Supporting information

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

The Free Internet Journal for Organic Chemistry

Electronic Supplementary Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information. Experimental section

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Supporting information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information for

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Electronic Supplementary information

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting information

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Supporting Information for

Divergent synthesis of various iminocyclitols from D-ribose

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information. Experimental section

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supplementary information

Supporting Information

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supporting Information

Supporting Information

Supporting Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Electronic Supplementary Information (ESI)

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information for

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Aminofluorination of Fluorinated Alkenes

Supporting Information

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting Information

Supporting Information

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supplementary material

Supporting Information

Supporting Materials

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information

Electronic Supplementary Information

Supporting Information

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information For

Transcript:

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 27 Supporting information Phosphorous Acid Functionalized Polyacrylonitrile Fiber with Polarity Tunable Surface Micro-environment for ne-pot C-C and C- Bond Formation Reactions Gang Xu a, Lu Wang a, Mengmeng Li a, Minli Tao a and Wenqin Zhang* a,b a Department of Chemistry, School of Sciences, Tianjin University, Tianjin, 372, P. R. China. b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 372, P. R. China. * Corresponding author. E-mail: zhangwenqin@tju.edu.cn

. Reagents and instruments Commercially available polyacrylonitrile fiber (PAF, the number average molecular weight of the spinning solution is 53 to 6, 93.% acrylonitrile, % methyl acrylate and.4-.5% sodium styrene sulfonate) was cut into lengths of about cm before use (from the Fushun Petrochemical Corporation of China). The aldehydes, 2-aminobenzamide, o- substituted aniline, ethanolamine, phosphorus oxychloride (PCl 3 ), n-butyl alcohol, benzylamine, 3-phenyl--propanol, and the other reagents etc. were analytical grade and used without further purification. The water was deionized. The mechanical properties of different fiber samples were tested with an electronic single fiber strength tester YG(B)A (Wenzhou Darong Textile Instrument Corporation, China) with clamping distance of mm and an elongation speed of 2 mm min - at room temperature. The FTIR spectra were obtained by an AVATAR36 FTIR spectrometer (Thermo icolet), all the samples were pulverized by cutting and made into pellets with KBr. The Elemental analysis (EA) were performed on a vario micro cube (Elementar). Scanning electron microscopy (SEM) (Hitachi, model S-48) was used to characterize the surface of the modified fibers. X-ray powder diffraction spectra (XRD) were recorded by a D/MAX- 25 X-ray diffractometer (Rigaku Corporation). Thermodynamic characteristics fiber were investigated using a STA49PC TGA/ DSC simultaneous thermalanalyzer (etzsch company, Germany). H MR (4 MHz) and 3 C MR ( MHz) spectra were recorded on BRUKER-AVACE III instruments using tetramethylsilane as the internal standard. itrogen adsorption and desorption isotherms were measured by a Auto-sorb-iQA32-4 surface area and pore size analyzer (Connor Instruments, USA). The samples were outgassed

at 2 o C overnight before measurements were made. HPLC analyses were performed on Waters Modol 5. 2. Synthesis of the hydroxyethylation fiber 2. Synthesis of the PA EA F Dried PAF (4. g), ethanolamine (4 ml) and water (6 ml) were placed in a threenecked flask. After the mixture was refluxed for 4 h, the fiber was filtered out and washed with water (6-7 C) until no ethanolamine was attached to the fiber surface by non-covalent bonds, and then dried at 6 C overnight to collect the hydroxyethylation fiber (PA EA F). The weight gain of PA EA F based on PAF was 5.%. 2.2 Synthesis of the Bn-PA EA F Dried PA EA F (3. g), Benzylamine ( ml) and H 2 (3 ml) were placed in a threenecked flask, and the mixture was heated at o C for.5 h. After cooling the mixture to room temperature, the fiber was filtered out and washed with water (6-7 C) and ethanol until no benzylamine was attached to the fiber surface by non-covalent bonds. Then the fiber was dried at 6 C overnight to get the Bn-PA EA F. The weight gain of Bn-PA EA F based on PA EA F was 8.3%. 2.3. Synthesis of the Bu-PA EA F Dried PA EA F (. g), n-butyl amine ( ml), a 2 C 3 (. g) and H 2 ( ml) were placed in a three-necked flask, and the mixture was heated at o C for.5 h. After cooling the mixture to room temperature, the fiber was filtered out. The fiber was washed with water

(6-7 C) and ethanol until no n-butyl amine was attached to the fiber surface by noncovalent bonds, and then dried at 6 C overnight to get the Bu-PA EA F. The weight gain of Bu-PA EA F based on PA EA F was 6.6%. 3. Acid exchange capacity Dried fibers (. g) were immersed into 5 ml of. mol L - ah for 4 h. The neutralized fibers were then filtered and the concentration of the remaining solution were determined by titration with. mol L - HCl. The total acid contents were calculated based on the consumption of the base. 4. The WCA photographs of the fibers (a) PAF 64.2 o (b) PAEAF (c) PAEAPF 26.4 o 32.2 o (d) Bn-PAEAPF (e) PAEAPF-Bn 78.3 o 79.3 o Fig. S. The WCA photographs of (a) PAF, (b) PA EA F, (c) PA EAP F, (d) Bn-PA EAP F and (e) PA EAP F-Bn.

5. The FTIR spectra of PA EAP F, PA EAP F-Bn, Bu-PA EAP F, PA EAP F-Bu Fig S2. The FTIR spectra of (a) PA EAP F, (b) PA EAP F-Bn, (c) Bu-PA EAP F, (d) PA EAP F- Bu. 6. Specific surface area analysis Table S. Specific surface area analysis Entry Fiber S BET (m 2 g - ) V Tot (cm 3 g - ) Average pore diameter (nm) PAF 4..34 3.27 2 PA EA F 26..2 3.27 3 PA EAP F 28..9 3.44 4 Bn-PA EAP F 29.9.29 3.34 5 Bu-PA EAP F 38.9.77 3.38 6 PA EAP F-Bn.35 3.9 7 PA EAP F-Bu 37..58

7. The SEM images of PA EAP F, Bu-PA EAP F, BPA EAP F-Bn, PA EAP F-Bu a b c d Fig. S3. The SEM images of (a) PA EAP F, (b) Bu-PA EAP F, (c) BPA EAP F-Bn, (d) PA EAP F-Bu. 8. Thermal stability of fibers Fig. S4. TGA spectra of (a) PAF, (b) PA EA F, (c) PA EAP F, (d) Bn-PA EAP F, (e) Bu- PA EAP F, (f) PA EAP F-Bn and (g) PA EAP F-Bu.

9. Catalytic test 9.. General experimental procedure of the fiber catalyzed cyclocondensation reactions of 2-aminobenzamides with β-ketoesters for the synthesis of -heterocycle derivatives: The 2-aminobenzamides ( mmol), β-ketoesters (.5 mmol), fiber catalyst (5 mol%) and water (5 ml) were added in a screw-capped pressure bottle equipped with a magnetic stirrer. The reaction mixture was stirred at o C for 5 h and monitored by TLC or HPLC. After completion of the reaction, the system was cooled to room temperature. The fiber catalyst was taken out with tweezers and washed with ethyl acetate (5 ml 3) and was directly used for next run. The ethyl acetate solution was mixed with the reaction mixture. After extraction and washing with water, the organic phase was dried using a 2 S 4. After evaporation of the solvent, the residue was purified by a silica gel column (eluent: ethyl acetate/petroleum ether=/2-/5) to get the corresponding pure product. 9.2. General experimental procedure of the fiber catalyzed Knoevenagel condensation of aromatic aldehydes with active methylene compounds: The aldehyde ( mmol), malononitrile (. mmol) and Bn-PA EAP F (5 mol%) were added to ml of H 2 in a single-necked flask and the mixture was stirred at room temperature for 2 h. The progress of the reaction was monitored by TLC or HPLC. After the process was completed, the fiber catalyst was taken out with tweezers and washed with ethyl acetate (5 ml 3) and then was directly used for next run. The ethyl acetate solution was mixed with the reaction mixture. After extraction and washing with water, the organic phase was dried using a 2 S 4. After evaporation of the solvent, the residue was purified by a silica gel column (eluent: ethyl acetate/petroleum ether=/5-/) to get the corresponding pure product.

