Thermal correlators in integrable models

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Math221: HW# 1 solutions

Finite Field Problems: Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Srednicki Chapter 55

2 Composition. Invertible Mappings

EE512: Error Control Coding

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 3 Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Tridiagonal matrices. Gérard MEURANT. October, 2008

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

Other Test Constructions: Likelihood Ratio & Bayes Tests

Approximation of distance between locations on earth given by latitude and longitude

Congruence Classes of Invertible Matrices of Order 3 over F 2

derivation of the Laplacian from rectangular to spherical coordinates

C.S. 430 Assignment 6, Sample Solutions

6.3 Forecasting ARMA processes

Section 7.6 Double and Half Angle Formulas

Solution Series 9. i=1 x i and i=1 x i.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

F19MC2 Solutions 9 Complex Analysis

Statistical Inference I Locally most powerful tests

Higher Derivative Gravity Theories

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Fractional Colorings and Zykov Products of graphs

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

SPECIAL FUNCTIONS and POLYNOMIALS

Parametrized Surfaces

The Simply Typed Lambda Calculus

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Homework 8 Model Solution Section

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Continuous Distribution Arising from the Three Gap Theorem

Concrete Mathematics Exercises from 30 September 2016

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CRASH COURSE IN PRECALCULUS

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Uniform Convergence of Fourier Series Michael Taylor

Matrices and Determinants

Exercises to Statistics of Material Fatigue No. 5

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

PARTIAL NOTES for 6.1 Trigonometric Identities

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

D Alembert s Solution to the Wave Equation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Derivation of Optical-Bloch Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

1 String with massive end-points

Lecture 2. Soundness and completeness of propositional logic

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Notes on the Open Economy

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Math 6 SL Probability Distributions Practice Test Mark Scheme

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Assalamu `alaikum wr. wb.

Second Order Partial Differential Equations

( y) Partial Differential Equations

Bounding Nonsplitting Enumeration Degrees

Numerical Analysis FMN011

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Homomorphism in Intuitionistic Fuzzy Automata

Example of the Baum-Welch Algorithm

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Geodesic Equations for the Wormhole Metric

Partial Trace and Partial Transpose

The Pohozaev identity for the fractional Laplacian

ST5224: Advanced Statistical Theory II

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

CE 530 Molecular Simulation

Areas and Lengths in Polar Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Lecture 34 Bootstrap confidence intervals

Transcript:

Thermal correlators in integrable models G. Takács HAS Theoretical Physics Research Group Eötvös University, Budapest In collaboration with: B. Pozsgay (Institute for Theoretical Physics, Amsterdam) I. Szécsényi (Eötvös University) Talk given at the 8th Bologna Workshop on: CFT and Intergrable Models and their Applications to Quantum Field Theory, Statistical Mechanics and Condensed Matter Physics September 12-15, 2011

Outline of talk 1. Introduction Thermal correlators The problem 2. Ingredients of the solution Finite volume as regulator Multidimensional residue 3. The thermal two-point function 4. How to proceed further? Conclusions and outlook

What do we wish to compute and why? Goal: correlators in 1 + 1 dimensional (integrable) QFTs at finite temperature O 1... O n T = Tr e RH O 1... O n Tr e RH R = 1 T

What do we wish to compute and why? Goal: correlators in 1 + 1 dimensional (integrable) QFTs at finite temperature O 1... O n T = Tr e RH O 1... O n Tr e RH R = 1 T Why? A large number of condensed matter systems can be described by such models (impurities, (quasi) one-dimensional conductors, spin chains/ladders) What is a correlator good for? n = 1: order parameters n = 2: response functions (susceptibility etc)

One-point functions O(t, x) T = e REn n O(0, 0) n n n e REn

One-point functions O(t, x) T = N=0 k=1 e REn n O(0, 0) n n n e REn Solution is known: LeClair-Mussardo formula (1999) 1 N (ˆ ) dθk 1 O(t, x) T,µ = N! 2π 1 + e ɛ(θ F O k) 2N (θ 1,....θ N ) conn

