Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Σχετικά έγγραφα
Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supplementary Material

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

IV. ANHANG 179. Anhang 178

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supplementary information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Table of Contents 1 Supplementary Data MCD

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Electronic Supplementary Information (ESI)

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Electronic Supplementary Information (ESI)

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Experimental. Crystal data

Supporting Information

Supporting Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Fused Bis-Benzothiadiazoles as Electron Acceptors

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

metal-organic compounds

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

metal-organic compounds

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information. for

Direct metallation of thienopyrimidines using a mixed lithium-cadmium base and antitumor activity of functionalized derivatives

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Supporting Information

Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics

phase: synthesis of biaryls, terphenyls and polyaryls

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Multi odd-even effects on cell parameters, melting. points, and optical properties of chiral crystal solids. based on S-naproxen

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Supporting Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Supporting Information

metal-organic compounds

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

1.6 Other Intramolecular Decarboxylative Coupling Reactions Decarboxylative Coupling Reaction of Allyl Carboxylates

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Electronic Supplementary Information:

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information for

Experimental. Crystal data. C 37 H 38 N 4 O 6 M r = Monoclinic, P2 1 a = (2) Å b = (7) Å c = (2) Å = 112.

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Experimental. Crystal data. C 23 H 27 ClN 2 O M r = Triclinic, P1 a = (3) Å b = (6) Å c = (7) Å = (4) = 80.

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

of the methanol-dimethylamine complex

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

SUPPORTING INFORMATION

Supporting Information

Supplementary Material

Transcript:

Supporting Information Pd()-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the Synthesis of Heteroaromatic Biaryls Debkumar andi, Yang-Ming Jhou, Jhen-Yi Lee, Bing-Chiuan Kuo, Chien-Yu Liu, Pei-Wen Huang and Hon Man Lee* Department of Chemistry, ational Changhua University of Education, Changhua 558, Taiwan, R..C. E-mail: leehm@cc.ncue.edu.tw Table of Content 1. Details of X-ray Diffraction Studies S2 2. Crystallographic Data for 1, 6, 17A, 17B, 21A and 23A S3 S4 3. Catalytic Table S4 4. X-ray Structures for 1, 6, 17A, 17B, 21A and 23A S5 S7 5. Proposed Catalytic Cycles S8 6. Copies of MR spectra S9 S27 S1

X-Ray Diffraction Studies. Compound 1 was collected at 1(2) K on with a CCD area detector. Graphite-monochromatized Mo Kα radiation was used (λ =.7173 Å). Data collection and reduction were performed using CrysAlisPro software. 1 Single-crystal X-ray diffraction data for all others were collected with a CCD area detector and a graphite monochromater utilizing Mo Kα radiation (λ =.7173 Å) at 15(2) K. The unit cell parameters were obtained by least-squares refinement. The data were integrated via SAIT. 2 Lorentz and polarization effect and multiscan absorption corrections were applied with SADABS. 3 The structures were solved by direct methods and refined by full-matrix least squares methods against F 2 with SHELXTL. 4 All non-h atoms were refined anisotropically. All H-atoms were fixed at calculated positions and refined with the use of a riding model. CCDC-882516 (1), -88252 (6), -882517 (17A), -882768 (17B), -882518 (21A), and -882519 (23A) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. S2

Table S1. Crystallographic Data empirical formula 1 C 4 H 8.5C 6 H 14 6 17A 17B 21A 23A C 46 H 48 6 5 Pd C 15 H 12 2 C 16 H 12 2 C 16 H 12 2 C 19 H 15 C 16 H 15 C 4 H 8.5C 6 H 14 formula weight 964.95 236.27 232.28 232.28 257.32 221.29 crystal system monoclinic triclinic monoclinic orthorhombic monoclinic orthorhombic space group P2 1 /n Pī P2 1 /n P2 1 2 1 2 1 P2 1 /c P2 1 2 1 2 1 a, Å 16.1631(3) 6.8234(2) 7.8322(2) 7.94(3) 1.3353(2) 7.243(15) b, Å 17.294(4) 9.2369(2) 17.51(4) 1.3688(4) 19.1288(4) 9.93(2) c, Å 18.568(3) 9.4964(2) 9.8396(2) 16.6945(8) 7.464(1) 17.387(4) α, deg 9 8.78(1) 9 9 9 9 β, deg 16.224(2) 74.517(1) 111.932(1) 9 97.652(1) 9 γ, deg 9 79.485(1) 9 9 9 9 V, Å 3 4822.61(16) 563.9(2) 1218.95(5) 1227.99(9) 138.68(4) 1246.7(5) T, K 1(2) 15(2) 15(2) 15(2) 15(2) 15(2) D, g/cm 3 1.329 1.393 1.266 1.256 1.238 1.179 Z 4 2 4 4 4 4 no. of unique data 1377 2849 3158 318 355 3221 no. of params refined 591 164 164 164 181 157 R 1 a [I > 2σI].465.424.467.368.48.435 wr 2 b (all data).1468.1145.1253.868.1136.1234 a R 1 = Σ( F o F c )/Σ F o. b wr 2 = [Σ( F o 2 F c 2 ) 2 /Σ (F o 2 )] 1/2 S3

