Magnetised Iron Neutrino Detector. (MIND) at a Neutrino Factory. Neutrino GDR Meeting, Paris, 29 April 2010

Σχετικά έγγραφα
Solar Neutrinos: Fluxes

Hadronic Tau Decays at BaBar

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Other Test Constructions: Likelihood Ratio & Bayes Tests

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

the total number of electrons passing through the lamp.

EE512: Error Control Coding

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Areas and Lengths in Polar Coordinates

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Math 6 SL Probability Distributions Practice Test Mark Scheme

The Simply Typed Lambda Calculus

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Numerical Analysis FMN011

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Srednicki Chapter 55

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

If we restrict the domain of y = sin x to [ π 2, π 2

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Homework 8 Model Solution Section

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Strain gauge and rosettes

Math221: HW# 1 solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Solutions to Exercise Sheet 5

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

Inverse trigonometric functions & General Solution of Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

From the finite to the transfinite: Λµ-terms and streams

Approximation of distance between locations on earth given by latitude and longitude

MathCity.org Merging man and maths

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Assalamu `alaikum wr. wb.

Second Order RLC Filters

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

CE 530 Molecular Simulation

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

2 Composition. Invertible Mappings

Section 9.2 Polar Equations and Graphs

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

1 String with massive end-points

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Instruction Execution Times

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Αναερόβια Φυσική Κατάσταση

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

TMA4115 Matematikk 3

Example Sheet 3 Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Trigonometric Formula Sheet

6.3 Forecasting ARMA processes

Advanced Subsidiary Unit 1: Understanding and Written Response

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Repeated measures Επαναληπτικές μετρήσεις

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Finite Field Problems: Solutions

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Three coupled amplitudes for the πη, K K and πη channels without data

Durbin-Levinson recursive method

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

5.4 The Poisson Distribution.


ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

[1] P Q. Fig. 3.1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Derivation of Optical-Bloch Equations

Code Breaker. TEACHER s NOTES

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Transcript:

Magnetised Iron Neutrino Detector (MIND) at a Neutrino Factory, Paul Soler*, Anselmo Cervera, Andrew Laing, Justo Martín-Albo

Neutrino mixing Weak eigenstates do not have to coincide with mass eigenstates ν e ν = ντ µ U ν1 ν U ν 3 c = s 0 1 1 s c 1 1 0 0 1 0 0 1 0 c 0 0 3 s 3 where c s c ij 3 3 c 0 s e iδ = cosθ, and ij s ij 0 1 0 s e iδ c = sinθ ij 0 iα1 e 0 0 0 iα e 0 0 0 1 Ignoring Majorana phases α 1 and α, the neutrino mixing matrix (Pontecorvo- Maki-Nakagawa-Sakata, PMNS matrix) is similar to CKM matrix for quarks. U MNS = s1c s1s 3 3 c 1 iδ 1s3se iδ 1c3se c c c c 1 c c 1 3 s 3 s 1 s c 1 s s 1 3 c s 3 s e iδ e iδ s s c e 3 3 iδ c c States: ν α = i U α i ν i where α = e, µ, τ and i =1,, 3

ij Neutrino oscillations Matter oscillation results for three neutrinos: (MSW effect) P ν ν ( ν P 1 P P 3 P 4 e µ eν µ = s = c with 3 3 ~ = J cosδ cos ~ = ± J sinδ sin ) m ij E ( x) sin B sin = P P 1 θ B 1 θ 1 A m P 3 sin P sin 1 x A B 1 x A B A G F ne 4 B m x A x m m A sin A sin B x sin B x sin x x ( cos θ m A) sin θ m A m m m ~ where ± is for ν, ν J c sin θ 1 sin θ 3 sin θ 3 Minakata & Nunokawa JHEP 001

ij Neutrino oscillations Matter oscillation results for three neutrinos: (MSW effect) ( ) P ν ν ( ν P 1 P P P 3 4 e µ eν µ = s = c with 3 3 ~ = J cosδ cos ~ = ± J sinδ sin ) m ij E x sin B sin = P P 1 θ B 1 θ 1 A m P 3 sin P sin 1 x A B 1 x A B A G F ne 4 B m x A x m m A sin A sin B x sin B x sin m m Magic baseline: Ax = π x Only one term in equation 7300 7600 km Clean determination of θ x x ( cos θ m A) sin θ m A m However, there are up to 8 degeneracies and correlations between variables that need to be determined. Strategy: different experiments at different baselines and energies to solve degeneracies ~ where ± is for ν, ν J c sin θ 1 sin θ 3 sin θ 4

