THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

1 Complete Set of Grassmann States

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

α & β spatial orbitals in

A Class of Orthohomological Triangles

Section 8.3 Trigonometric Equations

Multi-dimensional Central Limit Theorem

Uniform Convergence of Fourier Series Michael Taylor

Multi-dimensional Central Limit Theorem

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

2 Composition. Invertible Mappings

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Example Sheet 3 Solutions

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Every set of first-order formulas is equivalent to an independent set

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

8.324 Relativistic Quantum Field Theory II

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

ST5224: Advanced Statistical Theory II

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Finite Field Problems: Solutions

Math221: HW# 1 solutions

CRASH COURSE IN PRECALCULUS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 3 Solutions

Section 7.6 Double and Half Angle Formulas

Areas and Lengths in Polar Coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

PARTIAL NOTES for 6.1 Trigonometric Identities

Areas and Lengths in Polar Coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Srednicki Chapter 55

Tridiagonal matrices. Gérard MEURANT. October, 2008

Reminders: linear functions

Solution Series 9. i=1 x i and i=1 x i.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

F19MC2 Solutions 9 Complex Analysis

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Fractional Colorings and Zykov Products of graphs

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

Other Test Constructions: Likelihood Ratio & Bayes Tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Trigonometric Formula Sheet

Geodesic Equations for the Wormhole Metric

Parametrized Surfaces

The Pohozaev identity for the fractional Laplacian

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Lecture 34 Bootstrap confidence intervals

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

4.6 Autoregressive Moving Average Model ARMA(1,1)

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Congruence Classes of Invertible Matrices of Order 3 over F 2

A Note on Intuitionistic Fuzzy. Equivalence Relation

Statistical Inference I Locally most powerful tests

derivation of the Laplacian from rectangular to spherical coordinates

Concrete Mathematics Exercises from 30 September 2016

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 15 - Root System Axiomatics

Problem Set 3: Solutions

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

1 String with massive end-points

LECTURE 4 : ARMA PROCESSES

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Lecture 2. Soundness and completeness of propositional logic

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

12. Radon-Nikodym Theorem

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

1. Introduction and Preliminaries.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Math 6 SL Probability Distributions Practice Test Mark Scheme

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

MA 342N Assignment 1 Due 24 February 2016

arxiv: v1 [math.ca] 6 Dec 2012

Transcript:

THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy. Résumé. Nous donnons une formule explcte pour le second moment pondéré de la foncton ζ sur la drote crtque permettant une évaluaton rapde pour n mporte quel degré de précson. For Iz > let let E 1 z) 1 4 1. Introducton dn)enz) E 1 z) 1/z)E 1 1/z) : ψz). Then ψ s analytc n C, the complex plane mnus the negatve real-axs s gven n that regon by ψz) logz) γ ζs)ζ1 s) z s ds. z sn s Moreover, ψ satsfes a 3-term relaton 1/) ψz + 1) ψz) 1 z + 1 ψ z ) z + 1 1 Mathematcs Subject Classfcaton. 11M6. Key words phrases. Remann zeta functon, Moments. Research supported n part by a grant from the Natonal Scence Foundaton.

4 The second weghted moment of ζ for z 1 satsfes, for m 1, wth b 1 log1 + z) 1 ψ1 + z) + 1 1 + z 1 + z a m 1 m + 1 + b m + for n. The a m are extremely small: a m 5/4 3/4 e m m 3/4 m j b n ζn)b n n m 1 j a m 1) m z m ) b j+ sn m + 3 8 ) + O 1 m )) so that the seres a m z m converges every on ts crcle of convergence z 1. All of these results can be found n [BC]. Theorem 1. Let. The second moment of ζ Iδ) Then, for < Rδ) < Iδ we have C δ) log1 e δ ) + 1) sn δ a m 1 m+1 + b m + m j C 3 δ) ζ1/ + t) e δt Iδ) C δ) + C 1 δ) + C δ) + C 3 δ) + C 1 δ) 1 sn δ m 1 j C δ) sn δ/ e δ/ 1 e δ + eδ/ δ + / + γ log ); a m e mδ, ) b j+ wth b 1 b n ζn)bn n for n ; 1) n dn)e n cot δ ; ζ1/ + t) e t snh tδ + cosh tδ Publcatons mathématques de Besançon - 13