One-point functions O(t, x) T = N=0 k=1 e REn n O(0, 0) n n n e REn Solution is known: LeClair-Mussardo formula (1999) 1 N (ˆ ) dθk 1 O(t, x) T,µ = N! 2π 1 + e ɛ(θ F O k) 2N (θ 1,....θ N ) conn ˆ dθ TBA: ɛ(θ) = mr cosh θ µ 2π ϕ(θ θ ) log(1 + e ɛ(θ ) ) ϕ(θ) = i log S(θ) θ F O 2N (θ 1,....θ N ) conn = θ 1,....θ N O(0, 0) θ 1,....θ N connected

One-point functions O(t, x) T = N=0 k=1 e REn n O(0, 0) n n n e REn Solution is known: LeClair-Mussardo formula (1999) 1 N (ˆ ) dθk 1 O(t, x) T,µ = N! 2π 1 + e ɛ(θ F O k) 2N (θ 1,....θ N ) conn ˆ dθ TBA: ɛ(θ) = mr cosh θ µ 2π ϕ(θ θ ) log(1 + e ɛ(θ ) ) ϕ(θ) = i log S(θ) θ F O 2N (θ 1,....θ N ) conn = θ 1,....θ N O(0, 0) θ 1,....θ N connected Pozsgay-Takács (2007): finite volume regularization, to O ( e 3mR) Pozsgay (2010): proof to all orders

Two-point functions R R t t x O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m (t: Euclidean time). n : N particles, m : M particles Massive QFT: E n N m, E m M m double series in powers of e mr and e m(r t)

Two-point functions R R t t x O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m (t: Euclidean time). n : N particles, m : M particles Massive QFT: E n N m, E m M m double series in powers of e mr and e m(r t) What do we have? 1. Large-distance asymptotics (Altshuler, Konik, Tsvelik 2004) 2. Partial expansion (Essler-Konik 2008,2009 only works for N = 1 or M = 1)

Two-point functions R R t t x O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m (t: Euclidean time). n : N particles, m : M particles Massive QFT: E n N m, E m M m double series in powers of e mr and e m(r t) What do we have? 1. Large-distance asymptotics (Altshuler, Konik, Tsvelik 2004) 2. Partial expansion (Essler-Konik 2008,2009 only works for N = 1 or M = 1) Goal: to have a systematic expansion!

LeClair-Mussardo proposal (1999) O 1 (x, t)o 2 (0, 0) T = 1 N [ˆ ] dθj N! 2π f σ j (θ j )e σ j (tɛ j +ixk j ) N=0 σ i =±1 j=1 F O 1 N (θ 1 iπ σ 1,..., θ N iπ σ N ) F O 2 N (θ 1 iπ σ 1,..., θ N iπ σ N ) where σ j = (1 σ j )/2 {0, 1}, f σj (θ j ) = 1/(1 + e σ j ɛ(θ j ) ), ɛ j = ɛ(θ j )/R és k j = k(θ j ) ˆ k(θ) = m sinh θ + dθ δ(θ θ )ρ 1 (θ ) ˆ 2πρ 1 (θ)(1 + e ɛ(θ) ) = m cosh θ + dθ ϕ(θ θ )ρ 1 (θ ) FN O (θ 1,..., θ N ) = 0 O(0, 0) θ 1,..., θ N

LeClair-Mussardo proposal (1999) O 1 (x, t)o 2 (0, 0) T = 1 N [ˆ ] dθj N! 2π f σ j (θ j )e σ j (tɛ j +ixk j ) N=0 σ i =±1 j=1 F O 1 N (θ 1 iπ σ 1,..., θ N iπ σ N ) F O 2 N (θ 1 iπ σ 1,..., θ N iπ σ N ) where σ j = (1 σ j )/2 {0, 1}, f σj (θ j ) = 1/(1 + e σ j ɛ(θ j ) ), ɛ j = ɛ(θ j )/R és k j = k(θ j ) ˆ k(θ) = m sinh θ + dθ δ(θ θ )ρ 1 (θ ) ˆ 2πρ 1 (θ)(1 + e ɛ(θ) ) = m cosh θ + dθ ϕ(θ θ )ρ 1 (θ ) FN O (θ 1,..., θ N ) = 0 O(0, 0) θ 1,..., θ N Saleur (1999): doubts concerning validity...

