92-4.95 (d, J=3.5 Hz, 1H), 7.18-7.45 (m, Ar-H, 15H). 13 C NMR (100 MHz, CDCl3) δ: 31.98, 34.74, 38.26, 38.82, 43.89, 116.73, 126.65, 127.25, 128.39, 128.89, 142.11, 143.859, 144.25, 162.94, 195.59. Anal. Calcd for C31H26O3: C, 83.38; H, 5.87; O, 10.75; Found: C, 83.47; H, 5.95; O, 10.83. Fig. 22. 1 H NMR of 5a. 28

Fig. 23. 13 C NMR of 5a. 29

9-(4-Methylphenyl)-3,4,6,7-tetrahydro-3,6-diphenyl-2H-xanthene-1,8(5H,9H)-dione (5b) M. P.: 204-208 C; FT-IR (KBr, Cm -1 )νmax: 2939, 1666, 1504, 1358, 1242, 1180, 1134, 1033, 987, 764, 702. 1 H NMR (400 MHz, CDCl3) δ: 2.56-2.73 (m, 4H), 2.79-2.95 (m, 4H), 3.30-3.53 (d, J= 3.2 Hz, 2H), 3.88 (s, 3H), 4.86-4.88 (d, J=3.2 Hz, 1H), 6.75-6.87 (m, Ar-H, 2H ), 7.17-7.40 (m, Ar-H, 12H). 13 C NMR (100 MHz, CDCl3) δ: 31.03, 34.70, 38.29, 38.83, 43.91, 113.56, 116.85, 126.72, 127.12, 128.88, 129.51, 136.39, 142.12, 158.20, 163.14, 195.78. Anal. Calcd. for C32H28O3: C, 83.45; H, 6.13; O, 10.42; Found: C, 83.52; H, 6.20; O, 10.51. Fig. 24. 1 H NMR of 5b. 30

Fig. 25. 13 C NMR of 5b. 31

9-(4-Methoxyphenyl)-3,4,6,7-tetrahydro-3,6-diphenyl-2H-xanthene-1,8(5H,9H)-dione (5c) M. P.: 212-215 C; FT-IR (KBr, Cm -1 )νmax: 3031, 1666, 1504, 1357, 1242, 1180, 1134, 987, 764, 702. 1 H NMR (400 MHz, CDCl3) δ: 2.60-2.75 (m, 4H), 2.79-2.99 (m, 4H), 3.32-3.54 (d, J= 3.4 Hz, 2H), 3.79-3.80 (d, J=2.5 Hz, 3H), 4.87-4.88 (d, J=3 Hz, 1H), 6.80-6.88 (m, Ar-H, 4H ), 7.19-7.40 (m, Ar-H, 10H). 13 C NMR (100 MHz, CDCl3) δ: 31.04, 34.71, 38.30, 38.81, 43.91, 113.64, 116.85, 126.72, 127.24, 128.88, 129.45, 136.40, 142.12, 158.21, 163.10, 195.77. Anal. Calcd for C32H28O4: C, 80.65; H, 5.92; O, 13.43; Found: C, 80.74; H, 6.02; O, 13.56. Fig. 26. 1 H NMR of 5c. 32

Fig. 27. 13 C NMR of 5c. 33

9-(4-chlorophenyl)-3,4,6,7-tetrahydro-3,6-diphenyl-2H-xanthene-1,8(5H,9H)-dione (5d) M. P.: 234-236 C; FT-IR (KBr, Cm -1 )νmax: 3031, 1666, 1357, 1188, 1134, 995, 756, 694. 1 H NMR (400 MHz, CDCl3) δ: 2.56-2.76 (m, 4H), 2.81-3.00 (m, 4H), 3.30-3.54 (d, J= 3.9 Hz, 2H), 4.88-4.89 (d, J=2.75 Hz, 1H), 7.17-7.40 (m, Ar-H, 14H). 13 C NMR (100 MHz, CDCl3) δ: 31.59, 34.69, 38.28, 38.61, 43.79, 116.33, 126.70, 127.31, 128.30, 128.91, 129.96, 132.29, 141.92, 142.36, 142.77, 195.61. Anal. Calcd. for C31H25ClO3: C, 77.41; H, 5.24; Cl, 7.37; O, 9.98; Found: C, 77.50; H, 5.33;Cl, 7.45; O, 10.08. Fig. 28. 1 H NMR of 5d. 34