9.3. General experimental procedure of the fiber catalyzed Biginelli reactions using Bn- PA EAP F A mixture of aldehyde ( mmol), methylene compound (.2 mmol), urea (.2 mmol), ethanol (5 ml) and Bn-PA EAP F (5 mol%) were added in a screw-capped pressure bottle equipped with a magnetic stirrer. The reaction mixture was stirred at 8 o C for 2 h and monitored by TLC or HPLC. After completion of the reaction, the system was cooled to room temperature. The fiber catalyst was taken out with tweezers and washed with ethanol (5 ml 3) and was directly used for next run. The ethanol solution was mixed with the reaction mixture, and the solvent of the mixture was evaporated under reduced pressure. The residue was washed with water (5 ml) and extracted with ethyl acetate ( ml), the organic phase was dried using a 2 S 4. After evaporation of the solvent, the product is almost pure. Further purification of the product was treated simply through a silica gel column (eluent: ethyl acetate/petroleum ether=/2-/). 9.4. The effect of the solvent polarity on the reaction Table S2. The effect of the solvent polarity on the reaction a Entry Catalyst dosage Solvent Yield (%) b PA EAP F 5 mol% EtH:H 2 (:) 59 2 PA EAP F 5 mol% EtH:H 2 (9:) 5 3 PA EAP F 5 mol% EtH:H 2 (7:3) 36 4 PA EAP F 5 mol% EtH:H 2 (5:5) 3 5 PA EAP F 5 mol% EtH:H 2 (3:7) 3 6 PA EAP F 5 mol% EtH:H 2 (:9) 29 7 PA EAP F 5 mol% EtH:H 2 (:) 44

a Reaction conditions: 2-aminobenzamide ( mmol), ethyl acetoacetate (.5 mmol), solvent (5 ml) and catalyst dosage based on acid content, the solvents with different polarities were obtained by adjusting the ratio of water to ethanol. b The yields were obtained by HPLC using m-binitrobezene as an internal standard. 9.5. Comparison of catalytic activity of fiber catalysts in ethanol Table S3. Comparison of catalytic activity of fiber catalysts in ethanol a Entry Catalyst Temp ( C) Time (h) Yield (%) b PA EAP F 65 59 2 Bn-PA EAP F 65 95 3 Bu-PA EAP F 65 93 4 PA EAP F-Bn 65 27 5 PA EAP F-Bu 65 4 6 PA EAP F 8 84 7 PA EAP F 8 5 96 a Reaction conditions: 2-aminobenzamide ( mmol), ethyl acetoacetate (.5 mmol), solvent (5 ml) and catalyst dosage based on acid content. b The yields were obtained by HPLC using m- binitrobezene as an internal standard. 9.6. Comparison of the Knoevenagel condensation using different supported catalysts Table S4. Comparison of the Knoevenagel condensation using different supported catalysts. Entry Catalyst Catalyst solvent Temperature Yield (%) Ref. dosage /Ttime Pd/Cz-MF-253-8 5 mg toluene 8 o C/5 h 99 (Conversion) [] 2 Ui-66 R 2 mol% toluene Rt/2 h 97 [2] 3 Fe34@Si 2-3 5 mg THF 75 o C/5 min (Conversion) [3] 4 Microporous carbon nitride mg C 9 o C /4 h 87 [4] 5 polystyrene-supported mol% CH 3 H Rt/5 min 99 [5] DABC 6 Fe 3 4 cysteamine 5 mg Ethanol water 5 o C/2 min 93 [6] hydrochloride (/) 7 C/Co@DMA 2 mol % H 2 Rt/ h 97 [7] 8 Bn-PA EAP F 5 mol% (33 mg) H 2 Rt/2 h 94 This study

9.7. The reaction of p-methoxybenzaldehyde with urea and ethyl benzoylacetate Scheme S. The reaction of p-methoxybenzaldehyde with urea and ethyl benzoylacetate. 9.8. Comparison of the Biginelli reaction using different heterogeneous catalysts Table S5. Comparison of the Biginelli reaction using different heterogeneous catalyst. Entry Catalyst Catalyst dosage Yield Ref. Yb(III)-resin 3 mg 72 [8] 2 Fe 3 4 @SBA-5 5 mg 82 [9] 3 PS-PEG-S 3 H 3 mg 79 [] 4 PPF-S 3 H 75 mg 89 [] 5 Fe 3 4 @Si 2 -imid-pma 3 mg 9 [2] 6 PSBIL 5 mg 92 [3] 7 Cobalt-basedmetal coordination polymers 2 mol % 94 [4] 8 ano-fe 3 4 @silica sulfuric acid 6 mg 89 [5] 9 PPA-Si 2 6 mg 94 [6] Bn-PA EAP F 5 mol% (33 mg) 94 This study. MR data of products a-v, 2a-2p and 3a-3m. Methylquinazolin-4(3H)-one (a) H MR (4 MHz, CDCl 3 ) δ 2.36 (s, H), 8.29 (d, J = 7.9 Hz, H), 7.78 (t, J = 7.6 Hz, H), 7.69 (d, J = 8. Hz, H), 7.48 (t, J = Hz, H), 2.62 (s, 3H); 3 C MR ( MHz, DMS) δ 62.6, 54.93, 49., 34.77, 26.79, 26.37, 26.7,, 2.83. 2-Ethylquinazolin-4(3H)-one (b) H MR (4 MHz, DMS) δ 2.8 (s, H), 8.9 (s, H), 7.77 (s, H), 7.6 (s, H), 7.46 (s, H), 2.63 (s, 2H),.25 (s, 3H); 3 C MR ( MHz, DMS) δ 62.27, 58.79, 49.42, 34.72, 27.27, 26.38, 2, 2.29, 28.3,.76. 2-Propylquinazolin-4(3H)-one (c) H MR (4 MHz, CDCl 3 ) δ 2.3 (s, H), 8.23 (d, J = 7.9 Hz, H), 7.7 (t, J = Hz, H), 7.64 (d, J = 8. Hz, H), 7.4 (t, J = 7.4 Hz, H), 2.73 (t, J = 7.6 Hz, 2H),.96.77 (m, 2H),.2 (t, J = 7.3 Hz, 3H); 3 C MR ( MHz, CDCl 3 ) δ 63.38, 55.76, 48.49, 33.76, 26.2, 25.3, 25.2, 9.47, 36.74, 9.99, 2.73.