Form factors Asymptotic states: { θ 1,..., θ n in : θ 1 > θ 2 > > θ n θ 1,..., θ n = θ 1,..., θ n out θ θ = 2πδ(θ θ) : θ 1 < θ 2 < < θ n Factorized scattering: θ 1,..., θ k, θ k+1,..., θ n = S(θ k θ k+1 ) θ 1,..., θ k+1, θ k,..., θ n Form factors: F O mn(θ 1,..., θ m θ 1,..., θ n ) = θ 1,..., θ m O(0, 0) θ 1,..., θ n

Form factors Asymptotic states: { θ 1,..., θ n in : θ 1 > θ 2 > > θ n θ 1,..., θ n = θ 1,..., θ n out θ θ = 2πδ(θ θ) : θ 1 < θ 2 < < θ n Factorized scattering: θ 1,..., θ k, θ k+1,..., θ n = S(θ k θ k+1 ) θ 1,..., θ k+1, θ k,..., θ n Form factors: F O mn(θ 1,..., θ m θ 1,..., θ n ) = θ 1,..., θ m O(0, 0) θ 1,..., θ n Crossing: Fmn(θ O 1,..., θ m θ 1,..., θ n) = Fm 1n+1(θ O 1,..., θ m 1 θ m + iπ, θ 1,..., θ n) + n k 1 2πδ(θ m θ k ) S(θ l θ k )Fm 1n 1(θ O 1,..., θ m 1 θ 1,..., θ k 1, θ k+1..., θ n) k=1 l=1 Elementary form factors: F O n (θ 1,..., θ n ) = 0 O(0, 0) θ 1,..., θ n

The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m

The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms.

The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms. Well-known treatment: put in box but here it is important to take into account particle interactions.

The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms. Well-known treatment: put in box but here it is important to take into account particle interactions. Why? Because the relevant contribution is subleading in the volume dependence!

The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms. Well-known treatment: put in box but here it is important to take into account particle interactions. Why? Because the relevant contribution is subleading in the volume dependence! One-point function: all terms are maximally disconnected! O(t, x) T = 1 e REn n O(0, 0) n Z n

Form factors in finite volume I Spectrum in finite volume: {I 1,..., I n } L I 1 I n Bethe-Yang equations: e iml sinh θ k S( θ k θ l ) = 1 l k Using phaseshift S(θ) = e iδ(θ) : Q k ( θ 1,..., θ n ) = ml sinh θ k + δ( θ k θ l ) = 2πI k l k, k = 1,..., n Density of states: E E 0 = n m cosh θ k + O k=1 (e µl) ρ(θ 1,..., θ n ) = det J (n), J (n) kl = Q k(θ 1,..., θ n ) θ l

Form factors in finite volume II General case: {I 1,..., I m} O(0, 0) {I 1,..., I n } L = F m+n( θ O m + iπ,..., θ 1 + iπ, θ 1,..., θ n ) ρ( θ 1,..., θ n )ρ( θ 1,..., θ m) +O(e µl )

Form factors in finite volume II General case: {I 1,..., I m} O(0, 0) {I 1,..., I n } L = F m+n( θ O m + iπ,..., θ 1 + iπ, θ 1,..., θ n ) ρ( θ 1,..., θ n )ρ( θ 1,..., θ m) Diagonal case: {I 1,..., I m} = {I 1,..., I n } F(A) L ρ({1,..., n} \ A) L {I 1... I n } O {I 1... I n } L = A {1,2,...n} where ρ({k 1,..., k r }) L = ρ( θ k1,..., θ kr ) and the symmetric evaluation F({k 1,..., k r }) L = F s 2r ( θ k1,..., θ kr ) +O(e µl ) ρ({1,..., n}) L +O(e µl ) F s 2l(θ 1,..., θ l ) = lim ɛ 0 F O 2l (θ l + iπ + ɛ,..., θ 1 + iπ + ɛ, θ 1,..., θ l ) (Pozsgay-Takács, 2007)

Finite volume as regulator All matrix elements are finite in finite volume: δ(θ θ ) ml cosh θδ II

Finite volume as regulator All matrix elements are finite in finite volume: but: care is needed δ(θ θ ) ml cosh θδ II δ(θ 1 θ 1)δ(θ 2 θ 2) ml cosh θ 1 δ I1 I 1 ml cosh θ 2δ I2 I 2 there are also + O(L) contributions!