Fig. 29. 13 C NMR of 5d. 35

12-(4-fluorophenyl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (7f) M. P.: 209-211 C. FT-IR (KBr) ν cm -1 = 738, 835, 999, 1135, 1251, 1359, 1504, 1672, 2889, 2950. 1 H NMR (400 MHz, CDCl3): δ 7.92-6.84 (m, 13H), 5.73 (s, 1H), 2.78-2.69 (m, 2H), 2.64-2.55 (m, 2H), 2.49-2.30 (m, 1H), 2.07-1.99 (m, 1H). 13 C NMR (100 MHz, CDCl3): δ 21.42, 28.93, 36.01, 38.21, 116.53, 118.17, 118.72, 124.90, 126.07, 126.60, 126.93, 127.99, 128.20, 128.32, 128.61, 129.14, 129.19, 129.54, 130.14, 132.60, 132.69, 133.30, 134.48, 143.62, 149.02, 167.02, 198.18. Anal. Calc. for C23H17FO2: C, 80.22; H, 4.98; F, 5.52; O, 9.29. Found: C, 80.28; H, 4.92; F, 5.58; O, 9.25. Fig. 30. 1 H NMR of 7f. 36

Fig. 31. 13 C NMR of 7f. 37

9,10-dihydro-12-(naphthalen-2-yl)-8H-benzo[a]xanthen-11(12H)-one (7j) M. P.: 190-191 C. FT-IR (KBr) ν cm -1 = 748, 858, 954, 1193, 1373, 1508, 1650, 2875, 2933. 1 H NMR (400 MHz, CDCl3): δ 8.01-7.27 (m, 13H), 5.93 (s, 1H), 2.65-2.77 (m, 2H), 2.44-2.36 (m, 2H), 2.09-2.02 (m, 1H), 1.99-1.96 (m, 1H). 13 C NMR (100 MHz, CDCl3): δ 28.36, 30.44, 33.40, 36.04, 42.60, 52.06, 115.20, 118.21, 118.69, 124.85, 126.05, 126.54, 126.85, 127.87, 128.17, 128.28, 128.57, 129.15, 129.52, 130.10, 132.60, 133.27, 143.26, 148.97, 165.07, 198.01. Anal. Calc. for C27H20O2: C, 86.14; H, 5.36; O, 8.50. Found: C, 86.18; H, 5.41; O, 8.46. Fig. 32. 1 H NMR of 7j. 38

Fig. 33. 13 C NMR of 7j. 39

9,10-dihydro-9,9-dimethyl-12-(naphthalen-2-yl)-8H-benzo[a]xanthen-11(12H)-one (8l) M. P.: 228-230 C. FT-IR (KBr) ν cm -1 = 748, 825, 1110, 1218, 1342, 1512, 1650, 2989. 1 H NMR (400 MHz, CDCl3): δ 8.06-7.26 (m, 13H), 5.9 (s, 1H), 2.61 (s, 2H), 2.34-2.21 (quintet, J= 16 Hz, 2H), 1.13 (s, 3H), 0.94 (s, 3H). 13 C NMR (100 MHz, CDCl3): δ 21.43, 28.27, 28.87, 32.19, 35.07, 38.08, 38.18, 115.91, 116.11, 116.30, 116.52, 117.89, 118.14, 118.52, 124.69, 126.12, 128.20, 129.60, 130.15, 130.98, 131.06, 131.15, 132.37, 132.65, 141.31, 141.95, 148.88, 161.35, 165.43, 166.57, 197.51, 198.05. Anal. Calc. for C29H24O2: C, 86.11; H, 5.98; O, 7.91. Found: C, 86.17; H, 5.92; O, 7.96. Fig. 34. 1 H NMR of 8l. 40