2-Cyclopropylquinazolin-4(3H)-one (d) H MR (4 MHz, DMS) δ 2.45 (s, H), (d, J = 7.9 Hz, H), 7.72 (t, J = 7.6 Hz, H), 7.48 (d, J = 8.2 Hz, H), 7.39 (t, J = Hz, H),.96 (m, H),.9 (m, 2H),.3 (m, 2H); 3 C MR ( MHz, DMS) δ 62.8, 59.48, 49.58, 26.94, 26.2, 25.77, 2.9, 3.89, 9.97. 2-Chloromethylquinazolin-4(3H)-one (e) H MR (4 MHz, CDCl 3 ) δ 9.492 (s, H), 8.3 (d, J = 7.9 Hz, H), 7.8 (m, J = 7.6 Hz, H), 7.68 (d, J = 8. Hz, H), 4 (m, J = Hz, H), 4.56 (s, 2H); 3 C MR ( MHz, DMS) δ 62.6, 52.7, 49, 35., 27.76, 27.64, 26.36, 2.73, 43.6. 2-Methoxymethylquinazolin-4(3H)-one (f) H MR (4 MHz, CDCl 3 ) δ 9.67 (s, H), 8.22 (d, J = 7.9 Hz, H), 7.7 (t, J = 7.6 Hz, H), 9 (d, J = 8.2 Hz, H), 7.42 (t, J = Hz, H), 4.43 (s, 2H), 3.48 (s, 3H); 3 C MR ( MHz, CDCl 3 ) δ 6.62, 52.68, 48.62, 34.82, 27.8, 26.86, 26.66, 2.62, 7.3, 59.42. 2,3-Dimethylquinazolin-4(3H)-one (g) H MR (4 MHz, CDCl 3 ) δ 8.26 (d, J = 7.9 Hz, H), 7.72 (t, J = 7.6 Hz, H), 7.6 (d, J = 8. Hz, H), 7.44 (t, J = Hz, H), 3.64 (s, 3H), 2.63 (s, 3H); 3 C MR ( MHz, CDCl 3 ) δ 62.32, 54.44, 47.27, 34.9, 26.8, 26.62, 26.4, 2.24,, 23.69. 6-Chloro-2,3-Dimethylquinazolin-4(3H)-one (h) H MR (4 MHz, DMS) δ 2.39 (s, H), 7.99 (s, H), 7.78 (d, J = 8.6 Hz, H), 8 (d, J = 8.6 Hz, H), 2.35 (s, 3H); 3 C MR ( MHz, DMS) δ 6.4, 55.32, 4, 34.83, 2, 29.33, 25.2, 22.35, 2.93. 6-methoxy-2-methylquinazolin-4(3H)-one (i) H MR (4 MHz, DMS) δ 2.6 (s, H), 2 (d, J = 8.8 Hz, H), 7.46 (s, H), 7.37 (d, J = 8.8 Hz, H), 3.86 (s, 3H), 2.32 (s, 3H); 3 C MR ( MHz, DMS) δ 62., 58, 52.25, 43.93, 28.7, 24.2, 2.79, 6.2, 55.98, 2.68. 2-Phenylquinazolin-4(3H)-one (j) H MR (4 MHz, CDCl 3 ) δ.3 (s, H), 8.27 (d, J = 7.9 Hz, H), 8.7 (d, J = Hz, 2H), 7.77 (t, J = 8.7 Hz, 2H), 3 (s, 3H), 7.45 (t, J = 7.2 Hz, H); 3 C MR ( MHz, CDCl 3 ) δ 63.6, 5.7, 49.5, 34.93, 32.84, 3.7, 29.3, 2, 27.3, 26.86, 26.42, 2.9. 2-(4-Methoxyphenyl)quinazolin-4(3H)-one (k) H MR (4 MHz, DMS) δ 2.44 (s, H), 8.2 (d, J = 8. Hz, 2H), 8.4 (d, J = 7.7 Hz, H), 7.8 (t, J = 7.3 Hz, H), 7.7 (d, J = 8. Hz, H), 7.49 (t, J = 7.2 Hz, H), 7. (d, J = 8. Hz, 2H), 3.86 (s, 3H); 3 C MR ( MHz, DMS) δ 62.78, 62.33, 52.33, 49.4, 35.2, 29.93, 27.76, 26.6, 26.3, 25.26, 2.6, 4.47, 55.93. 6-Chloro-2-(4-methoxyphenyl)quinazolin-4(3H)-one (l) H MR (4 MHz, DMS) δ 9 (s, H), 8.9 (d, J = 8. Hz, 2H), 8.6 (s, H), 7.83 (d, J = Hz, H), 7.72 (d, J = Hz, H), 7.9 (d, J = 8. Hz, 2H), 3.86 (s, 3H); 3 C MR ( MHz, DMS) δ 62.3, 6.95, 52.99, 48.6, 34.94, 5, 29.99, 25.25, 24.92, 22.2, 4.4, 55.72. 6-methoxy-2-(4-methoxyphenyl)quinazolin-4(3H)-one (m) H MR (4 MHz, DMS) δ 2.4 (s, H), 8.6 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.8 Hz, H), 3 (s, H), 7.43 (d, J = 8.7 Hz, H), 7.8 (d, J = 8.3 Hz, 2H), 3.89 (s, 3H), 3.85 (s, 3H); 3 C MR ( MHz, DMS) δ 68, 6, 57.9, 5.2, 43.89, 29.6, 29.47, 25.4, 24.57, 2.9, 4.44,

6.29, 56.8, 55.9. 2-(4-Fluorophenyl)quinazolin-4(3H)-one (n) H MR (4 MHz, DMS) δ 2.6 (s, H), 8.3 8.22 (m, 2H), 8.6 (d, J = 7.8 Hz, H), 7.85 (t, J = Hz, H), 7.74 (d, J = 8. Hz, H), 3 (t, J = 7.4 Hz, H), 7.4 (t, J = Hz, 2H). 3 C MR ( MHz, DMS) δ 65.67, 63.23, 62.69, 5.82, 49.2, 35.2, 3.89, 3.8, 29.69, 27.93, 27.9, 26.33, 2.35, 6.22, 6.. 2-(4-itrophenyl)quinazolin-4(3H)-one (o) H MR (4 MHz, DMS) δ 2.86 (s, H), 8.44-8.38 (m, 4H), 8.9 (d, J = Hz, H), 7.89 (t, J = Hz, H), 7.8 (d, J = 8. Hz, H), 9 (t, J = 7.3 Hz, H). Ethyl-2-(2-(4-nitrophenyl)-4-oxo-,2,3,4-tetrahydroquinazolin-2-yl)acetate (o ) H MR (4 MHz, DMS) δ 8.83 (s, H), 8.2 (d, J = 8.3 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 7.75 (s, H), (d, J = 7.7 Hz, H), 7.26 (t, J = 7.6 Hz, H), 6.93 (d, J = 8. Hz, H), 6.65 (t, J = 7.3 Hz, H), 4.2 (q, J = 6.8 Hz, 2H), 3.4 (dd, J = 35.3, 4.9 Hz, 2H),.9 (t, J = 7. Hz, 3H). 2-Methyl-H-benzoimidazole (p) H MR (4 MHz, CDCl 3 ) δ 6 (dd, J = Hz, 2H), 7.24 (dd, J = 9., 6. Hz, 2H), 2.66 (s, 3H); 3 C MR ( MHz, CDCl 3 ) δ 5.3, 38.38, 22.3, 4.37, 5.. 2-(Methoxymethyl)-H-benzoimidazole (q) H MR (4 MHz, CDCl 3 ) δ.2 (s, H), 7.6 (s, 2H), 7.3 7.2 (m, 2H), 4.78 (s, 2H), 3.49 (s, 3H); 3 C MR ( MHz, CDCl 3 ) δ 5.57, 22.62, 6.69, 68.42, 59.. 2-cyclopropyl-H-benzo[d]imidazole (r) H MR (4 MHz, CDCl 3 ) δ 5-7.45 (m, 2H), 7.23 7.3 (m, 2H), 2.3 (m, H),.29.2 (m, 2H),.9 (m, 2H). 2-chloromethyl-H-benzimidazole (s) H MR (4 MHz, CDCl 3 ) δ 4 (s, 2H), 7.27 7.9 (m, 2H), 4.8 (s, 2H). 2-(4-Methoxyphenyl)-H-benzo[d]imidazole (t) H MR (4 MHz, DMS) δ 2.75 (s, H), 8.3 (d, J = 5. Hz, 2H), 7 (d, J = 42.9 Hz, 2H), 7.27 7.6 (m, 4H), 3.87 (s, Hz, 3H). 2-(4-itrophenyl)-H-benzo[d]imidazole (u) H MR (4 MHz, DMS) δ 3.3 (s, H), 8.42 (s, 4H), 7.79 3 (m, 2H), 7.27 (s, 2H). 2-(pyridin-4-yl)-H-benzo[d]imidazole (v) H MR (4 MHz, DMS) δ 3.27 (s, H), 8.77 (d, J = 4.3 Hz, 2H), 8. (d, J = 4.3 Hz, 2H), 7.66 (s, 2H), 7.28 (s, 2H). 2-(Phenylmethylene)malononitrile (2a) H MR (4 MHz, CDCl 3 ) δ 7.85 (d, J = 7.8 Hz, 2H), 7.72 (s, H), 7 (t, J = 7.4 Hz, H), 7.48 (t, J = 7.6 Hz, 2H). 2-(2-nitrobenzylidene)malononitrile (2b) H MR (4 MHz, CDCl 3 ) δ 8.46 (s, H), 8.37 (d, J = 8.6 Hz, H), 7.93 7.83 (m, 3H). 2-(3-nitrobenzylidene)malononitrile (2c) H MR (4 MHz, CDCl 3 ) δ 8.67 (s, H), 8.49 (d, J = 8.2 Hz, H), 8.34 (d, J = 7.9 Hz, H), 7.9 (s, H), 7.8 (t, J = 8. Hz, H). 2-(4-nitrobenzylidene)malononitrile (2d) H MR (4 MHz, CDCl 3 ) δ 8.4 (d, J = Hz, 2H), 8.9 (d, J = Hz, 2H), 7.9 (s, H).