Unknown parameters Consistent picture emerging Global fit provides: sin θ 1 =0.3±0.3 Schwetz m 1 =7.6±0.0 10-5 ev sin θ 3 =0.50±0.063 m 3 =.4±0.15 10-3 ev Unknown quantities: sinθ <0.4 (@3σ), Mass hierarchy: sign m CP violation phase δ Normal Inverted 5

International Scoping Study The International Scoping Study looked at the physics, accelerator and detector prospects for future neutrino oscillation facilities to determine remaining unknown oscillation parameters Outcomes have been published as three reports: Physics report: arxiv:0710.4947, Rept.Prog.Phys.7:10601,009 Detector report: arxiv:0710.419, JINST 4:T05001,009 Accelerator report: arxiv:080.403, JINST 4:P07001,009 Baseline detector requirements from International Scoping Study Two detectors at 4000 km and 7500 km to solve degeneracies For a Neutrino Factory facility: Magnetised Iron Neutrino Detector (MIND) of 50-100 kton fiducial for ν µ appearance channel (gold channel) at each baseline Studies are being continued in the context of the International Design Study for a Neutrino Factory (IDS-NF) and EuroNu 6

7 Neutrino Factory Neutrino Factory Baseline design for a Neutrino Factory: two different detectors at two different baselines (~4000km, 7500km) e e e e ν ν µ ν ν µ µ µ e e e e ν ν µ ν ν µ µ µ 0 5 10 15 0 5 Neutrino Energy (GeV) 5 GeV muons

Magnetised Iron Neutrino Detector (MIND) Golden channel signature: wrong-sign muons in magnetised calorimeter (Cervera et al. 000) Far detector (000-7600 km) can search for wrong-sign muons in appearance mode Magnetic Iron Neutrino Detector (MIND) ν beam 50-100 m 50-100kT 15 m 15 m detector B=1 T µ iron (3 cm) scintillators (cm) 50% 50% ν µ ν e ν µ ν e ν µ π π π π e wrong µ sign Neutrino π muon GDR Meeting π 5-10 8

History of MIND analysis Golden paper (Cervera et al, 000) was optimised for a small value of θ, so efficiency at low energy cut severely Used fast simulations and detector parameterisation MIND analysis redone for ISS (Cervera 006) JINST 4 T05001(009) Improved event selection, Fast simulation Perfect pattern recognition Parameterisation based reconstruction 1T dipole field instead of toroidal field Fully contained muons by range Scraping muons by curvature recon Hadron shower: E = Ehad δ E 0. = 55 E ν E µ had E had International Scoping Study (ISS) 9

MIND analysis with full reconstruction New analysis: arxiv:1004.0358 Full reconstruction with Kalman filter Full pattern recognition for muon selection More than five planes with only one hit muon If less than five planes contain one hit: Cellular Automaton GEANT3 (LEPTO DIS) Analysis chain using likelihood functions Still dipole field and hadron shower smearing Muon purity Kalman filter δe E 0.55 0.03 Muon purity Cellular Automaton = had E had 10

MIND analysis with full reconstruction New analysis: arxiv:1004.0358 Muon curvature extraction through PDF and log-likelihood ratio Muon curvature error PDF Log-likelihood ratio σ p p L q / p >.0 and χ prob > 0.9999 11

MIND analysis with full reconstruction New analysis: arxiv:1004.0358 Likelihood functions for wrong-sign muon selection Vis energy fraction < 1 Vis energy fraction ~ 1 1

MIND analysis with full reconstruction New analysis: arxiv:1004.0358 Momentum and isolation cuts P 0. E rec Q t P sin had 0.

MIND analysis with full reconstruction New analysis: arxiv:1004.0358 Results after analysis: improvement from ISS result Charge mis-id NC background Also: ν e background ~ 4x10-5 14

MIND: new developments Improvements MIND analysis with full GEANT4 simulation Add quasi-elastics and resonance production (NUANCE): Non DIS processes dominate at low energies and should improve efficiency at low energies Benchmark of NUANCE with data 15

MIND: new developments Example of GEANT4 event: Smearing of hits according to hadronic energy resolution Digitisation of hits into voxels of correct spatial resolution (~1cm) Example of G4 ν µ -CC event 16

MIND: new developments Crude digitisation model and clustering algorithm Use boxes to represent view of matched x,y readout planes with the x,y,z at the centre of a box. Clustering of adjacent boxes around the largest signal with weighted mean for x,y position. 17