Table S2. Selected bond distances (Å) and Angles ( ) of 1 1 Pd1 C1 2.52(4) Pd1 C23 2.66(3) Pd1 C24 2.87(4) Pd1 C25 2.124(4) C1 Pd1 C23 96.31(13) C1 Pd1 C24 111.63(15) C23 Pd1 C25 111.74(14) C24 Pd1 C25 4.25(15) C1 Pd1 C25 151.85(14) C23 Pd1 C24 151.92(15) Table S3. Tandem C H arylation and decarboxylation of 1-methylindole-3-carboxylic acid and aryl halides mediated by different catalyst systems a entry cat. yield (%) c 15A:15C 1 1 6 -- 2 1 b 6 3:1 3 Pd(Ac) 2/2L HCl 22 -- 4 Pd(Ac) 2/2PCy 3 37 4:1 5 Pd(PPh 3) 4 46 -- a Reaction conditions: 3. mmol 2', 3. mmol 4-bromoacetophenone, 6. mmol KAc, 4 ml dry DMA, 2.5 mol % 1, 16 ºC, isolated yield, 24 h, L HCl = ligand precursor in 1. b 3 equiv. 4-bromoacetophenone. c isolate yield. S4

Figure S1. Molecular structure of 1 (5% probability level) Figure S2. Molecular structure of 6 (5% probability level) S5

Figure S3. Molecular structure of 17A (5% probability level) Figure S4. Molecular structure of 17B (5% probability level) S6

Figure S5. Molecular structure of 21A (5% probability level) Figure S6. Molecular structure of 23A (5% probability level) S7

Me F PdL 2 Me CH F Me PdLH Me CPdLH F F Scheme S1. A proposed catalytic cycle for the decarboxylation mediated by 1 Scheme S2. A proposed catalytic cycle for the decarboxylation coupling mediated by 1 S8

MESITYL CH3 LIGAD PRECURSR H.ESP 2.3 1..9.8 ormalized Intensity.7.6.5.4 + 6.95 Cl - 3.29 2.29.3.2 1.49 7.56 7.54 7.36 7.48 7.5 5.53.1 1.1 6.43 1.2 2.3 2.7 3.17 3.116.24 11 1 9 8 7 6 5 4 3 2 Figure S7. 1 H MR spectrum of [LH] + Cl - 1. MESITYL CH3 LIGAD PRECURSR C13.ESP 134.27 129.6 77.57 77.15 76.72.9 17.35.8.7 + Cl - 2.98 ormalized Intensity.6.5.4.3.2 164.32 141. 14.81 127.64 124.5 122.4 51.7 37.79.1 24 22 2 18 16 14 12 1 8 6 4 2 Figure S8. 13 C{ 1 H} MR spectrum of [LH] + Cl - S9

MESITYL PD() CH3 CMPLEX H.ESP 1.59 1..9.8 R R ormalized Intensity.7.6.5.4 7.24 Pd R = mesityl.3.2.1 7.57 7.55 7.43 7.29 7.26 6.97 6.89 6.88 6.71 6.61 6.56 6.8 5.18 5.12 4.43 4.37 4.9 4.3 3.31 3.2 3.5 2.99 2.33 2.23 2.7 1.67 1.43.5 6.61 4.58 1.55 2.2 1.53 2.42 1.3 1.48 1.3 1.9 1.8 3.15 1.53 3.511.42 1.543.6 3.19 3.32 3.71 3.34 3.62 11 1 9 8 7 6 5 4 3 2 1 Figure S9. 1 H MR spectrum of 1 MESITYL PD() CH3 CMPLEX C13 44-5.ESP 77.43 77. 76.58.7.65.6.55 R R.5 ormalized Intensity.45.4.35.3.25 Pd R = mesityl.2.15.1.5 193.7 188.66 174.13 173.9 166.53 166.24 141.74 138.9 138. 136.75 135.18 13.46 129.91 127.92 127. 123.18 122.64 121.97 53.26 51.16 39.27 38.9 38.71 37.16 21.14 21.5 17.44 17.32 2 18 16 14 12 1 8 6 4 2 Figure S1. 13 C{ 1 H} MR spectrum of 1 S1