2-(3-Methoxyphenylmethylene)malononitrile (2e) H MR (4 MHz, CDCl 3 ) δ 7.76 (s, H), (s, H), 7.48 7.39 (m, 2H), 7.8 (d, J = 7.3 Hz, H), 3.87 (s, 3H). 2-(4-Methoxyphenylmethylene)malononitrile (2f) H MR (4 MHz, CDCl 3 ) δ 7.92 (d, J = 8.7 Hz, 2H), 7.66 (s, H), 7.2 (d, J = 8.7 Hz, 2H), 3.92 (s, 3H). 4-(-dimethylamino benzylidene) malononitrile (2g) H MR (4 MHz, CDCl 3 ) δ 7.75 (d, J = 8.7 Hz, 2H), 7.4 (s, H), 6.62 (d, J = 8.7 Hz, 2H), 3.8 (s, 6H). 2-(4-hydroxyphenylmethylene)malononitrile (2h) H MR (4 MHz, DMS) δ 8.38 (s, H), 7.96 (d, J = 8.4 Hz, 2H), 7.4 (d, J = 8.4 Hz, 2H); 3 C MR ( MHz, DMS) δ 65.63 63.9 (m), 62 58.74 (m), 35.7 3 (m), 24. 2.8 (m), 7.9 6.27 (m), 5.87 5.8 (m), 5.32 3.86 (m), 76.23 74.62 (m). 4-chlorobenzylidenemalonodinitrile (2i) H MR (4 MHz, CDCl 3 ) δ 7.87 (d, J = 8.3 Hz, 2H), 7.74 (s, H), 3 (d, J = 8.3 Hz, 2H). 2-(3-bromobenzylidene)malononitrile (2j) H MR (4 MHz, CDCl 3 ) δ 7.9 (s, H), 7.84 (d, J = 7.9 Hz, H), 7.73 7.62 (m, 2H), 7.37 (t, J = 8. Hz, H). 2-(2-trifluoromethylbenzylidene)malononitrile (2k) H MR (4 MHz, CDCl 3 ) δ 8.23 (s, H), 8.8 (d, J = 7.3 Hz, H), 7.85 (d, J = 7.3 Hz, H), 7.75 (p, J = 7.4 Hz, 2H). [(2-chloro-3-quinolyl)methylidene]methane-,-dicarbonitrile (2l) H MR (4 MHz, CDCl 3 ) δ 9.2 (s, H), 8.37 (s, H), 8.7 (d, J = Hz, H), 8. (d, J = 8.2 Hz, H), 7.94 (t, J = 7.7 Hz, H), 7.7 (t, J = 7.6 Hz, H). 2-(2-Furylmethylene)malonitrile (2m) H MR (4 MHz, CDCl 3 ) δ 7.9 (d, J = 4.2 Hz, 2H), 7.8 (d, J = 3.7 Hz, H), 7.3 7.25 (m, H),.59 (s, H). Cinnamalmalononitrile (2n) H MR (4 MHz, CDCl 3 ) δ 7.66 7 (m, 3H), 3 7.4 (m, 3H), 7.28 (d, J =.7 Hz, 2H),.59 (d, J = 3.2 Hz, H). Ethyl benzylidenecyanoacetate (2o) H MR (4 MHz, CDCl 3 ) δ 8.27 (s, H), 8. (d, J = 7.7 Hz, 2H), 4 (dq, J = 4.8, 7.4 Hz, 3H), 4.4 (q, J = 7. Hz, 2H),.4 (t, J = 7. Hz, 3H). 2-cyano-3-(4-nitrophenyl)-2-propenoic acid ethyl ester (2p) H MR (4 MHz, CDCl 3 ) δ 8.36 (d, J = 8.4 Hz, 2H), 8.3 (s, H), 8.4 (d, J = Hz, 2H), 4.43 (q, J = 7. Hz, 2H),.43 (t, J = 7. Hz, 3H). 5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(H)-one (3a) H MR (4 MHz, DMS) δ 9.25 (s, H), 7.79 (s, H), 7.38 (t, J = 7.3 Hz, 2H), 7.29 (d, J = 7. Hz, 3H), 5.2 (s, H), 4.4 (q, J = 6.9 Hz, 2H), 2.3 (s, 3H),.5 (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.8, 52.6, 48.83, 45.34, 28.86, 27.73, 26.72, 99.73, 59.65, 54.43, 8.25, 4.54. 5-Ethoxycarbonyl-4-(4-methylphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3b) H MR (4 MHz, DMS) δ 9.4 (s, H), 7.68 (s, H), 7.2 (s, 4H), 5. (s, H), 3.99 (q, J = 6.9 Hz, 2H), 2.26 (d, J = 8.2 Hz, 6H),. (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.83, 52.66, 48.6, 42.43, 36.83, 29.35, 26.62, 99.9, 59.62, 54., 2., 8.22, 4.56. 5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3c) H

MR (4 MHz, DMS) δ 9.4 (s, H), 7.66 (s, H), (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 5. (s, H), 3.99 (dd, J = 4., 6.9 Hz, 2H), 3.73 (s, 3H), 2.25 (s, 3H),. (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.85, 58.92, 52.64, 48.46, 33, 27.87, 4.7,.7, 59.6, 55.52, 53.82, 8.22, 4.56. 5-Ethoxycarbonyl-4-(3-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3d) H MR (4 MHz, DMS) δ 9. (s, H), 7.24 (d, J = 4.7 Hz, 2H), 7.6 (d, J = 7.3 Hz, H), 6.99 (d, J = 8. Hz, H), 6.88 (t, J = 7. Hz, H), 5.5 (s, H), 3.93 (t, J = 6.9 Hz, 2H), 3.8 (s, 3H), 2.29 (s, 3H),.3 (t, J = 6.4 Hz, 3H); 3 C MR ( MHz, DMS) δ 65.82, 57., 52.67, 49.29, 32., 29.3, 25, 2.62,.6, 98.9, 59.44, 55.84, 49.38, 8.7, 4.48. 5-Ethoxycarbonyl-4-(2-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3e) H MR (4 MHz, DMS) δ 9.8 (s, H), 7.72 (s, H), 7.25 (t, J = 7.8 Hz, H), 6.88 6.75 (m, 3H), 5.3 (s, H), 4. (q, J = 6.9 Hz, 2H), 3.73 (s, 3H), 2.25 (s, 3H),.2 (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.82, 59.69, 52.69, 48.89, 46.8, 3.2, 8.7, 2.87, 2.6, 99.64, 59.68, 55.43, 54.22, 8.23, 4.58. 5-Ethoxycarbonyl-4-(3-trifluoromethylphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3f) H MR (4 MHz, DMS) δ 9.3 (s, H), 7.84 (s, H), 7.68 (m, 4H), 5.26 (s, H), 4. 3.9 (m, 2H), 2.27 (s, 3H),.8 (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.59, 52.33, 49.59, 46.72, 3.78, 3.26, 29.5, 25.99, 24.55, 23.42, 99.3, 59.76, 54.23, 8.27, 4.38. 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(H)-one (3g) H MR (4 MHz, DMS) δ 9.36 (s, H), 8.22 (d, J = 8.3 Hz, 2H), 7.9 (s, H), (d, J = 8.3 Hz, 2H), 5.28 (s, H), 3.99 (q, J = 6.9 Hz, 2H), 2.27 (s, 3H),. (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.53, 52.47, 52.24, 49.86, 47.8, 28.3, 24.29, 98.65, 59.86, 54.6, 8.34, 4.5. 4-(4-Chlorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(H)-one (3h) H MR (4 MHz, DMS) δ 9.23 (s, H), 7.76 (s, H), 7.4 (d, J = 8. Hz, 2H), 7.26 (d, J = 8. Hz, 2H), 5.5 (s, H), 3.99 (q, J = 6.8 Hz, 2H), 2.26 (s, 3H),. (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.68, 52.42, 49.8, 44.27, 32.26, 28.85, 28.66, 99.33, 59.72, 53.9, 8.27, 4.53. 4-(3-Bromophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(H)-one (3i) H MR (4 MHz, DMS) δ 9.27 (s, H), 7.79 (s, H), 7.46 (d, J = 7.7 Hz, H), 7.4 (s, H), 7.32 (t, J = 7.7 Hz, H), 7.25 (d, J = 7.6 Hz, H), 5.5 (s, H), 4.8 3.93 (m, 2H), 2.26 (s, 3H),. (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.63, 52.39, 49.43, 47.96, 3.28, 3.62, 29.65, 25.74, 22., 99.8, 59.78, 54.7, 8.29, 4.5. 5-Ethoxycarbonyl-6-methyl-4-(2-thienyl)-3,4-dihydropyrimidin-2(H)-one (3j) H MR (4 MHz, DMS) δ 9.3 (s, H), 7.9 (s, H), 7.36 (d, J = 4.6 Hz, H), 6.98 6.87 (m, 2H), 5.43 (s, H), 4.7 (q, J = 7. Hz, 2H), 2.23 (s, 3H),.8 (t, J = 7. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.5, 52.73, 49.27, 49., 27.2, 25.8, 23.98,.28, 59.82, 49.84,, 4.62. 5-(ethoxycarbonyl)-6-methyl-4-styryl-3,4-dihydropyrimidin-2(H)-one (3k) H MR (4 MHz, DMS) δ 9.6 (s, H), 6 (s, H), 7.4 (d, J = 6.7 Hz, 2H), 7.35 7.29 (m, 2H), 7.25 (m,