Finite volume as regulator All matrix elements are finite in finite volume: but: care is needed δ(θ θ ) ml cosh θδ II δ(θ 1 θ 1)δ(θ 2 θ 2) ml cosh θ 1 δ I1 I 1 ml cosh θ 2δ I2 I 2 there are also + O(L) contributions! Solution: take correlator in finite volume O 1 (t, x)o 2 (0, 0) T,L = 1 e REn(L) e (R t)em(l) e ix(pm(l) Pn(L)) Z(R, L) n,m n O 1 (0, 0) m L m O 2 (0, 0) n L Z(R, L) = n e REn(L) L only at the end! (Pozsgay-Takács 2007: 1pt functions)

Reordering the series expansion I where C NM = I 1...I N O 1 (x, t)o 2 (0) T,L = 1 Z N,M C NM J 1...J M {I 1... I N } O 1 (0) {J 1... J M } L {J 1... J M } O 2 (0) {I 1... I N } L e i(p 1 P 2 )x e E 1(R t) e E 2t u and v keep track of powers of e mt and e m(r t) (at the end set u = v = 1) O 1 (x, t)o 2 (0) T,L = 1 Z Z = N u N v M C NM N,M (uv) N Z N

Reordering the series expansion II Z 1 = N (uv) N Z N Z 0 = Z 0 = 1 Z 1 = Z 1 Z 2 = Z 2 1 Z 2 From this: O 1 (x, t)o 2 (0) T,L = u N v N D NM D NM = l C N l,m l Z l

Reordering the series expansion II Z 1 = N (uv) N Z N Z 0 = Z 0 = 1 Z 1 = Z 1 Z 2 = Z 2 1 Z 2 From this: O 1 (x, t)o 2 (0) T,L = u N v N D NM D NM = l First few coefficients: D 1M = C 1M Z 1 C 0,M 1 C N l,m l Z l D 2M = C 2M Z 1 C 1,M 1 + (Z 2 1 Z 2 )C 0,M 2

Reordering the series expansion II Z 1 = N (uv) N Z N Z 0 = Z 0 = 1 Z 1 = Z 1 Z 2 = Z 2 1 Z 2 From this: O 1 (x, t)o 2 (0) T,L = u N v N D NM D NM = l First few coefficients: D 1M = C 1M Z 1 C 0,M 1 Infinite volume limit: C N l,m l Z l D 2M = C 2M Z 1 C 1,M 1 + (Z 2 1 Z 2 )C 0,M 2 O 1 (x, t)o 2 (0) T = lim O 1(x, t)o 2 (0) T,L = D NM L N,M D NM = lim D NM L

Partition function Z 1 = I e mr cosh θ = ˆ dθ 2π ml cosh θe mr cosh θ ( ml sinh θ = 2πI )

Partition function Z 1 = I e mr cosh θ = ˆ dθ 2π ml cosh θe mr cosh θ ( ml sinh θ = 2πI ) Two-particle contribution Z 2 = I 1<I 2 e mr(cosh θ1+cosh θ2) ml sinh θ 1 + δ(θ 1 θ 2 ) = 2πI 1, ml sinh θ 2 + δ(θ 2 θ 1 ) = 2πI 2 2 I 1 <I 2 = = I 1,I 2 I 1 =I 2 ˆ dθ1 2π ˆ dθ2 ρ2(θ1, θ2) 2π ˆ dθ1 ml cosh θ1... 2π ρ 2(θ 1, θ 2) = m 2 L 2 cosh θ 1 cosh θ 2 + ml(cosh θ 1 + cosh θ 2)ϕ(θ 1 θ 2) Z 2 = 1 ˆ dθ1 2 2π 1 2 ˆ dθ2 2π ρ2(θ1, θ2)e mr(cosh θ 1+cosh θ 2 ) ˆ dθ1 2π ml cosh θ1e 2mR cosh θ 1

Multi-dimensional residue theorem Performing sums over quantum numbers (at finite L!): Turn them into integrals!