S. Bettn J. B. Conrey 43 If δ s real ths smplfes to We can use the fact that Iδ) 1 + log sn δ ) sn δ + δ) cos δ + log γ) sn δ + 1 sn δ a m cos mδ ζ1/ + t) e t snh tδ a m γ + 1 log that cos mδ 1 sn δ U m 1 cos δ mδ ) sn, U m s the mth Chebyshev polynomal, to rewrte ths further. Corollary 1. Suppose that < δ <. Then Iδ) γ log log sn δ ) sn δ + δ) cos δ + log γ) sn δ a m U m 1 cos δ mδ ) sn ζ1/ + t) e t snh tδ In ths verson the frst term above s the readly recognzed usual man term. Note that the ntegral n the rght-h sde of ths formula can be rewrtten n terms of the orgnal ntegral I: ζ1/ + t) e t snh tδ dt 1) n+1 In + δ) In δ)). Another way to put t s f we let then wδ, t) : e δt + e t snh δt cosh δ)t, ζ1/ + t) wδ, t) dt γ log log sn δ ) sn δ + δ) cos δ + log γ) sn δ + a m U m 1 cos δ mδ ) sn. Snce a m e m we have the followng estmate for a precse evaluaton of Iδ) as δ. Corollary. Gven δ > N 1 we can compute Iδ) to an accuracy of 1 N n tme tδ, N) N. Publcatons mathématques de Besançon - 13

44 The second weghted moment of ζ Ths s farly remarkable n that t doesn t depend on δ! By contrast f one consders the assocated ntegral 1 δ ζ1/ + t) dt then the tme to calculate wll depend on δ n a sgnfcant way, say δ θ for some θ >. Fnally, usng the fact that when δ s real, the magnary part of C 3 δ) nvolves the weght w δ, t) we deduce a formula for the dvsor sum n C δ) n terms of the coeffcents a m : Corollary 3. For < δ < sn δ dn) 1) n e n cot δ 1 a m + a m 1 ) snm 1 sn δ )δ) + δ 4 sn δ 1 + log cos δ ) cos δ. Ths can be rewrtten as a m + a m 1 ) snm 1 )δ) δ cos δ sn δ 1 + log cos δ ) ) cos δ dn) 1) n e n cot δ. If δ 1 1, then the frst term of the dvsor sum on the rght-h sde of the formula s 1.1 1 79, as the frst two terms on the rght-h sde are.159155.... That means that the sum on the left-h sde s.159155 1.1 1 79 up to an error of around 1.99 1 5458, whch s the second term of the dvsor sum. Snce the terms a m are around e m t would take more than 6 mllon terms of the seres n m each wth thouss of dgts of accuracy) to numercally check ths. 3. Proof of Theorem 1 Assume frst of all that δ s real wth < δ <. We have Now so that Iδ) 1 1/+ 1/ ζs)ζ1 s)e δs 1/) ds e δ/ 1/+ 1/ χ1 s) ) s Γs)e s/ + e s/ ) I 1 δ) e δ/ Iδ) I 1 δ) + I δ) 1/+ 1/ ) s Γs)e s/ ζs) e δs ds χ1 s)ζs) e δs ds. Publcatons mathématques de Besançon - 13