m H), 6.37 (d, J = 5.7 Hz, H), 6.2 (dd, J = 5.4, 4.7 Hz, H), 4.73 (s, H), 4.9 (dd, J =.2, Hz, 2H), 2.2 (s, 3H),.2 (t, J = 6. Hz, 3H); 3 C MR ( MHz, DMS) δ 65.68, 53.7, 49.2, 36.7, 3.44, 29.4, 28, 28.6, 26.8, 98.26, 59.69, 52.36, 8.9, 4.73. 5-Acetyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3l) H MR (4 MHz, DMS) δ 9.24 (s, H), 7.85 (s, H), 7.24 (d, J = 8. Hz, 2H), 6.97 (d, J = 8. Hz, 2H), 5.29 (s, H), 3.8 (s, 3H), 2.36 (s, 3H), 2.6 (s, 3H); 3 C MR ( MHz, DMS) δ 94.85, 58.99, 59, 48.27, 36.84, 28.2, 4.32,.8, 55.52, 53.8, 3.63, 9.3. Benzyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-,2,3,4-tetrahydropyrimidine-5-carboxylate (3m) H MR (4 MHz, DMS) δ 9.24 (s, H), 7.7 (s, H), 7.29 (s, 3H), 7.4 (dd, J = 3., 6.8 Hz, 4H), 6.87 (t, J = 8. Hz, 2H), 5.4 (s, H), 5.4 (q, J = 2.8 Hz, 2H), 3.73 (s, 3H), 2.27 (s, 3H); 3 C MR ( MHz, DMS) δ 65.58, 58.99, 52.49, 49.4, 37.35, 37.3, 28.74, 28.7, 27.98, 27.96, 4.2, 99.52, 65.22, 55.55, 53.8, 8.32. Ethyl 2-benzoyl-3-(4-methoxyphenyl)acrylate (3n) H MR (4 MHz, DMS) δ 7.9 (d, J = 8.9 Hz, 3H), 7.67 (t, J = 6.9 Hz, H), 4 (t, J = Hz, 2H), 7.35 (d, J = 8. Hz, 2H), 6.89 (d, J = 8. Hz, 2H), 4.6 (q, J = 6.8 Hz, 2H), 3.72 (s, 3H),. (dd, J = 6., 9.3 Hz, 3H).

. MR spectra of products a-v, 2a-2p and 3a-3m. Methylquinazolin-4(3H)-one (a) 26229-4xg 2.36 8.3 8.28 7.8 7.78 7.76 7.7 7.68 7.48 7.46 7.27 2.62. 2 9 8 7 6 5 4 H MR of a 3 2 9 8 7 6 5 4 3 2..9... 3.26-3 2 9 8 7 6 5 4 3 2 XG27322-62.6 54.93 49. 34.77 26.79 26.37 26.7 2.83 9 8 7 6 3 C MR of a 5 4 3 2-9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

2-Ethylquinazolin-4(3H)-one (b). XG27322-2 2.8 8.9 7.77 7.6 7.46 3.37 2.63.25 2 9 8 7 6 5 4 3 2 H MR of b 9 8 7 6 5 4 3 2 4 3. 2 9.8.6.9. 8 7 6 5 4 3 2.6 2 3.33 - -2 XG27322-2 62.27 58.79 49.42 34.72 27.27 26.38 2 2.29 28.3.76 9 8 7 6 3 C MR of b 5 4 3 2-7 6 5 4 3 2 9 8 7 6 5 4 3 2

2-Propylquinazolin-4(3H)-one (c)..5..5 2. 3. 4. 4.5 5. 5.5 6. 7. 8. 9. 9.5.5.5-5 5 5 2 25 3 35 4 45 5 55 6 65 7 xg27324-3.2 2.26 2.8.4..3.3. -.7 -...2.4.84.86.88 2.7 2.72 2.74 7.9 7.39 7.4 7.42 7.63 7.65 7.69 7.7 7.72 8.22 8.24 2.3 2 3 4 5 6 7 8 9 2 3 4 5 6 7-2 3 4 5 6 7 8 9 2 3 4 5 6 7 2.73 9.99 36.74 9.47 25.2 25.3 26.2 33.76 48.49 55.76 63.38 H MR of c 3 C MR of c

2-Cyclopropylquinazolin-4(3H)-one (d) 2 3 4 5 6 7 8 9 2 3 4-5 5 5 2 25 3 35 4 45 5 55 6 65 7 XG27322-5 2.4 2.3.6.9..7...2.4.9.9.2.25.3.33.95.96 3.37 7.37 7.39 7.4 7.47 7.49 7.7 7.72 7.74 8.4 8.6 2.45-2 3 4 5 6 7 8 9 2 3 4 5 6 7 8-5 5 5 2 25 3 35 4 45 5 XG27322-5 9.97 3.89 2.9 25.77 26.2 26.94 49.58 59.48 62.8 3 C MR of d H MR of d

2-Chloromethylquinazolin-4(3H)-one (e) xg274-2 2 9 8 Cl 7 6 H MR of e 5 4 3 2..94.86.76.9.3-9.8 9.6 9.4 9.2 9. 8.8 8.6 8.4 8.2 8. 7.8 7.6 7.4 7.2 7. 6.8 6.6 6.4 6.2 6. 5.8 5.6 5.4 5.2 5. 4.8 4.6 4.4 xg2733-62.6 52.7 49 35. 27.76 27.64 26.36 2.73 43.6 2 Cl 3 C MR of e 9 8 7 6 5 4 3 2-8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

2-Methoxymethylquinazolin-4(3H)-one (f) xg2746-9.67 8.23 8.2 7.72 7.7 7.68 7.6 8 7.44 7.42 7.4 7.2 4.43 3.48 -. 9 85 8 75 7 65 CH 3 H MR of f 6 55 5 45 4 35 3 25 2 5 5..7.8.3.8 2. 3.4-5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. XG2747-6.62 52.68 48.62 34.82 27.8 26.86 26.66 2.62 7.3 59.42 2 CH 3 9 8 3 C MR of f 7 6 5 4 3 2-8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

2,3-Dimethylquinazolin-4(3H)-one (g) 8.27 8.25 7.74 7.72 7.7 7.62 7.6 7.46 7.44 7.43 7.27 3.64 2.63.66.7 5 45 4 35 3 H MR of g 25 2 5 5..5..5 3.2 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5 XG2747-2 62.32 54.44 47.27 34.9 26.8 26.62 26.4 2.24 23.69 2 3 C MR of g 9 8 7 6 5 4 3 2-8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

