Ó³ Ÿ. 2011.. 8, º 4(167).. 581Ä596. ƒμ³ ²Ó ± μ Ê É Ò Ê É É ³.. ±μ Ò, ƒμ³ ²Ó, ²μ Ê Ö



Σχετικά έγγραφα
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Ó³ Ÿ , º 3(180).. 313Ä320

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Œ ˆ ˆŸ ˆ Š ˆ ƒ Š Œ Š Š

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

ˆ œ ˆ ˆ ˆ Šˆ Œ ˆ ˆ Š ˆ Ÿ Œˆ ˆ Œˆ ŒŠ Œ ˆ Ÿ

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

ˆ ˆŠ - Œ ˆ Œˆ Šˆ ˆ ƒˆ

ˆ ˆˆ Œˆ C Z =47 50 Œ Œ ˆ ˆ Œ ˆ 23 ŒÔ

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

P ² μ Ê ² ƒ μ²μ Ö μë ± . Œ Ò, μ Ö. 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 É μ Ò É Ì μ²μ, Ê 3 ˆ É ÉÊÉ Ÿ±ÊÉ μ ²³ Š ( ),

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒê ± Ö, Œ.. μ² μ μ²μ,.. Ò±μ. ³ ± Ê É É, ³, μ Ö

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Ÿ Ÿ ˆ ˆ Šˆ ƒˆˆ (Ÿ ) Ÿ ˆ ƒˆˆ ˆ ˆ ˆ ˆˆ ƒ Ÿ ƒ ˆ ( Ÿ ).

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

Œ ˆ ˆŸ Šˆ œ ˆŒŒ ˆˆ ˆ..

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Š ˆ ˆ Š ˆ ˆˆ. ˆŸ Š ˆ Œ Š ˆ. ƒ. Š ³ ±

ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ²

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ ˆ ˆŸ Š Œˆ Šˆ. Œμ ±μ ±μ μ μ Ê É μ μ Ê É É ³. Œ.. μ³μ μ μ, Œμ ± 2 Î ± Ë ±Ê²ÓÉ É Œμ ±μ ±μ μ μ Ê É μ μ Ê É É

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ. ÉÕÌ 1,,.. ± 1,.Œ. 1,2, ƒ. Š ³ ± 1,3, ƒ.. Šμ μ ±μ 1,..Š²Ò 1,.. μ μ Íμ 1,2,. ³Î ³ 1,4,. ƒ. É 1,.. Î ± 1.

Ó³ Ÿ , º 4(195).. 969Ä Œ. Ò, 1,. μ±μ, 2,.Œ., ƒ.. Š ³ÒÏ, Œ.. Š μ,.. Œμ μ μ, ƒ.. Œ ÍÒ,. ƒ. ±Ê,.. ±, ƒ.. ±μ

P Œ.. ƒ Ò ±,. ƒμ²ó ±, Œ. ²ÓÎ ±,. ƒ. Œμ²μ± μ,.. ± Œ œ Š Œ ˆ ˆ Š Œ. ˆ É ÉÊÉ Éμ³ μ Ô, É μí±- ±, μ²óï

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

.. μ,. ˆ. É,.. ³ ²ÓÖ μ, ƒ.. ± 1,.. Š ±μ ± 2,.. Œ É μë μ,.. ± Ëμ μ,. Œ. μ μ 2, ƒ.. Ê ±μ,.. ÊÉ 2, ˆ. ƒ. ³ 1,.. ±

Ó³ Ÿ , º 6(190) Ä1142. DESY, ƒ ³ Ê, ƒ ³ Ö European XFEL, GmbH, ƒ ³ Ê, ƒ ³ Ö ±Êʳ-,

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ƒ. ˆ. μ μ. Í μ ²Ó Ò ² μ É ²Ó ± Í É ŠÊ Î Éμ ± É ÉÊÉ, Œμ ± Ÿ ˆ ˆ Š Ÿ ˆ ˆ Š Ÿ ˆ Œ ˆ ˆ Š Ÿ ˆŸ - ˆˆ 1375