Multi-dimensional residue theorem Performing sums over quantum numbers (at finite L!): Turn them into integrals! Theorem: Suppose g(z), f 1 (z),..., f n (z) are analytic functions, where z = (z 1,..., z n ). Let C C n be a monomial multi-contour (C = C 1 C n ). Assume that f k (z) = 0 k = 1,..., n has a solution z = (z 1,..., z n ) such that for all k z k is in the interior of C k and ( ) fk det 0 z l z=z Then C dz 1 2πi... dz n g(z) 2πi f 1 (z)... f n (z) = g(z ) ( ) det fk z=z z l

Multi-dimensional residue theorem Performing sums over quantum numbers (at finite L!): Turn them into integrals! Theorem: Suppose g(z), f 1 (z),..., f n (z) are analytic functions, where z = (z 1,..., z n ). Let C C n be a monomial multi-contour (C = C 1 C n ). Assume that f k (z) = 0 k = 1,..., n has a solution z = (z 1,..., z n ) such that for all k z k is in the interior of C k and ( ) fk det 0 z l z=z Then C dz 1 2πi... dz n g(z) 2πi f 1 (z)... f n (z) = g(z ) ( ) det fk z=z z l Remarks: Standard contour deformations work away from the det f = 0 variety. General multi-contour: sum of moniomial ones

Evaluating D 11 I D 11 = lim D 11 L D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2 C 11 = I,J {I } O 1 (0) {J} L {J} O 2 (0) {I } L e i(p1 p2)x e E1(R t) e E2t

Evaluating D 11 I D 11 = lim D 11 L D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2 C 11 = I,J {I } O 1 (0) {J} L {J} O 2 (0) {I } L e i(p1 p2)x e E1(R t) e E2t where ml sinh θ = 2πI, ml sinh θ = 2πJ E 1 = m cosh θ, p 1 = m sinh θ E 2 = m cosh θ, p 2 = m sinh θ {I } O 1 (0) {J} L = F O1 2 (θ + iπ, θ ) ρ1 (θ)ρ 1 (θ ) + δ IJ O 1 {J} O 2 (0) {I } L = F O2 2 (θ + iπ, θ) ρ1 (θ)ρ 1 (θ ) + δ IJ O 2

Evaluating D 11 II From this C 11 = F O1 2 (θ + iπ, θ )F O2 2 (θ + iπ, θ) ρ 1 (θ)ρ 1 (θ e i(p1 p2)x e E1(R t) e E2t ) I,J + O 1 J F O2 2 (θ + iπ, θ ) ρ 1 (θ e E2R + O 2 ) I F O1 2 (θ + iπ, θ) ρ 1 (θ) e E1R + I O 1 O 2 e E1R

Evaluating D 11 II From this C 11 = F O1 2 (θ + iπ, θ )F O2 2 (θ + iπ, θ) ρ 1 (θ)ρ 1 (θ e i(p1 p2)x e E1(R t) e E2t ) I,J + O 1 J F O2 2 (θ + iπ, θ ) ρ 1 (θ e E2R + O 2 ) I F O1 2 (θ + iπ, θ) ρ 1 (θ) e E1R + I O 1 O 2 e E1R Last term is O(L), but cancelled by Z 1 C 00! D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2