6-Chloro-2,3-Dimethylquinazolin-4(3H)-one (h)..5..5 2. 3. 4. 4.5 5. 5.5 6. 7. 8. 9. 9.5.5.5-2 3 4 5 6 7 8 9 2 3 xg2749-3.28..9.2. 2.35 3.36 7 9 7.77 7.79 7.99 2.39-2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2-5 5 5 2 25 3 35 4 45 5 xg2749-2.93 22.35 25.2 29.33 2 34.83 4 55.32 6.4 Cl Cl 3 C MR of h H MR of h

6-methoxy-2-methylquinazolin-4(3H)-one (i) 2.6 3 7.46 7.38 7.36 3.86 3.36 2.32 -. 9 8 H MR of i 7 6 5 4 3 2...4.7 3.35 3.3-6 5 4 3 2 9 8 7 6 5 4 3 2 - -2-3 XG2744-3 62. 58 52.25 43.93 28.7 24.2 2.79 6.2 55.98 4.8 39.97 39.76 2.68 7 3 C MR of i 65 6 55 5 45 4 35 3 25 2 5 5-5 2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

2-Phenylquinazolin-4(3H)-one (j) xg274-.3 8.28 8.26 8.7 8.6 7.79 7.77 7.75 3 7.47 7.45 7.43 7.9.56 -. -.7 4 35 3 H MR of j 25 2 5 5..7 2.2 2.8 3.2..53 3 2 9 8 7 6 5 4 3 2 - -2 xg274-63.6 5.7 49.5 34.93 32.84 3.7 29.3 2 27.3 26.86 26.42 2.9 9 8 7 3 C MR of j 6 5 4 3 2-7 6 5 4 3 2 9 8 7 6 5 4 3 2

2-(4-Methoxyphenyl)quinazolin-4(3H)-one (k) xg2746-4 2.44 8.2 8.9 8.3 7.82 7.8 7.72 7.7 7.49 7.47 7. 7.9 3.86 3.36 3.35 8 75 7 65 6 55 5 45 4 CH 3 35 H MR of k 3 25 2 5 5..2.9.8.5 2.6 3.32-5 3 2 9 8 7 6 5 4 3 2 - XG2747-4 62.78 62.33 52.33 49.4 35.2 29.93 27.76 26.6 26.3 25.26 2.6 4.47 55.93 6 5 4 3 2 3 C MR of k CH 3 9 8 7 6 5 4 3 2-8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

6-Chloro-2-(4-methoxyphenyl)quinazolin-4(3H)-one (l) XG27426- Cl 9 8.2 8.8 8.6 7.84 7.82 7.73 7.7 7. 7.8 3.86 3.35 75 7 65 6 H MR of l CH 3 5 55 45 4 35 3 25 2 5 5...6.3 2.4 3.6-5.5.5 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 62.3 6.95 52.99 48.6 34.94 5 29.99 25.25 24.92 22.2 4.4 55.72 6 5 Cl 4 3 2 3 C MR of l CH 3 9 8 7 6 5 4 3 2-7 6 5 4 3 2 9 8 7 6 5 4 3 2

6-methoxy-2-(4-methoxyphenyl)quinazolin-4(3H)-one (m) 2742-XG-4 2.4 8.8 7.67 7.65 3 7.44 7.42 7.9 7.7 3.89 3.85 3.36 3 2 H MR of m CH 3 9 8 7 6 5 4 3 2. 2..8.6.2 3.2 3.4-4 3 2 9 8 7 6 5 4 3 2 2742-XG-4 68 6 57.9 5.2 43.89 29.6 29.47 25.4 24.57 2.9 4.44 6.29 56.8 55.9 9 8 7 3 C MR of m CH 3 6 5 4 3 2 9 8 7 6 5 4 3 2-8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

2-(4-Fluorophenyl)quinazolin-4(3H)-one (n) 2 3 4 5 6 7 8 9 2 3-2 3 4 5 6 7 8 9 2 xg2746-5 2.6.9.6.6.2 2.7. 3.36 7.38 7.4 7.43 3 5 7.73 7.75 7.83 7.85 7.87 8.7 8.24 8.26 8.27 2.6 2 3 4 5 6 7 8 9 2 3 4 5 6 7-2 - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 XG2747-5 6. 6.22 2.35 26.33 27.9 27.93 29.69 3.8 3.89 35.2 49.2 5.82 62.69 63.23 65.67 5 2 25 3 35 4 45 5 55 6 65 7 2 XG2747-5 6. 6.22 2.35 26.33 27.9 27.93 29.69 3.8 3.89 35.2 49.2 5.82 62.69 63.23 65.67 F F 3 C MR of n H MR of n

2-(4-itrophenyl)quinazolin-4(3H)-one (o) 2 3 4 5 6 7 8 9 2 3 4-2 2 4 6 8 2 4 6 8 2 22 24 26 28 3 32 34 36 38 4..22.2.33 4.2. 7 9 7.6 7.8 7.82 7.87 7.89 7.9 8.8 8.2 8.38 8.4 8.42 8.44 2.86 7.6 7.8 8. 8.2 8.4 2..22.2.33 4.2 7 9 7.6 7.8 7.82 7.87 7.89 7.9 8.8 8.2 8.38 8.4 8.42 8.44 + - Ethyl-2-(2-(4-nitrophenyl)-4-oxo-,2,3,4-tetrahydroquinazolin-2-yl)acetate (o ).5..5 2. 3. 4. 4.5 5. 5.5 6. 7. 8. 9. 9.5-2 3 4 5 6 7 8 9 2 XG27425-2.98.95.99..97.98..3.9.88..7.9. 2.98 3. 3.6 3. 3.36 3.99 4. 4.3 4.5 6.63 6.65 6.67 6.92 6.94 7.25 7.26 7.28 7.49 7.75 7.8 7.83 8.9 8.2 8.83 + - H MR of o H MR of o

2-Methyl-H-benzoimidazole (p) XG27426-2 6 5 7.26 7.23 7.23 7.22 2.66.7. 6 5 4 3 2 H MR of p 9 8 7 6 5 4 3 2 2. 2.2 3.2-2..5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. XG27426-2C 5.3 38.38 22.3 4.37 5. 2 3 C MR of p 9 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

2-(Methoxymethyl)-H-benzoimidazole (q) XG27426-3.2 7.6 7.27 7.26 7.25 4.78 3.49 9 8 7 6 H MR of q 5 4 3 2. 2. 2.26 2.22 3.23 2..5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. XG27426-3c 5.57 22.62 6.69 68.42 59. 9 8 3 C MR of q 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

2-cyclopropyl-H-benzo[d]imidazole (r) XG2755-3 7.26 7.9 7.9 7.8 2.3.23.23.22..8.7 3 25 2 H MR of r 5 5 2. 2.2. 2.3 2..5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5 2-chloromethyl-H-benzimidazole (s) XG2755-4 7.24 7.23 7.22 7.9 4.8 -. 3 28 26 Cl 24 22 H MR of s 2 8 6 4 2 8 6 4 2 2. 2.2 2.4-2.5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5.

2-(4-Methoxyphenyl)-H-benzo[d]imidazole (t) XG27629-2.75 8.4 8.2 7.62 7.8 7.3 7.2 3.89 3.85 3.42 3.38 45 4 35 H MR of t 3 25 2 5 5..96 4.2 3.9 3. 2..5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2. 2-(4-itrophenyl)-H-benzo[d]imidazole (u) XG2755-5 3.3 8.42 8.36 7.73 7.6 9 7.27 7 3.37 2 9 8 H MR of u + - 7 6 5 4 3 2. 4.27 2.3 2.28-5 4 3 2 9 8 7 6 5 4 3 2

2-(pyridin-4-yl)-H-benzo[d]imidazole (v) XG2755-6 3.27 8.77 8.76 8. 8. 7.66 7.28 4 3.37 5 45 4 35 3 25 H MR of v 2 5 5. 2.25 2.3 2.2 2.37 4 3 2 9 8 7 6 5 4 3 2 2-(Phenylmethylene)malononitrile (2a) C H MR of 2a C