ˆŸ ˆ Œ ˆ ˆ œ Š Œ Œ ƒ ˆ ƒ Ÿ ˆ ŒˆŠ Š Œ ˆ ˆ Š Œ ˆŠ 235-V3

Ó³ Ÿ , º 1(130).. 92Ä100. Éμ±ÏÒ ± ± ³ Ö, ˆ É ÉÊÉ μ²μ, É ² μ μ²μ ³³Ê μ²μ, Š ²ÓÍ, μ²óï

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144

P ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4. Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ. ² μ Ê ² Ó³ Ÿ

( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±

Ÿ Ÿ Œ ƒ ˆ Ÿ ˆ Œ Š ˆ Š Œ Ÿ ˆ ˆŠ ˆ DECRIS-SC

Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É

An approach is given in relativistic nuclear physics which is based on the application of the similarity laws, symmetry of solutions and other

Ó³ Ÿ , º 4(181).. 501Ä510

P ƒ. Œμ²μ± μ,. Š. ŠμÎ,.. Î,.. ʱμ,.. ²Ó ˆ ˆ Šˆ, Ÿ Œˆ ˆ Œˆ. ² μ Ê ² ³ Ö Ò μ± Ì Ô.

DANSSino: ˆ ˆ ˆ ƒ Š DANSS. ² μ Ó³ Ÿ. 1 ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ Ë ±, Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ±

Š Œ -Ÿ Š ˆŸ Ÿ Œˆ ˆ Œˆ.ˆ. Ê ÉÒ²Ó ±

Š ˆ Š ˆ ˆ ˆ ƒ ˆ Œ.. μ

Ó³ Ÿ , º 1(206).. 133Ä143 ˆ ˆŠ ˆ ˆŠ Š ˆ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä490. ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ ±μ ±μ μ μ Ê É μ μ Ê É É ³. Œ.. μ³μ μ μ, Œμ ± œ ƒ ˆƒ 459

Œ ƒ ˆ ˆˆ. Î ± É ÉÊÉ ³..., Œµ ± ˆ ˆˆ Œ ƒ ˆ ˆˆ 1051 Ð ³ Î Ö 1051 Î ± Ö É Í Ö 1059

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 2(131).. 81Ä ² Ì μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆ. Ô² ±É µ µ É µ, µ²ó ÊÖ µ ÊÕ µí Ê Ê ± ɵ Ö. ³Ò ² Ê ±

Ó³ Ÿ , º 6(190) Ä1133. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆ Š Œ Œ. ..Ko Ö±µ. µ ± Ë ²Ó Ò Ö Ò Í É ˆˆ, µ. ƒˆ Šˆ ˆ ˆˆ 919. Ÿ Œ œ Š 924. ƒ ƒ ˆ Šˆ ˆ ˆ ˆ Œ ˆˆ 930

Ó³ Ÿ , º 1(199).. 66Ä79 .. Ê 1. Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ±

Ó³ Ÿ , º 4(195).. 935Ä956. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆ ˆ ˆŠ Œ.. Š ². Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

Ó³ Ÿ , º 2(186).. 278Ä292 ˆ ˆˆ 2 ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Transcript:

Ó³ Ÿ. 2011.. 8, º 4(167).. 581Ä596 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ œ Š Š ˆ 1 ƒô Š -Š ˆ Œ ˆ.. ƒμ³ ²Ó ± μ Ê É Ò Ê É É ³.. ±μ Ò, ƒμ³ ²Ó, ²μ Ê Ö ³± Ì Ê ± -±μ É μ ± ±μ μ ³μ ² μ μ Ë μ³ μ²μ Î ±μ ³ - É Í ÊÐ ±μ É ÉÒ ²Ó μ μ ³μ É Ö α s(q 2 ) ³μÉ μ μ μ ² É Q<1 ƒô ²Ö ² Î ÒÌ ³μ. ² Ò μ² ²Ö μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ Ìμ Ö É μ Ö μμé É É Ö ³μ ²Ó ÒÌ Î Éμ ³ ² Éμ ÒÌ ±μ É É μ Ô± - ³ É ²Ó Ò³ Î Ö³. μ Ò ² ʱ Ò É μ ³μ μ μ ±μ É ÉÒ α s α crit = α s(q 2 =0) 0,667 0,821 ²Ö ³μ ³μ μ ±μ ²Ö ± ÒÌ ±μ³ α crit =0,300 0,692. In the framework of Poincare covariant quark model and with the help of the phenomenological parameterization of running coupling constant α s(q 2 ) the behavior of running coupling constant is considered in region Q<1 GeV for different regimes. Analysis has been done for pseudoscalar and vector mesons in accordance with requirement that model lepton decay constant and masses calculation agree with experimental data. Possible behavior of α s with α crit = α s(q 2 =0) 0.667 0.821 for freezing regime and α crit =0.300 0.692 for curved line with peak, which follows from experimental values of lepton decay constant and masses, is discussed. PACS: 12.39.Pn; 11.10.Hi; 11.10.St ˆ ÊÐ Ö ±μ É É ²Ó μ μ ³μ É Ö α s (Q 2 ) Ö ²Ö É Ö μ μ Í É ²Ó ÒÌ Ì ±É É ± ± Éμ μ Ì μ³μ ³ ±. É ±μ É É ± Î É ³ É Ìμ É ³μ ² μ μ, μ μ ÒÌ Š. ³ ÒÌ μ μ μ μ α s (Q 2 ) Ö ²Ö É Ö μ ÉÊ É μ μ ² É (Q <1 ƒô ). ³± Ì Š μ α s (Q 2 ) μ²êî ÕÉ Ï Ö μ ³ Ê μ ÒÌ Ê. ±, Î É μ ²μÉÓ μ É Ì É² ÒÌ μ μ± ³± Ì MS- Ì ³Ò Î α s (Q 2 ) μ Ò É Ö μμé μï ³ ( α QCD Q 2 ) = 4π β 0 ln z Q [ 1 2β 1 ln [ln z Q ] β0 2 + ln z Q + 4β2 1 β 4 0 ln2 z Q β-ëê ±Í μ ²ÖÕÉ Ö Ê Ö³ ( (ln [ln z Q ] 1/2) 2 + β 2β 0 8β1 2 5 )], (1) 4 z Q = Q2 Λ 2, β 0 =11 2 3 n f, β 1 =51 19 3 n f, β 2 = 2857 5033 9 n f + 325 27 n2 f,

582.. n f Å Î ²μ ± ±μ ³ ³, ³ ÓÏ ³, Î ³ Î ² Î Ò Q. ² Î μ²õ Ê (1) μ É ± ±μ³ê μ ÉÊ α QCD ³ ²ÒÌ Q 2. ±μ ÊÐ É ÊÕÉ ³ μ μî ² Ò μ Ìμ Ò [1Ä10] (.), ±μéμ ÒÌ μ ±μ É ÉÒ ³μ É Ö ÉÊ É μ μ ² É ÊÐ É μ μé² Î É Ö μé μ - Ð ÖÉμ μ μ Ö (1). ³± Ì É Ê μ ³μ ² ( ³. [11]) ² Ò μ, ÎÉμ μ² μîé É ²Ó Ò³ μ ³ Ö ²Ö É Ö ³μ μ ± ±μ É ÉÒ α s, μ ÖÐ Ö±α crit = α s (Q 2 =0) 0,59 0,78 [4, 12]. ²Ö É ±μ μ μ Ö ²μ ÉÊ É Ö Ëμ μ Ö ³μ ²Ó μ Ö, ±μéμ μ α (2) ( BPT Q 2 ) = 4π [ 1 2β 1 β 0 t B β0 2 ] ln t B Q, t B =ln[ 2 + M 2 ] B t B Λ 2. (2) ² É Ò ³ Éμ Ê É Ö μ²õ Ê É ²Ö É μ μ ² É Î ± Ö - ÉÊ É Ö É μ Ö [8] ( ³. É ± [9,13Ä16]), ³ Éμ ±μ É ÉÒ (1), ÖÉμ μ μ - ɲ μ³ ², ²μ μ μ²ó μ ÉÓ Ò α (1) an (Q 2 )= 4π ( 1 + 1 ), (3) β 0 ln z Q 1 z Q Ò ³μ ÉμÖÐ ³Ö ² É Î ±μ ±μ É Éμ ±μ Ä μ²μ Íμ ( ³. [17]). ² É Î ± Ö ÉÊ É Ö É μ Ö μ μ²ö É μ É μ ÉÓ μ É μ ² É Î μ- É (. μ É ), ±μéμ μ μé ÊÉ É Ê É É É μ³ μ Ìμ. μ μ μ μ ÉÓÕ ±μ É ÉÒ (3) Ö ²Ö É Ö Éμ, ÎÉμ Q 2 0 ±μ É É ³ É ±μ Î μ Î : α crit = α s (0) = 4π/β 0 1,4 1,5, Å É μé Ì ³ μ ³ μ μ± μé² - Î μé(1). μ μ ² É Î ±μ É μ μ ³ÊÐ [10] ( ³. É ± [18]) μ É μ ²μ- ²Ó Ö μ μ- ² É Î ± Ö É μ Ö μ ³ÊÐ Š, ³μ ÉÓ α s μé Q 2 μé² Î μé (1). μé [3] ²Ö μ ÑÖ Ö Ô± ³ É ²Ó ÒÌ ÒÌ μ μ Ò³ É ÊÖ³, - Í μ Ò³ ÉÖ ²Ò³ ± ± ³, ²μ μ ÔËË ±É ÒÌ ±μ É É, ÒÌ G p -³μ ²Ö³. ±, ²ÊÎ ÊÎ É ÊÌ É² ÒÌ ³³ ±μ É É ²Ó μ μ ³μ - É Ö É ²Ö É μ μ Ò α (2) ( D Q 2 ) [ Q 2p ] 2πp = Q 2p + C p Λ 2p β 0 L p [ 1 2β 1 β 2 0 ] ln L p, (4) L p L p = 1 [ ] Q 2p p ln + C p, C p 1. [7] ²μ ±μ É É α (1) W (Q2 )= 4π ( 1 + 1 ( ) p ) z Q + b 1+c β 0 ln z Q 1 z Q 1+b z Q + c Λ 2 (5) ³ É ³ b =1/4 p = c =4 ²Ö μ ÑÖ Ö Š - μ μ±.