Fig. 35. 13 C NMR of 8l. 41

9,10-dihydro-9,12-diphenyl-8H-benzo[a]xanthen-11(12H)-one (9a) M. P.: 118-124 C. FT-IR (KBr) ν cm -1 = 732, 811, 1128, 1228, 1359, 1519, 1666, 2885, 2943. 1 H NMR (300 MHz, CDCl3): δ 7.40-7.17 (m, 32H), 4.91 (s, 1H), 4.92 (s, 1H), 3.49 (quintet, J= 5.57 Hz, 1H), 3.34 (quintet, J= 4.95 Hz, 1H), 3.00-2.81 (m, 4H), 2.74-2.53 (m, 4H). 13 C NMR (75 MHz, CDCl3): δ 31.77, 31.94, 34.62, 34.75, 38.22, 38.76, 43.70, 44.02, 126.63, 126.72, 126.75, 127.02, 127.16, 127.25, 127.99, 128.88, 128.14, 128.30, 128.39, 128.51, 128.59, 128.72, 128.80, 142.01, 142.10, 143.81, 162.43, 162.54, 163.21, 163.36, 195.51, 195.65. Anal. Calc. for C29H22O2: C, 86.54; H, 5.47. Found: C, 86.00; H, 6.01. Fig. 36. 1 H NMR of 9a. 42

Fig. 37. 1 H NMR of 9a. 43

9,10-dihydro-12-(4-fluorophenyl)-9-phenyl-8H-benzo[a]xanthen-11(12H)-one (9b) M. P.: 234-235 C. FT-IR (KBr) ν cm -1 = 738, 835, 958, 1135, 1207, 1359, 1504, 1650, 2889, 3024. 1 H NMR (400 MHz, CDCl3): δ 7.94-6.83 (m, 15H), 5.77 (s, 1H), 3.54 (s, 1H), 3.05-2.91 (m, 2H), 2.87-2.65 (m, 2H ). 13 C NMR (100 MHz, CDCl3): δ 35.21, 35.32, 39.35, 40.10, 44.95, 45.32, 116.04, 116.25, 116.36, 116.46, 118.15, 118.21, 118.54, 124.74, 126.19, 126.24, 127.87, 127.91, 128.19, 128.27, 128.34, 129.66, 129.88, 130.03, 130.27, 131.11, 131.19, 131.28, 132.36, 132.73, 132.76, 141.37, 141.40, 143.47, 143.55, 148.87, 149.00, 161.18, 163.72, 165.21, 166.12, 197.23. Anal. Calc. for C29H21FO2: C, 82.84; H, 5.03; F, 4.52; O, 7.61. Found: C, 82.86; H, 5.08; F, 4.48; O, 7.56. Fig. 38. 1 H NMR of 9b. 44

Fig. 39. 13 C NMR of 9b. 45

9,10-dihydro-12-(4-chlorophenyl)-9-phenyl-8H-benzo[a]xanthen-11(12H)-one (9c) M. P.: 181-183 C. FT-IR (KBr) ν cm -1 = 748, 819, 997, 1143, 1228, 1595, 1650, 2875, 2933. 1 H NMR (300 MHz, CDCl3): δ 7.93-7.79 (m, 6H), 7.43-7.13 (m, 24H), 5.78 (s, 1H), 5.76 (s, 1H), 3.52-3.49 (m, 1H), 3.35-3.33 (m, 1H), 3.00-2.81 (m, 4H) 2.79-2.54 (m, 4H). 13 C NMR (75 MHz, CDCl3): δ 34.24, 34.34, 35.12, 35.26, 38.29, 38.93, 43.98, 43.76, 114.91, 116.98, 123.51, 126.62, 126.70, 127.05, 127.17, 127.19, 128.35, 128.52, 128.54, 128.73, 128.87, 128.93, 129.20, 129.88, 129.95, 141.86, 142.32, 142.91, 147.70, 162.71, 163.52, 164.11, 165.09, 195.56, 196.06. Anal. Calc. for C29H21ClO2: C, 79.72; H, 4.81; Found: C, 78.43; H, 4.79. Fig. 40. 1 H NMR of 9c. 46

Fig. 41. 13 C NMR of 9c. 47

9,10-dihydro-12-(4-nitrophenyl)-9-phenyl-8H-benzo[a]xanthen-11(12H)-one (9d) M. P.: 191-192 C. FT-IR (KBr) ν cm -1 = 746, 771, 829, 1201, 1346, 1514, 1650, 2891, 2952. 1 H NMR (400 MHz, CDCl3): δ 8.09-7.16 (m, 15H), 5.88 (s, 1H), 3.56 (s, 1H), 3.04-3.02 (d, J= 5.6 Hz, 2H), 2.81-2.65 (m, 2H ). 13 C NMR (100 MHz, CDCl3): δ 115.26, 116.91, 117.21, 118.21, 124.33, 124.70, 124.92, 126.45, 126.50, 127.83, 128.30, 128.45, 128.58, 129.85, 129.90, 130.09, 130.60, 130.66, 130.88, 132.14, 132.78, 143.19, 147.49, 148.89, 149.04, 152.65, 153.19, 165.83, 197.13. Anal. Calc. for C29H21NO4: C, 77.84; H, 4.73; N, 3.13; O, 14.30. Found: C, 77.88; H, 4.70; N, 3.09; O, 14.35. Fig. 42. 1 H NMR of 9d. 48