2-(2-nitrobenzylidene)malononitrile (2b) 8.46 8.38 8.36 7.9 7.9 7.88 7.84 7.83 7.82 7.8 7.27 85 8 2 C C 75 7 65 6 H MR of 2b 55 5 45 4 35 3 25 2 5 5..2.3 2.6-5 9. 9. 8.9 8.8 8.7 8.6 8.4 8.3 8.2 8. 8. 7.9 7.8 7.7 2-(3-nitrobenzylidene)malononitrile (2c) 7.6 7.4 7.3 7.2 7. 7. 6.9 6.8 6.7 6.6 C 8.67 8.48 8.35 8.33 7.9 7.83 7.8 7.79 7.27 9 C 8 2 7 H MR of 2c 6 5 4 3 2..2...4.2 9.8 9.6 9.4 9.2 9. 8.8 8.6 8.4 8.2 8. 7.8 7.6 7.4 7.2 7. 6.8 6.6 6.4 6.2 6. 5.8 5.6 5.4 5.2

2-(4-nitrobenzylidene)malononitrile (2d) 8.4 8.39 8. 8.8 7.9 7.27 85 C C 2 H MR of 2d 8 75 7 65 6 55 5 45 4 35 3 25 2 5 5 2. 2.. -5 9.5 9.3 9. 8.9 8.7 8.3 8. 7.9 7.7 2-(3-Methoxyphenylmethylene)malononitrile (2e) 7.3 7. 6.9 6.7 25 2 5 5..99. 3.8 7.76 7.47 7.45 7.43 7.4 7.27 7.9 7.7 3.87 C C CH 3 H MR of 2e 8.2 8. 7.8 7.6 7.4 7.2 7. 6.8 6.6 6.4 6.2 6. 5.8 5.6 5.4 5.2 5. 4.8 4.6 4.4 4.2 4. 3.8 3.6 3.4 3.2 3.

2-(4-Methoxyphenylmethylene)malononitrile (2f) 25 2 5 5 2.. 2.3 3. 7.93 7.9 7.66 7.27 7.3 7. 3.92.6.7 -. C C H MR of 2f 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. -.5 4-(-dimethylamino benzylidene) malononitrile (2g) 7.76 7.74 7.4 7.9 6.63 6.6 3.8.5. C C H MR of 2g 9 8 7 6 5 4 3 2 2.6. 2.3 6.2 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5.

2-(4-hydroxyphenylmethylene)malononitrile (2h) 8.38 7.97 7.95 7.3 3.48 7 2 9 C C H H MR of 2h 8 7 6 5 4 3 2. 2. 2.8-9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 64.36 6.99 34.36 23.26 7.9 5.57 4.67 75.58 22 2 H C C 2 9 8 7 6 3 C MR of 2h 5 4 3 2 9 8 7 6 5 4 3 2 - -2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2

4-chlorobenzylidenemalonodinitrile (2i) 7.88 7.86 7.74 4 2 7.27 75 Cl H MR of 2i C C 7 65 6 55 5 45 4 35 3 25 2 5 5 2.3. 2.2-5 8.6 8.4 8.3 8.2 8. 8. 7.9 7.8 7.7 7.6 7.4 7.3 7.2 7. 7. 6.9 6.8 6.7 6.6 6.4 6.3 6.2 6. 6. 2-(3-bromobenzylidene)malononitrile (2j) 7.9 7.85 7.83 7.7 7.68 7.65 7.39 7.37 7.35 7.9 C 65 Br C 6 55 5 H MR of 2j 45 4 35 3 25 2 5 5..2 2.3.4-5 8.2 8. 8. 7.9 7.8 7.7 7.6 7.4 7.3 7.2 7. 7. 6.9 6.8

2-(2-trifluoromethylbenzylidene)malononitrile (2k) 8.23 8.9 8.7 7.86 7.84 7.78 7.76 7.75 7.73 7.7 7.26 5 45 CF 3 C C H MR of 2k 4 35 3 25 2 5 5...3 2.9 9. 8.9 8.7 8.3 8. 7.9 7.7 7.3 7. 6.9 6.7 6.3 6. [(2-chloro-3-quinolyl)methylidene]methane-,-dicarbonitrile (2l) 55 5 45 4 35 3 25 2 5 5..96..4.4 9.2 8.37 8.8 8.6 8. 7.99 7.96 7.94 7.92 7.73 7.7 7.7 7.27 C Cl C H MR of 2l.7-5 9.7 9.5 9.3 9. 8.9 8.7 8.3 8. 7.9 7.7 7.3 7. 6.9 6.7 6.3

2-(2-Furylmethylene)malonitrile (2m) 3 S C C H MR of 2m 2 9 8 7 6 5 4 3 2 2...28.3-9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. Cinnamalmalononitrile (2n) 7.63 7.62 7.6 7.6 7.6 7.49 7.47 7.46 7.44 7.33 7.29 7.26 7.23.59.58.25.7 -. 9 C 8 C 7 H MR of 2n 6 5 4 3 2 2.96 3. 2.4.3 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5.

Ethyl benzylidenecyanoacetate (2o) 8.27 8. 7.99 9 7 5 3 7.49 7.27 4.42 4.4 4.39 4.37.43.4.39.7. C H MR of 2o CEt 9 8 7 6 5 4 3 2..95 2.99 2.3-8. 7. 6. 5.5 5. 4.5 4. 3. 2-cyano-3-(4-nitrophenyl)-2-propenoic acid ethyl ester (2p) 2..5..5. 8.37 8.35 8.3 8.3 7.27 CEt 4.46 4.44 4.42 4.4.59.45.43.4.7 -. 9 2 C 8 H MR of 2p 7 6 5 4 3 2. 2.9 2.3 3.9. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5.

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(H)-one (3a) 27523XG-5 9.25 7.79 7.39 7.38 7.36 7.3 7.28 5.2 4.6 4.4 4.3 4. 3.4 6 2.3.6.5.3 9 8 7 H MR of 3a 6 5 4 3 2..22 2.6 3.2.4 2.6 3.7 3.3.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. -.5 2762-xg-5 65.8 52.6 48.83 45.34 28.86 27.73 26.72 99.73 59.65 54.43 8.25 4.54 85 8 75 7 65 3 C MR of 3a 6 55 5 45 4 35 3 25 2 5 5-5 - 2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-4-(4-methylphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3b) 2758-4xg CH 3 9.4 7.68 7.2 5. 4. 4. 3.98 3.96 3.33 2.27 2.25.24.3..9.92 9 8 7 6 H MR of 3b 5 4 3 2..6 4.8.3 6.7 3.2 2..5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27526XG-4 CH 3 65.83 52.66 48.6 42.43 36.83 29.35 26.62 99.9 59.62 54. 2. 8.22 4.56 6 5 4 3 2 3 C MR of 3b 9 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3c) 2758-3xg 9.4 7.66 7.6 7.4 6.89 6.87 5. 4. 4. 3.98 3.96 3.73 3.33 2.25.3..9 6 CH 3 55 5 45 4 H MR of 3c 35 3 25 2 5 5..7 2.7 2.7. 2.2 3. 3.8 3.32-5 2..5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27526XG-3 CH 3 65.85 58.92 52.64 48.46 33 27.87 4.7.7 59.6 55.52 53.82 8.22 4.56 4 3 2 9 3 C MR of 3c 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-4-(3-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3d) 2758-9xg 9. 7.25 7.22 7.7 7. 6.98 6.9 6.88 6.86 5.5 3.93 3.92 3.8 3.33 2.29.5.3.2 CH 3 6 55 5 45 H MR of 3d 4 35 3 25 2 5 5. 2..2.2.4.5 2.3 3.9 3.2 3.24-5.5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27526XG-9 65.82 57. 52.67 49.29 32. 29.3 25 2.62.6 98.9 59.44 55.84 49.38 8.7 4.48 2 2 CH 3 9 8 7 6 5 3 C MR of 3d 4 3 2 9 8 7 6 5 4 3 2 - -2 2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-4-(2-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3e) 2758-8xg 9.8 7.72 7.27 7.25 7.23 6.84 6.82 6.79 5.3 4.3 4.2 4. 3.98 3.73 3.34 2.25.4.2..7 85 8 75 CH 3 7 65 H MR of 3e 6 55 5 45 4 35 3 25 2 5 5..2.7 3.. 3.7 3.9 3.3-5.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27526XG-8 65.82 59.69 52.69 48.89 46.8 3.2 8.7 2.87 2.6 99.64 59.68 55.43 54.22 8.23 4.58 7 6 5 CH 3 4 3 2 3 C MR of 3e 9 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-4-(3-trifluoromethylphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3f) 2758-xg 9.3 7.84 7.65 7.63 7.6 8 6 5.26 4.4 4. 3.99 3.97 3.95 3.34 2.27 2.7.2..8.7 75 F F 7 65 F 6 H MR of 3f 55 5 45 4 35 3 25 2 5 5..2 4..3 2.2 3.6 3.7-5.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 2762-xg- 65.59 52.33 49.59 46.72 3.78 3.26 29.5 25.99 24.55 23.42 99.3 59.76 54.23 8.27 4.38 4 F F 3 F 2 3 C MR of 3f 9 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(H)-one (3g) 27523XG- 9.36 + - 8.23 8.2 7.9 2 5.28 4.2 4. 3.98 3.97 3.35 2.27.2..8 9 8 H MR of 3g 7 6 5 4 3 2. 2.2. 2.2. 2.7 3.7 3.4 -.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27525XG- + - 65.53 52.47 52.24 49.86 47.8 28.3 24.29 98.65 59.86 54.6 8.34 4.5 9 8 7 3 C MR of 3g 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