S. Bettn J. B. Conrey 45 Now I δ) e δ/ I δ) e δ/ I 3 δ) e δ/ 1/+ 1/ ) s Γs)e s/ ζs) e δs ds. I 1 δ) I δ) I 3 δ) 1/+ 1/ 1/ 1/ ) s Γs)e s/ ζs) e δs ds ) s Γs)e s/ ζs) e δs ds. Thus, Iδ) I δ) + I δ) I 3 δ). Note that I δ) I 3 δ) are analytc for δ < /. We rewrte I I 3 as ntegrals over t as I δ) e δ/ I 3 δ) e δ/ 1/+ 1/ e s/ ζs)ζ1 s) cos s/ eδs ds ζ1/ + t) e t/ e /4 e δt cos dt 1/ + t) 1/ 1/ 1/+ e δ/ 1/ ζs)ζ1 s) e s/ cos s/ eδs ds e 1 s)/ ζs)ζ1 s) cos 1 s)/ eδ1 s) ds ζ1/ + t) e t/ e /4 e δt cos 1/ t) Next we wrte e δt cosh δt + snh δt e δt cosh δt snh δt. Also, for real t, Thus, e /4 cos 1/ + t) + e /4 e t/ cos 1/ t) e /4 cos 1/ + t) e /4 et/ cos 1/ t). I δ) I 3 δ) Returnng to I we have ζ1/ + t) e t snh tδ + cosh tδ I δ) e δ/ Res s1 ) s Γs)e s/ ζs) e δs + Jδ) e δ/ δ + / + γ log ) + Jδ) Publcatons mathématques de Besançon - 13

46 The second weghted moment of ζ Jδ) e δ/ + ) s Γs)e s/ ζs) e δs ds; note that ths s a place we need the temporary) assumpton that δ s real to ensure convergence of the ntegral on the new path. Expng ζs) dn)n s nto ts Drchlet seres nterchangng the summaton ntegraton, we obtan Now ths s Thus, Jδ) e δ/ dn) 1 e δ/ + dn)e ne δ e δ/ 1 E 1 e δ )). E 1 e δ ) E 1 1 e δ ) 1 1 e δ 1 4 Jδ) e δ/ Altogether we now have Recall that e δ/ 1 eδ sn δ/ ζ1/ + t) e δt dt e δ/ 1 e δ 1 4 Γs)ne δ ) s ds ) 1 1 1 e δ E 1 1 e δ + ψ1 e δ ) ) ) n dn)e 1 e δ + ψ1 e δ ). ) ) n dn)e 1 e δ e δ/ ψ1 e δ ) 1) n dn)e n cot δ e δ/ ψ1 e δ ). e δ/ 1 e δ + eδ/ δ + / + γ log ) e δ/ ψ1 e δ ) sn δ/ + 1) n dn)e n cot δ log z + 1) ψz) + z z ζ1/ + t) e t snh tδ + cosh tδ a m 1) m z 1) m Publcatons mathématques de Besançon - 13

S. Bettn J. B. Conrey 47 so that ψ1 e δ ) log1 e δ ) + 1) 1 e δ ) e δ/ ψ1 e δ ) log1 e δ ) + 1) sn δ + 1 e δ ) + 1 sn δ a m e mδ a m e mδ. The asserton of the theorem now follows for real δ. But both sdes are analytc n the regon < R < Iδ <. Therefore, by analytc contnuaton the dentty of the theorem holds n ths larger regon of the complex plane. References [BC] Bettn, Sro; Conrey, Bran, Perod functons cotangent sums. Algebra Number Theory 7 13), no. 1, 15 4. 16 août 13 S. Bettn, Centre de Recherches Mathematques Unverste de Montreal, P. O Box 618, CentreVlle Staton, Montreal, Quebec H3C 3J7 E-mal : bettn@crm.umontreal.ca J.B. Conrey, Amercan Insttute of Mathematcs, 36 Portage Ave, Palo Alto, CA 9436 USA School of Mathematcs, Unversty of Brstol, Brstol, BS8 1TW, Unted Kngdom E-mal : conrey@amath.org Publcatons mathématques de Besançon - 13