Evaluating D 11 II From this C 11 = F O1 2 (θ + iπ, θ )F O2 2 (θ + iπ, θ) ρ 1 (θ)ρ 1 (θ e i(p1 p2)x e E1(R t) e E2t ) I,J + O 1 J F O2 2 (θ + iπ, θ ) ρ 1 (θ e E2R + O 2 ) I F O1 2 (θ + iπ, θ) ρ 1 (θ) e E1R + I O 1 O 2 e E1R Last term is O(L), but cancelled by Z 1 C 00! D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2 End result: D 11 = ˆ ˆ dθ dθ 2π 2π F O 1 2 (θ + iπ, θ )F O 2 2 (θ + iπ, θ) e imx(sinh θ sinh θ ) m(r t) cosh θ mt cosh θ ˆ +( O 1 F O 2 2s + O 2 F O 1 dθ cosh θ 2s ) e mr 2π

Evaluating D 22 Using gives We need: C 22 = I 1>I 2 D 22 = C 22 Z 1 C 11 + (Z 2 1 Z 2 )C 00 K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) D 11 = C 11 Z 1 C 00 D 22 = C 22 Z 1 D 11 Z 2 C 00 J 1>J 2 {I 1, I 2 } O 1 {J 1, J 2 } L {J 1, J 2 } O 2 {I 1, I 2 } L K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) = e imx(sinh θ1+sinh θ2 sinh θ 1 sinh θ 2 ) e m(r t)(cosh θ1+cosh θ2) e mt(cosh θ 1 +cosh θ 2 ) Separating diagonal pieces: ({J 1, J 2 } = {I 1, I 2 } tagok) + I 1 >I 2 = I 1 >I 2 J 1 >J 2 I 1 >I 2 J 1 >J 2

Diagonal pieces I {I 1, I 2} O {I 1, I 2} L = F O 4s (θ 1, θ 2) + ρ 1(θ 1)F O 2c + ρ 1(θ 2)F O 2c + ρ 2(θ 1, θ 2) O ρ 2(θ 1, θ 2) Put into diagonal part: I 1 >I 2 {I 1, I 2} O 1 {I 1, I 2} L {I 1, I 2} O 2 {I 1, I 2} L e mr(cosh θ1+cosh θ2) F 4s F 4s terms: mr(cosh θ e 1 +cosh θ 2 ) F O 1 ρ I 1 >I 2(θ 1, θ 2) 2 4s (θ 1, θ 2)F O 2 4s (θ 1, θ 2) = 2 1 e mr(cosh θ 1+cosh θ 2 ) F O 1 2 ρ 2(θ 1, θ 2) 2 4s (θ 1, θ 2)F O 2 4s (θ 1, θ 2) = 1 2 I 1,I 2 ˆ dθ1 2π ˆ dθ1 2π I 1 =I 2 ˆ dθ2 2π O(L 2 ) + O(L 3 ): 0 for L. e mr(cosh θ 1+cosh θ 2 ) F O 1 4s (θ 1, θ 2)F O 2 4s (θ 1, θ 2) ρ 2(θ 1, θ 2) e 2mR(cosh θ 1) ml cosh θ 1 ρ 2(θ 1, θ 1) 2 F O 1 4s (θ 1, θ 1)F O 2 4s (θ 1, θ 1)

Diagonal pieces II Similarly for other pieces, the total is: C diag 22 = ˆ dθ1 2π ˆ dθ2 2π [ 1 2 e mr(cosh θ 1+cosh θ 2 ) F O 1 2c F O 2 2c (cosh θ 1 + cosh θ 2 ) 2 cosh θ 1 cosh θ 2 + 1 2 e mr(cosh θ 1+cosh θ 2 ) ( m 2 L 2 cosh θ 1 cosh θ 2 + ml(cosh θ 1 + cosh θ 2 )ϕ(θ 1 θ 2 ) ) ( ) ] O 1 O 2 + ml cosh θ 1 e mr(cosh θ 1+cosh θ 2 ) O 1 F O 2 2c + O 2 F O 1 2c 1 2 ˆ Counter terms : dθ [ ( )] 2π e 2mR cosh θ ml cosh θ O 1 O 2 + 2 O 1 F O 2 2c + O 2 F O 1 2c Z 2 C 00 = 1 ˆ dθ 2 2π ml cosh θe 2mR cosh θ O 1 O 2 1 ˆ ˆ dθ1 dθ2 [ m 2 L 2 cosh θ 1 cosh θ 2 2 2π 2π +ml(cosh θ 1 + cosh θ 2 )ϕ(θ 1 θ 2 ) ] e mr(cosh θ 1+cosh θ 2 ) O 1 O 2 ˆ ˆ dθ1 dθ2 Z 1 D 11 = Z 1 2π 2π F O 1 2 (θ 1 + iπ, θ 2 )F O 2 2 (θ 1, θ 2 + iπ) e imx(sinh θ 1 sinh θ 2 ) e m(r t) cosh θ 1 e mt cosh θ 2 ˆ dθ ( ) Z 1 F O 1 2c 2π O 2 + F O 2 2c O mr cosh θ 1 e