1. complex 2.esp 7.41 7.33.9.8.7 ormalized Intensity.6.5.4.3 7.88 7.86 6.89 6.91 6.86 6.49 6.51 6.47.2.1 1.2 3. 1.1 1.1 1.5 1. 9.5 9. 8.5 8. 7.5 7. 6.5 6. 5.5 5. 4.5 Figure S11. 1 H MR spectrum of 2 1. complex 3.esp 2.44.9 F.8.7 ormalized Intensity.6.5.4.3 7.76 7.74 7.73 7.13 7.1 6.22.2 7.72 7.71 7.8 7.7.1 2.5 2.28 1. 3.16 9 8 7 6 5 4 3 2 1 Figure S12. 1 H MR spectrum of 3 S11

complex 4.ESP 3.88 1..9.8.7 ormalized Intensity.6.5.4.3.2.1 7.84 7.82 7.49 7.47 7.41 7.18 7.17 7.17 6.67 1.3 2.16 1.11 1. 1. 3.17 1 9 8 7 6 5 4 3 2 1 Figure S13. 1 H MR spectrum of 4 1. complex 5.esp.9.8.7 ormalized Intensity.6.5.4.3.2.1 7.66 7.64 7.31 7.29 7.26 7.12 7.11 7.1 7.9 7.9 6.55 6.54 5.32 1. 9.61 1. 2.1 1. 9.5 9. 8.5 8. 7.5 7. 6.5 6. 5.5 5. 4.5 4. 3.5 3. 2.5 2. Figure S14. 1 H MR spectrum of 5 S12

1. complex 6.esp 2.62.9.8 ormalized Intensity.7.6.5.4.3 8.8 8.5 7.77 7.67 7.64.2.1 8.39 7.24 7.22 6.82 6.85 1.2 2.4 1.25 3. 1.24 1.1 3.28 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 Figure S15. 1 H MR spectrum of 6 complex 7.esp 7.74 1. 7.65.9 ormalized Intensity.8.7.6.5.4.3.2 8.34 8.31 7.76 7.75 7.63 7.63 7.63 7.25 7.19 7.22 6.88 6.85 6.83.1 1. 6.75 1.16 1.6 12 11 1 9 8 7 6 5 4 3 2 Figure S16. 1 H MR spectrum of 7 S13

1. complex 8.esp 7.4.9 7.41.8.7 7.57 ormalized Intensity.6.5.4 7.59 7.37.3 8.2 8.18 7.35 7.35 7.28 6.67 6.67.2 7.9 7.6 7.4 6.65 6.64.1 1.29 7. 1.18 1.22 1 9 8 7 6 5 4 3 2 1 Figure S17. 1 H MR spectrum of 8 1. complex 9.esp 2.3.9.8.7 ormalized Intensity.6.5.4.3.2.1 8.17 7.56 7.58 7.58 7.55 7.31 7.29 7.2 7.17 7.4 6.66 6.64 6.62 1.3 2.61 4.56 1.9.98 3.4 11 1 9 8 7 6 5 4 3 2 1 Figure S18. 1 H MR spectrum of 9 S14

complex 1.esp 3.71 1..9.8 CH 3.7 ormalized Intensity.6.5.4 7.58.3.2.1 8.22 8.19 7.54 7.51 7.5 7.27 7. 6.96 6.95 6.94 6.82 6.63 6.61 1.11 1.19 1.3 1.16 3.35 1.7 1.5 3. 1 9 8 7 6 5 4 3 2 Figure S19. 1 H MR spectrum of 1 1. complex 11.esp 2.59 2.44.9.8 F.7 ormalized Intensity.6.5.4.3 7.95 7.92 7.25 7.22 6.98.2 7.38 7.36 7.35 7.1 6.95.1 2.62.1 2.3 2. 3.54 3.48 11 1 9 8 7 6 5 4 3 2 1 Figure S2. 1 H MR spectrum of 11 S15