Fig. 43. 13 C NMR of 9d. 49

9,10-dihydro-12-(4-methylphenyl)-9-phenyl-8H-benzo[a]xanthen-11(12H)-one (9e) M. P.: 183-186 C. FT-IR (KBr) ν cm -1 = 702, 763, 833, 987, 1033, 1134, 1180, 1242, 1357, 1504, 1666, 2893, 3031. 1 H NMR (300 MHz, CDCl3): δ 8.01-7.88 (d, J= 8,35 Hz, 1H), 7.80-7.75 (m, 2H), 7.42-7.25 (m, 9H), 7.24-7.20 (m, 1H), 6.77-6.70 (m, 2H), 5.75 (s, 1H), 5.73 (s, 1H), 3.72-3.71 (t, J= 1.74, 3H), 3.55-3.33 (m, 1H), 3.05-2.83 (m, 2H), 2.79-2.58 (m, 2H). 13 C NMR (75 MHz, CDCl3) δ: 30.94, 31.12, 33.87, 34.00, 35.14, 35.26, 38.31, 38.78, 39.20, 43.74, 43.96, 44.05, 44.20, 55.17, 113.56, 113,71, 115.49, 116.67, 116.94, 117.01, 117.50, 117.86, 126.67, 126.78, 127.01, 127.27, 128.42, 128.75, 128.91, 129.40, 129.55, 136.21, 137.39, 142.05, 142.57, 147.68, 147.80, 157.85, 158.24, 162.43, 163.22, 163.86, 164.77, 195.72, 195.84, 196.21, 196.35. Anal. Calc. for C30H24O2: C, 86.51; H, 5.81; Found: C, 86.43; H, 5.76. Fig. 44. 1 H NMR of 9e. 50

Fig. 45. 13 C NMR of 9e. 51

9,10-dihydro-12-(4-methoxyphenyl)-9-phenyl-8H-benzo[a]xanthen-11(12H)-one (9f) M. P.: 198-200 C. FT-IR (KBr) ν cm -1 = 702, 748, 825, 1033, 1218, 1381, 1512, 1651, 2831, 2893. 1 H NMR (300 MHz, CDCl3): δ 2.80-2.59 (m, 2H), 3.05-2.84 (m, 2H), 3.55-3.33 (m, 1H), 3.73-3.71 (d, J= 2.27, 3H), 5.75-5.73 (d, J= 5.40, 1H), 6.77-6.70 (dd, J= 12.02, 8.65, 2H), 7.18-7.16 (d, J= 7.04, 1H), 7.45-7.24 (m, 9H), 7.80-7.75 (m, 2H), 8.00-7.98 (d, J= 8.28, 1H). 13 C NMR (75 MHz, CDCl3) δ: 33.86, 33.99, 35.12, 35.26, 38.20, 39.22, 43.96, 44.12, 55.09, 113.55, 113.71, 115.49, 116.98, 117.50, 123.74, 124.91, 126.72, 126.77, 127.00, 127.13, 128.40, 128.84, 129.45, 129.54, 131.31, 131.52, 136.88, 142.43, 142.56, 147.66, 157.84, 157.90, 163.85, 164.76, 196.21, 196.35. Anal. Calc. for C30H24O3 C, 83.31; H, 5.59; Found: C, 83.46; H, 5.64. Fig. 46. 1 H NMR of 9f. 52

