Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz annhlaton paper. hep-ph/3932, 31176, 44162, 411366, 6249 PLATON FORTRAN codes from http://dtp.physcs.auth.gr Supported by the Greek Mnstry of Educaton and Relgon under the EPEAK program Pythagoras Ioannna Aprl 26 1
Neutralnos: very plausble DM components. In addton to ther astrophyscal sgnatures, we need to study ther LHC and LC producton propertes. Only then, we wll be certan An mportant ndrect DM neutralno sgnature comes from a contnuous γ-spectrum arsng from γ... Great f sharp dscrete photons are also observed from Z But then mportant to study reverse neutralno producton at the LC or the LHC processes qq γγ, γ, γ + hggs + ee χ χ, γγ χ χ, gg L, R ± qq χ g, gq χ q, qq ' χ χ, gg χ g a Ioannna Aprl 26 2
qq qq ee + γγ, γz, gg χ χ, γγ χ χ, gg ± LR, a χ g, gq χ q, qq ' χ χ, gg χ g Al results n MSSM. Green processes studed to complete 1-loop, whle magenta to tree level ncludng 1-loop leadng ln and ln 2 terms. 1-loop processes are so complcated, that cannot be wrtten explctly. FORTRAN codes are therefore released vald for any set of real MSSM parameters at the EW scale. Neutralno fermonc antsymmetry, and γγ or g a g a bose statstcs are nstrumental for smplfyng the calculaton; (a=gluon color ndex). Ioannna Aprl 26 3
χ ( λ ) χ ( λ ) γ( µ ) γ ( µ ) F F F 1 2 1 2 1 2 1 2 µ 1 µ 2 ( θ ) ( 1) ( ) 1 2 1 2 cm = Fλλµµ π θ 2 1 1 2 cm λλµµ λ1 λ2 ( θ ) ( 1) ( ) 1 2 1 2 cm = F π θ 1 2 2 1 cm λλ µµ λλ µ µ ( θ ) = ( 1) λλ µµ ( θ ) λ1 λ 2 µ 1+ µ 2 λ, λ, µ, µ, cm λλ µ µ 1 2 1 2 1 2 1 2 F ηη F cm γγ ( θ cm ) CP antsymmetry bose symmetry symmetry χ ( λ ) χ ( λ ) γ ( µ ) Z( µ ) F ( θ ) F F 1 2 1 2 = F λλ µµ 1 2 1 2 µ 1 µ 2 ( θ ) ( 1) ( ) 1 2 1 2 cm λλµµ π θ 2 1 1 2 cm λλµµ = λ1 λ 2 µ 1+ µ 2 1, 2, 1, ( θ ) ( 1) 2 cm ηη θ 1 2 1 2 c λ λ µ µ λ λ µ µ F cm ( ) m CP antsymmetry symmetry Ioannna Aprl 26 4
χ χ γγ χ χ Independent Box dagrams for γz and γγ γz Ioannna Aprl 26 5
Bubbles, ntal and fnal trangles for γz and γγ. χ χ γz Smlarly for χ χ γγ Ioannna Aprl 26 6
Addtonal ndependent dagrams for γz only. χ χ γz χ k χ k χ k χ k Ioannna Aprl 26 7
v The relevant quantty for DM searches s 11 1 3 v σ( χ χ γγ), v σ( χ χ γz) n 1 cm 27 3 1 11 1 1 11 1 1 s 5 v11σ( χ 1 χ1 γγ) 1,.1, 1 for B, H, W v σ( χ χ γz) 1,.1 1, 1 1 for B, H, W 5 11 1 1 But our codes also gve results for any v v Z v σ( χ χ γγ), σ( χ χ γ ), σ( χ χ gg) at small relatve veloctes. Ioannna Aprl 26 8
Neutralno producton n LC e τ e + τ χ λ χ λ 1 2 1 2 ( ) ( ) ( ) ( ) Process appearng already at tree level. It has been extensvely studed Ioannna Aprl 26 9
Neutralno producton n LC γγ γ ( µ ) γ ( µ ) χ ( λ ) χ ( λ ) F F F 1 2 1 1 2 1 2 µ 1 µ 2 ( θ ) ( 1) ( ) 1 2 1 2 cm = Fµµλλ π θ 1 2 2 1 cm µµλλ λ1 λ2 ( θ ) ( 1) ( ) 1 2 1 2 cm = F π θ 2 1 1 2 cm µµ λλ µ µλλ ( θ ) = ( 1) λ1 λ 2 µ 1+ µ 2 µ, µ, λ, λ cm µ µ λ 1 2 1 2 1 2 2 F µµλλ ηη F ( θ ) cm χ χ γγ ( ) 1λ θ 2 cm antsymmetry bose symmetry CP symmetry Ioannna Aprl 26 1
Ioannna Aprl 26 11
SPS1a 1 m = 25 GeV, m = 1, A = 1 1/2 tanβ = 5, µ > Ioannna Aprl 26 12
Neutralno par producton at LHC: The 1-loop (box, bubble, ntal and fnal trangle) dagrams are smlar to those studed above. qq, gg χ χ SPS1a m = 25 GeV, m = 1, A = 1 1/2 tanβ = 1, µ > Ioannna Aprl 26 13
Sngle neutralno par producton at LHC; PLATONgluno qq χ g, gq χ q, qq ' χ χ ±, gg χ g L, R a The 1-loop (box, bubble, ntal and fnal trangle) dagrams are agan smlar to those studed above Ioannna Aprl 26 14
Sngle neutralno par producton at LHC; PLATONgluno qq χ g, gq χ q, qq ' χ χ ±, gg χ g L, R a Ioannna Aprl 26 15
Neutralnos through cascades at LHC g qq qq' χ q ± ± 1 1 1 2 a 1 2 g qq qq χ q 1 1 1 1 q q' Z χ W 2 1 1 1 χ 1 Modes lke ths are the man ones for producng neutralnos at LHC. Already extensvely studed Ioannna Aprl 26 16
Conclusons An extensve study of 1-loop neutralno processes relevant for ts dentfcaton n DM, LHC and LC γγ has been completed and FORTRAN codes have been released n http://dtp.physcs.auth.gr applyng to MSSM wth any real parameters. Ioannna Aprl 26 17