1. complex 11-C13.esp.9.8 F.7 ormalized Intensity.6.5.4.3.2.1 197.56 167.25 165.19 161.89 16.24 136.29 135.22 13.45 13.35 129.87 127.48 128.82 124.79 115.98 115.69 114.9 26.67 11.76 24 22 2 18 16 14 12 1 8 6 4 2 Figure S21. 13 C{ 1 H} MR spectrum of 11 complex 12.esp 2.43 1..9 F.8.7 ormalized Intensity.6.5.4.3 7.64 7.61 7.26 7.24 6.98.2 6.95.1 2.7 4.21 2. 3.2 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 Figure S22. 1 H MR spectrum of 12 S16

1. complex 12-C13.esp.9.8.7 F 132.63 ormalized Intensity.6.5.4.3.2.1 167.48 161.98 16.15 135.22 13.31 127.97 124.47 118.43 116.13 114.38 115.83 111.69 11.79 18 16 14 12 1 8 6 4 2 Figure S23. 13 C{ 1 H} MR spectrum of 12 1. complex 13.esp.9.8 H 3 C.7 ormalized Intensity.6.5.4 F 3.68 2.27.3.2.1 7.3 7.28 7.27 7.25 6.94 6.91 6.85 6.77 6.74 2. 2.152.15 2.7 3.36 3.15 11 1 9 8 7 6 5 4 3 2 1 Figure S24. 1 H MR spectrum of 13 S17

.8 complex 13-C13.esp.7 H 3 C.6 ormalized Intensity.5.4.3 F 13.97 114.28.2.1 166.55 165.4 161.74 16.29 159.18 13.35 13.24 125.41 115.74 115.45 55.29 29.73 18 16 14 12 1 8 6 4 2 Figure S25. 13 C{ 1 H} MR spectrum of 13 1. complex 14.esp 2.42.9 F.8.7 ormalized Intensity.6.5.4.3.2.1 7.35 7.43 7.41 7.38 7.37 7.16 6.98 6.95 5.54 2.74 2. 3.88 12 11 1 9 8 7 6 5 4 3 2 1-1 Figure S26. 1 H MR spectrum of 14 S18

1. complex 15A.esp 3.77 2.65.9.8 ormalized Intensity.7.6.5.4.3.2.1 8.6 8.3 7.66 7.63 7.62 7.6 7.36 7.28 7.16 7.13 6.65 2.24 3.41 1.37 1.44 1.2 1. 3.16 3.3 13 12 11 1 9 8 7 6 5 4 3 2 1 Figure S27. 1 H MR spectrum of 15A complex 15B.esp 4.9 1. 2.64.9.8.7 ormalized Intensity.6.5.4.3 8.6 8.3 7.72 7.69 7.46 7.39 7.24.2.1 7.18 7.17 7.15 7.14 2. 3.25 1.25 2.51 1.1 3.38 3.16 13 12 11 1 9 8 7 6 5 4 3 2 Figure S28. 1 H MR spectrum of 15B S19

1. complex 15C.esp 3.7 2.63 2.57.9.8.7 ormalized Intensity.6.5.4.3 7.99 7.96 7.87 7.85 7.43 7.36 7.33.2 7.45 7.24 7.22.1 2.23 2.19 1.6.88 1.24 3.24 3.72 3.71 11 1 9 8 7 6 5 4 3 2 1 Figure S29. 1 H MR spectrum of 15C complex 15c-C13.esp 128.59 1..9.8 ormalized Intensity.7.6.5.4.3.2 197.83 197.65 14.29 137.82 136.6 136.33 131.32 129.72 123.1 121.1 119.56 115.5 11.1 31.22 26.74 26.58.1 24 22 2 18 16 14 12 1 8 6 4 2 Figure S3. 13 C{ 1 H} MR spectrum of 15C S2

complex 16.esp 2.6 1..9.8.7 ormalized Intensity.6.5.4.3 7.97 7.95 7.27 7.55 7.52 7.2 7.5 7.19 7.4 6.75 5.38.2.1 7.71 7.31 2.2 1.34 2.56.28 2.53 1. 2.12 3.23 1 9 8 7 6 5 4 3 2 1 Figure S31. 1 H MR spectrum of 16A complex 16A-C13.esp.3.25 ormalized Intensity.2.15.1 128.96 128.84 128.59 125.8.5 197.58 14.43 138.55 137.81 137.27 122.59 12.83 12.45 11.6 13.59 47.88 29.66 24 22 2 18 16 14 12 1 8 6 4 2 Figure S32. 13 C{ 1 H} MR spectrum of 16A S21

complex 17A.esp 3.76 1..9.8 ormalized Intensity.7.6.5.4.3.2.1 7.75 7.72 7.62 7.6 7.32 7.6 7.37 7.3 7.17 7.14 6.65 2.81 3.45 1.48 1.28 1. 1.7 3.6 11 1 9 8 7 6 5 4 3 2 Figure S33. 1 H MR spectrum of 17A complex 17B.esp 3.85 1..9.8.7 ormalized Intensity.6.5.4 7.72 7.68 7.33.3.2.1 7.92 7.9 7.75 7.4 7.37 7.31 7.24 7.23 7.2 1. 4.65 4.81 3.46 12 11 1 9 8 7 6 5 4 3 2 Figure S34. 1 H MR spectrum of 17B S22