Diagonal part III Divergent parts drop out: D (diag) 22 = 1 ˆ dθ1 dθ 2 2 2π 2π e mr(cosh θ1+cosh θ2)( F O1 4s (θ 1, θ 2 ) O 2 ) + 1 2 +F O2 4s (θ 1, θ 2 ) O 1 ˆ dθ1 But: Z 1 D 11 remains! Z 1 ˆ dθ1 2π ˆ dθ2 2π e mr(cosh θ1+cosh θ2) F O1 2π ˆ dθ ( 2π e 2mR cosh θ O 1 F O2 2c 2c F O2 2c + O 2 F O1 2c ˆ dθ2 2π F O 1 2 (θ 1 + iπ, θ 2 )F O 2 2 (θ 1, θ 2 + iπ) e imx(sinh θ 1 sinh θ 2 ) e m(r t) cosh θ 1 e mt cosh θ 2 and will regulate the nondiagonal part. ) (cosh θ 1 + cosh θ 2 ) 2 cosh θ 1 cosh θ 2

Nondiagonal part of D 22 I C (nondiag) 22 = I 1>I 2 J 1>J 2 {I 1, I 2 } O 1 {J 1, J 2 } L {J 1, J 2 } O 2 {I 1, I 2 } L K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) = e imx(sinh θ1+sinh θ2 sinh θ 1 sinh θ 2 ) m(r t)(cosh θ1+cosh θ2) e e mt(cosh θ 1 +cosh θ 2 ) {I 1, I 2 } O 1 {J 1, J 2 } L = F O1 4 (θ 2 + iπ, θ 1 + iπ, θ 1, θ 2 ) ρ 2 (θ 1, θ 2 ) 1/2 ρ 2 (θ 1, θ 2 )1/2 {J 1, J 2 } O 2 {I 1, I 2 } L = F O2 4 (θ 2 + iπ, θ 1 + iπ, θ 1, θ 2 ) ρ 2 (θ 1, θ 2 ) 1/2 ρ 2 (θ 1, θ 2 )1/2 Q 1 (θ 1, θ 2 ) = ml sinh θ 1 + δ(θ 1 θ 2 ) = 2πI 1 Q 2 (θ 1, θ 2 ) = ml sinh θ 2 + δ(θ 2 θ 1 ) = 2πI 2 Q 1 (θ 1, θ 2) = ml sinh θ 1 + δ(θ 1 θ 2) = 2πJ 1 Q 2 (θ 1, θ 2) = ml sinh θ 2 + δ(θ 2 θ 1) = 2πJ 2

Nondiagonal part of D 22 II Using the residue theorem {I 1, I 2 } O 1 {J 1, J 2 } L {J 1, J 2 } O 2 {I 1, I 2 } L K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) 1 dθ 1 dθ 2 = ρ 2 (θ 1, θ 2 ) C J1 J 2 2π 2π F O1 4 (θ 2 + iπ, θ 1 + iπ, θ 1, θ 2) 4 (θ 2 + iπ, θ 1 K (R) t,x (θ 1, θ 2 ; θ 1 + iπ, θ 1, θ 2 ), θ 2 ( ) e iq 1 (θ 1,θ 2 ) + 1 ) ( e iq 2 (θ 1,θ 2 ) + 1 ) F O2 where C J1 J 2 surrounds the solution of Q 1 (θ 1, θ 2) = ml sinh θ 1 + δ(θ 1 θ 2) = 2πJ 1 Q 2 (θ 1, θ 2) = ml sinh θ 2 + δ(θ 2 θ 1) = 2πJ 2 This is the contour we want to open : 1 2 J 1 J 2 C J1J 2 C 1 C 2 θ, θ, 1 2