Fig. 47. 13 C NMR of 9f. 53

3,3-dimethyl-12-phenyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin-1(2H)-one (11a) M. P.: 318-319 C. FT-IR (KBr) ν cm -1 = 1569, 1647, 2956, 3367. 1 H NMR (300 MHz, DMSOd 6 ): δ 1.06 (s, 3H, CH3), 1.17 (s, 3H, CH3), 2.23-2.37 (dd, J= 16.43, 30.48 Hz, 2H, CH2), 2.67 (s, 2H, CH2), 6.49 (s, 1H, CH), 7.09-7.65 (m, 9H, Ar-H), 10.87 (s, 1H, NH). 13 C NMR (75 MHz, DMSO-d 6 ) δ: 26.73, 26.43, 31.79, 35.92, 49.99, 58.15, 112.56, 119.77, 125.57, 125.67, 126.19, 127.44, 127.66, 128.13, 132.02, 132.87, 142.05, 158.48, 158.53, 162.57, 195.73. Anal. Calc. for C22H21N3O: C, 76.94; H, 6.16; N, 12.24; O, 4.66, Found: C, 76.81; H, 6.18, N, 12.19; O, 4.80. Fig. 48. 1 H NMR of 11a. 54

Fig. 49. 13 C NMR of 11a. 55

12-(4-fluorophenyl)-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin- 1(2H)-one (11e) M. P.: 324-326 C. FT-IR (KBr) ν cm -1 = 1565, 1652, 2958, 3361. 1 H NMR (300 MHz, DMSOd 6 ): δ 1.07 (s, 3H, CH3), 1.18 (s, 3H, CH3), 2.25-2.36 (dd, J= 11.23, 22.56 Hz, 2H, CH2), 2.77 (s, 2H, CH2), 6.48 (s, 1H, CH), 7.10-7.76 (m, 8H, Ar-H), 10.91 (s, 1H, NH). 13 C NMR (75 MHz, DMSO-d 6 ) δ: 26.83, 28.53, 31.87, 35.94, 50.20, 58.18, 112.36, 119.56, 125.47, 125.67, 126.28, 127.44, 127.66, 128.23, 132.42, 132.94, 142.15, 158.59, 158.73, 162.67, 196.01. Anal. Calc. for C22H20FN3O: C, 73.11; H, 5.58; N, 11.63; O, 4.43, Found: C, 73.17; H, 5.63, N, 11.65; O, 4.47. Fig 50. 1 H NMR of 11e. 56

Fig 51. 13 C NMR of 11e. 57

12-phenyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin-1(2H)-one (12) M. P.: 312-313 C. FT-IR (KBr) ν cm -1 = 1560, 1666, 2968, 3370. 1 H NMR (300 MHz, DMSOd 6 ): δ 1.86-1.93 (m, 2H, CH3), 2.23-2.29 (m, 2H, CH3), 2.59-2.61 (d, J= 5.05 Hz, 2H, CH2), 6.49 (s, 1H, CH), 7.09-7.90 (m, 9H, Ar-H), 11.11 (s, 1H, NH). 13 C NMR (75 MHz, DMSO-d 6 ) δ: 18.55, 19.73, 26.39, 30.14, 35.97, 49.99, 58.15, 112.64, 119.67, 125.56, 125.67, 126.28, 127.34, 127.54, 128.22, 132.13, 132.89, 142.08, 159.05, 159.09, 162.74, 196.04. Anal. Calc. for C26H21N3O: C, 79.77; H, 5.41; N, 10.73; O, 4.09, Found: C, 79.82; H, 5.47, N, 10.79; O, 4.15. Fig 52. 1 H NMR of 12. 58

Fig 53. 13 C NMR of 12. 59

3,12-diphenyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin-1(2H)-one (13) M. P: 335-336 C. FT-IR (KBr) ν cm -1 = 1558, 1662, 2960, 3364. 1 H NMR (300 MHz, DMSOd 6 ): δ 2.87-3.06 (m, 2H, CH2), 3.23-3.48 (t, J= 5.01, 2H, CH2), 3.51 (s, 1H, -CH), 6.41 (s, 1H, - CH), 6.42-7.35 (m, 14H, Ar-H), 10.93 (s, 1H, NH). 13 C NMR (75 MHz, DMSO-d 6 ) δ: 22.90, 23.43, 25.92, 33.52, 54.33, 107.01, 109.57, 116.78, 120.25, 121.54, 126.63, 126.89, 127.24, 127.86, 128.20, 140.95, 142.72, 159.07, 159.09, 162.81, 191.72. Anal. Calc. for C20H17N3O: C, 76.17; H, 5.43; N, 13.32; O, 5.07, Found: C, 76.24; H, 5.50, N, 13.39; O, 5.14. Fig 54. 1 H NMR of 13. 60

Fig 55. 13 C NMR of 13. 61

[1] N. Asim, S. Radiman, M.A. Yarmo, Am. J. Applied. Sci., 6 (2009) 1424-1428. 62