4-(4-Chlorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(H)-one (3h) 2758-2xg Cl 9.23 7.76 7.4 7.39 7.27 7.25 5.5 4.2 4. 3.98 3.97 3.33 2.26.2..8 65 6 H MR of 3h 55 5 45 4 35 3 25 2 5 5..3 2. 2.2. 2.6 2.95 3.7-5.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27526XG-2 Cl 65.68 52.42 49.8 44.27 32.26 28.85 28.66 99.33 59.72 53.9 8.27 4.53 5 4 3 2 3 C MR of 3h 9 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

4-(3-Bromophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(H)-one (3i) 2758-xg 9.27 7.79 7.47 7.45 7.4 7.33 7.32 7.3 7.26 7.24 5.4 5.5 4.2 4. 3.99 3.34 2.26 2.7.6.3..9.6 6 Br 55 5 45 H MR of 3i 2758-xg 7.79 7.47 7.45 7.4 7.33 7.32 7.3 7.26 7.24 6 5 4 35 4 3 3 2 25.3...4.8 2 7.9 7.7 7.3 7. 5 5..3...4.8.7 2.32 3.24 3.4-5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 2762-xg- Br 65.63 52.39 49.43 47.96 3.28 3.62 29.65 25.74 22. 99.8 59.78 54.7 8.29 4.5 65 6 55 5 3 C MR of 3i 45 4 35 3 25 2 5 5-5 2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Ethoxycarbonyl-6-methyl-4-(2-thienyl)-3,4-dihydropyrimidin-2(H)-one (3j) 2758-6xg 9.3 7.9 7.36 7.35 6.95 6.94 6.9 5.43 4.23 4. 4.8 4.6 4.5 3.34 2.26 2.23.27.24.22.9.8.6.92 75 S 7 65 6 55 H MR of 3j 5 45 4 35 3 25 2 5 5... 2.4.3 2.26 3. 3.34-5.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 27526XG-6 S 65.5 52.73 49.27 49. 27.2 25.8 23.98.28 59.82 49.84 4.62 6 5 4 3 C MR of 3j 3 2 9 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-(ethoxycarbonyl)-6-methyl-4-styryl-3,4-dihydropyrimidin-2(H)-one (3k) 27525-XG4 9.6 6 7.42 7.4 7.34 7.32 7.3 7.25 7.24 6.38 6.35 6.22 6.2 6.9 6.7 4.73 4.2 4. 4.9 4.7 3.35 2.2.22.2.9 75 7 H MR of 3k 65 6 55 5 45 4 35 3 25 2 5 5..8 2.9 2.38.7.6.9.4 2.6 3.34-5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 2762-xg-4 65.68 53.7 49.2 36.7 3.44 29.4 28 28.6 26.8 98.26 59.69 52.36 8.9 4.73 3 2 9 3 C MR of 3k 8 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

5-Acetyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(H)-one (3l) 27525-2XG 9.24 7.85 7.25 7.23 6.98 6.96 5.29 3.8 3.44 9 2.36 2.6 2.7.34.32.26. CH 3 9 8 7 H MR of 3l 6 5 4 3 2..7 2.4.4 3.24 3.26 3.23.5..5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 2762-xg-2 94.85 CH 3 58.99 59 48.27 36.84 28.2 4.32.8 55.52 53.8 3.63 9.3 55 5 45 4 35 3 C MR of 3l 3 25 2 5 5-5 2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

Benzyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-,2,3,4-tetrahydropyrimidine-5-carboxylate (3m) 27525XG-6 9.24 9.7 CH 3 7.7 7.29 7.6 7.4 7.2 6.89 6.87 6.85 5.4 5. 5.8 5.5 5.2 4.99 3.99 3.97 3.73 3.36 2.27 2.25.99.2..9 85 8 75 H MR of 3m 7 65 6 55 5 45 4 35 3 25 2 5 5..9 3.9 4.47 2.38. 2. 3.49 2.99-5. 9.5 9. 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5..5. 2762-xg-6 65.58 58.99 52.49 49.4 37.35 37.3 28.74 28.7 27.98 27.96 4.2 99.52 65.22 55.55 53.8 8.32 3 2 CH 3 9 8 3 C MR of 3m 7 6 5 4 3 2-2 2 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 -

Ethyl 2-benzoyl-3-(4-methoxyphenyl)acrylate (3n) 27524-5XG 75 7 65 6 55 5 CH 3 45 4 35 3 25 2 5 5 2.97.22 2.36 2.7 2. 2. 3. 3.2-5 8. 7. 6. 5.5 5. 4.5 4. 3. 2..5. otes and references [] X. Li, B. Zhang, Y. Fang, W. Sun, Z. Qi, Y. Pei, S. Qi, P. Yuan, X. Luan, T. W. Goh, W. Huang, Chem. Eur. J. 27, 23, 4266-427. [2] Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa,. Zheng, G. Wang, J. Mater. Chem. A 25, 3, 732-733. [3] J. B. M. de Resende Filho, G. P. Pires, J. M. G. de liveira Ferreira, E. E. S. Teotonio, J. A. Vale, Catal. Lett. 27, 47, 67-8. [4] J. Xu, K. Shen, B. Xue, Y.-X. Li, J. Mol. Catal. A: Chem. 23, 372, 5-3. [5] D.-Z. Xu, S. Shi, Y. Wang, RSC Adv. 23, 3, 2375-2379. [6] R. Maleki, E. Kolvari, M. Salehi,. Koukabi, Appl. rganomet. Chem. 27,.2/aoc.3795. [7] E. M. Schneider, R. A. Raso, C. J. Hofer, M. Zeltner, R. D. Stettler, S. C. Hess, R.. Grass, W. J. Stark, J. rg. Chem. 24, 79, 98-95. [8] A. Dondoni, A. Massi, Tetrahedron Lett. 2, 42, 7975-7978. [9] J. Mondal, T. Sen, A. Bhaumik, Dalton Trans. 22, 4, 673-68. [] Z.-J. Quan, Y.-X. Da, Z. Zhang, X.-C. Wang, Catal. Commun. 29,, 46-48. [] X.-L. Shi, H. Yang, M. Tao, W. Zhang, RSC Adv. 23, 3, 3939-3945. [2] J. Javidi, M. Esmaeilpour, F.. Dodeji, RSC Adv. 25, 5, 38-35. [3] A. G. Khiratkar, P.. Muskawar, P. R. Bhagat, RSC Adv. 26, 6, 587-593. [4] J.-H. Wang, G.-M. Tang, S.-C. Yan, Y.-T. Wang, S.-J. Zhan, E. Zhang, Y. Sun, Y. Jiang, Y.-Z. Cui, Appl. rganomet. Chem. 26, 3, 9-2. [5] B. Dam, A. K. Pal, A. Gupta, Synth. Commun. 26, 46, 275-286. [6] M. Zeinali-Dastmalbaf, A. Davoodnia, M. M. Heravi,. Tavakoli-Hoseini, A. Khojastehnezhad, H. A. Zamani, Bull. Korean Chem. Soc. 2, 32, 656-658.