MIND: curvature error Curvature error PDF and likelihood function ν µ -CC ν µ -CC P L = log PNC CC correct CC incorrect Wrong-sign muon still a good separator signal-background 18

MIND: likelihood analysis Likelihoods: number hits in candidate, fraction visible energy, mean energy deposit per plane Preliminary NC CC P P 1 P 3 Likelihood functions motivated by the MINOS analysis First analysis based initially only on the number of hits in candidate Will look at ways of including other variables in the future 19

MIND: likelihood analysis First analysis: log-likelihood function exclusively from the number of hits in the candidate Black, blue: signal; other colours background Preliminary ν µ -CC ν µ -CC If num hits > 150 then signal L = P log 1 P 1 CC NC 0

MIND: kinematic cuts Neutrino energy: E ν =E µ E had Cuts above 7 GeV Preliminary δe E had had δθ = = 0.55 E 10.4 E had had 0.03 10.1 MINOS CalDet Monolith Fiducial cut: vertex m from end of detector (only 0.% effect) 1

MIND: kinematic cuts Summary of all cuts: σ p /p log likelihood ratio > -0.5 Likelihood on number of hits: If num hits > 150 then select as signal If num hits < 150 then log likelihood ratio on num hits > 1.0 If E rec > 7 GeV then: p µ 0.3E rec and Q t > 0.3 Then fit muon candidate with a parabola: z = a ax to remove final events with either very straight muons or muons that confuse the fitter 1 a3x x If num. hits < 50: require candidate muon bends > 0.1 z If charge flips after parabola fit and error in a 3 low then kill event Fiducial cut: remove candidates with vertex m from end

MIND: likelihood analysis ν µ Charged current background Background to µ - appearance Preliminary Background to µ appearance 3

MIND: likelihood analysis Neutral current background Background to µ - appearance Preliminary Background to µ appearance 4

MIND: likelihood analysis ν e Charged current background Background to µ - appearance Preliminary Background to µ appearance 5

MIND: likelihood analysis Signal efficiencies: Preliminary Identification efficiency µ - Identification efficiency µ Efficiency better for anti-neutrino channel: needs to be understood in detail but probably due to y distribution µ events cleaner due to smaller E had 6

Improvements: alternate likelihood analysis We are working on a way to improve the analysis by using more likelihood information from the PDFs Preliminary ν µ -CC ν µ -CC ν µ -CC ν µ -CC P1 L = log P1 CC NC P P CC NC P3 P CC 3NC Multiplication of three PDFs when fraction visible energy < 1 Multiplication P 1 xp 3 when fraction visible energy = 1 Need to optimise likelihood function selections to maximise efficiency P1 L = log P1 CC NC P3 P CC 3NC 7

Sensitivity MIND at Neutrino Factory Best sensitivity/cost with 100 kton at 4000 km and 50 kton at 7500 km Winter However, minimising systematics should be one of the main goals!! 8

Future directions Add toroidal field Preliminary field map from ANSYS simulation (Bob Sands, FNAL) 0.6 T. T with 9 ka-turn 9

Future directions Add toroidal field In MINOS, had 30 cm aluminium coil with 5 ka-turn With a Superconducting Transmission Line (STL) could achieve 100 ka-turn with one turn! only would need 10 cm hole Idea by A. Bross (FNAL) R&D has already been carried out for VLHC!! 30

Future directions Analysis and simulations: Improve digitisation Add toroidal field Move to GENIE for neutrino interactions Improve hadronic reconstruction Add ν τ signal to oscillation signal Final sensitivity plots and systematic errors R&D effort: Prototype detectors with SiPM and extruded scintillator Measure charge mis-id rate Develop CERN test beam for neutrino detector R&D European AIDA proposal to make H8 into low E beam 31

Conclusions Golden channel (wrong sign muon) has the best statistical power for discovering CP violations in neutrinos other channels have small contribution to standard oscillation physics Two Magnetised Iron Neutrino Detectors (MIND) at 4000 km with100 kton mass and 7500 km (magic baseline) with 50 kton at standard neutrino factory (5 GeV) gives best θ -δ CP coverage performance, especially for small values of θ Future developments in the simulation and analysis include improving digitisation,clustering, hadronic reconstruction, implementation of a toroidal field and geometry optimisation While all the technological concepts are feasible, R&D would also be needed to realise some of the concepts and to benchmark simulations 3