1. complex 17B-C13.esp.9.8.7 ormalized Intensity.6.5.4 132.16 126.61.3.2.1 14.19 137.22 127.38 125.11 122.13 12.3 119.14 119.5 114.48 19.5 17.96 32.68 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 Figure S35. 13 C{ 1 H} MR spectrum of 17B 1. complex 18A.esp.9.8.7 ormalized Intensity.6.5.4.3.2 7.7 7.67 7.65 7.65 7.63 7.53 7.5 7.27 7.2 7.1 6.74 5.35.1 3.45 2.5 6.37 2.4 1. 2.11 11 1 9 8 7 6 5 4 3 2 Figure S36. 1 H MR spectrum of 18A S23

.8 complex 18A-C13.esp.7.6 ormalized Intensity.5.4.3.2.1 139.56 137.61 137.23 132.39 129.37 128.99 127.51 125.78 123.3 121.5 12.7 118.72 111.37 11.7 14.21 47.96 16 15 14 13 12 11 1 9 8 7 6 5 4 Figure S37. 13 C{ 1 H} MR spectrum of 18A complex 19.esp 3.75 1..9.8.7 ormalized Intensity.6.5.4.3 7.5 7.5 7.46 7.24 6.56.2.1 7.65 7.62 7.35 7.16 7.14 7.11 1.8 6.62 1.59 1.61. 3.17 1 9 8 7 6 5 4 3 2 1 Figure S38. 1 H MR spectrum of 19A S24

complex 2.esp Water 3.89 1..9 H 3 C.8 CH 3 ormalized Intensity.7.6.5.4 H 3 C 6.7 3.91 3.75.3.2.1 7.63 7.6 7.34 7.24 7.22 7.13 6.53 1.8 1. 1.81 1.4 2.29 1.8 9.5 3.66 11 1 9 8 7 6 5 4 3 2 Figure S39. 1 H MR spectrum of 2A 1. comokex 2A-C13.esp.9.8 H 3 C ormalized Intensity.7.6.5.4 H 3 C CH 3 16.71 56.26.3.2.1 153.21 141.55 138.25 137.98 128.38 127.83 121.77 12.44 119.99 19.63 11.44 61.3 31.24 18 16 14 12 1 8 6 4 2 Figure S4. 13 C{ 1 H} MR spectrum of 2A S25

1. complex 21A.esp 3.51.9.8.7 ormalized Intensity.6.5.4.3.2.1 7.96 7.96 7.95 7.74 7.72 7.98 7.97 7.57 7.56 7.45 7.42 7.32 7.22 7.2 7.2 6.66 2.21 2.13 5.57 1.15 1.18 1. 3.15 1.5 1. 9.5 9. 8.5 8. 7.5 7. 6.5 6. 5.5 5. 4.5 4. 3.5 3. 2.5 2. Figure S41. 1 H MR spectrum of 21A complex 22.esp 3.87 1. 3.77.9.8.7 ormalized Intensity.6.5.4 H 3 C.3.2 6.59 7.67 7.64 7.4 7.37 7.16 7.13 7.8 6.97 7.7.1 1.3 2.26 1.33.41 1.11 1. 3.78 3.3 1 9 8 7 6 5 4 3 2 Figure S42. 1 H MR spectrum of 22A S26

complex 23A.esp 3.73 1..9.8 2.42 ormalized Intensity.7.6.5.4.3 7.42 7.39 7.29 7.26 7.24 6.53.2.1 7.64 7.61 7.16 7.15 7.11 7.13 1.9 6.53 1. 1.1 3.12 3.47 11 1 9 8 7 6 5 4 3 2 1 Figure S43. 1 H MR spectrum of 23A References 1. CrysAlisPro. xford Diffraction Ltd., Abingdon, England, 29. 2. R. A. Hughes and C. J. Moody, Angew. Chem. Int. Ed., 27, 46, 793-7954. 3. G. M. Sheldrick, SADABS. University of Göttingen, Germany, 1996. 4. G. Sheldrick, Acta Crystallogr., 28, A64, 112-122. S27