Nondiagonal part of D 22 III But: new singularities encountered. 1. QF : partly from Q, partly from F θ 1 = θ 1 and Q 2 (θ 1, θ 2) = 2πJ 2 θ 1 = θ 2 and Q 2 (θ 1, θ 2) = 2πJ 2 θ 2 = θ 1 and Q 1 (θ 1, θ 2) = 2πJ 1 θ 2 = θ 2 and Q 1 (θ 1, θ 2) = 2πJ 1 2. FF : from F 3. QQ (vanishes for L ): θ 1 = θ 2 = θ 1 θ 1 = θ 2 = θ 2 θ 1 = θ 1 és θ 2 = θ 2 θ 1 = θ 2 és θ 2 = θ 1

Nondiagonal part of D 22 IV So: J 1 >J 2 dθ 1 C J1 2π J 2 dθ 2 2π = 1 dθ 1 2 C 2π dθ 2 (FF terms) (QF terms) 2π where C = C 1 C 2 (the open multi-contour). (J 1 = J 2 is not a singularity, because form factors vanish). Kinematical singularity axiom i Res θ=θ F O n+2(θ+iπ, θ, θ 1,..., θ n ) = ( 1 ) n S(θ θ k ) Fn O (θ 1,..., θ n ) k=1 can be used to compute QF and QQ residues. (Tedious and the result is lengthy, but straightforward).

Nondiagonal part of D 22 V Divergent part comes from second order poles in QF terms: D QF = dθ1 2π dθ 2 2π ˆ dθ 2 2π F O1 2 (θ 2 + iπ, θ 2)F O2 2 (θ 2 + iπ, θ 2 ) e imx(sinh θ2 sinh θ 2 ) e mr cosh θ1 e m(r t) cosh θ2 e mt cosh θ 2 ( (mx cosh θ 1 imt sinh θ 1 )(1 S(θ 2 θ 1 )S(θ 1 θ 2 )) ) +ϕ(θ 1 θ 2)S(θ 2 θ 1 )S(θ 1 θ 2 ) + ml cosh θ 1 ˆ dθ1 2π ˆ dθ 2 2π F O1 2 (θ 1 + iπ, θ 2)F O2 2 (θ 2 + iπ, θ 1 ) e imx(sinh θ1 sinh θ 2 ) e m(2r t) cosh θ1 e mt cosh θ 2 and is exactly cancelled by the remaining counter-term : ˆ ˆ ˆ dθ cosh θ dθ1 dθ2 ml cosh θe mr 2π 2π 2π F O1 2 (θ 1 + iπ, θ 2 )F O2 2 (θ 1, θ 2 + iπ) e imx(sinh θ1 sinh θ2) e m(r t) cosh θ1 mt cosh θ2 e

Conclusion 1. Systematic form factor expansion for thermal correlators Consistency: L limit is finite Explicitly constructed: D 0N, D M0, D 1N, D M1 and D 22. 2. Comparison to LeClair-Mussardo 2pt function formula: 2.1 LM expression not even well-defined 2.2 Higher corrections look different 3. Method was also applied to 3.1 T = 0 3-point function 3.2 second order form factor perturbation theory 4. Kormos-Pozsgay (2010): residue method works for one-point functions of bulk fields on an interval with boundaries.

Open issues 1. Is it possible to sum up the T -dependence in dressing factors (a la LeClair Mussardo) 1-point function: OK (but we knew that beforehand) 2-point function: need higher terms (e.g. D 2N ) to verify: in progress... 2. Can the method be simplified? (Lots of residue-crunching and redundant terms) 3. Applications: need extension of finite volume form factors to nondiagonal theories. Work in progress... result expected to be under the Christmas tree! E.g.: O(3) σ-model (Essler-Konik: M = 1, N = 2 term for spin-spin correlator).