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 583 μé [2] μ ÔËË ±É μ ±μ É ÉÒ ²Ó μ μ ³μ É Ö μ Ò - É Ö Ë μ³ μ²μ Î ± ³ Ò ³ 3 ) α GI (Q 2 )= α k exp ( Q2 4γ 2 (6) k=1 k ±μôëë Í É ³ α 1 =0,25, α 2 =0,15, α 3 =0,2 γ1 2 =1/4, γ2 2 =5/2, γ2 3 = 250. Š μé² Î μ³ê μé μ Ö ±μ É ÉÒ (1) μ ² É ³ ²ÒÌ Q 2 μ É Ò α (1) N (Q2 )= 4π ( ) zq 1, (7) β 0 z Q ln z Q μ²êî μ É μ Ö ²Ó ÒÌ ² É Î ± Ì μ É ±μ É ÉÒ ³μ É Ö ( ³., ³, [9]). μ Ò³ μé² Î ³ μé (1) Ì ÒÏ Ê μ³ö ÊÉÒÌ ±μ É É Š Ö ²Ö É Ö μ² - ³ ² Ò μ É Î Ö ÔËË ±É ÒÌ ±μ É É ³ ²ÒÌ Q 2 (. 1). ˆ ʲÓÉ Éμ Î Éμ ² Ê É, ÎÉμ μ μ μ μé² Î ² ³ÒÌ μé Ì [2Ä4, 7Ä9, 12, 15] ²Ó- ÒÌ ±μ É É Ö Ìμ É Ö ÉÊ É ÊÕ μ ² ÉÓ Q<1 ƒô. μ ² É Q>1 ƒô μ Ì ÔÉ Ì ±μ É É ±É Î ± μ É μ ³ É É- μ ±μ É ÉÒ Š (1). ± ³ μ μ³, ³ É Ö μ É ÉμÎ μ μ²óïμ ³ μ μμ ³μ ² μ Ö - ÊÐ ±μ É ÉÒ α s μ μ² Ë μ³ μ²μ Î ±μ É μ É Î ±μ ³μÉ Í. μôéμ³ê μ μ μ ÒÌ Î μ³ ² μ Éμ É μé± μ - Ï É μ ³ Éμ ±, μ μ²öõð Ì μ ² ÉÓ μ ±μ É ÉÒ Š (μ μ μ ÉÊ É μ μ ² É ). ³ Éμ ± ÊÎ Ö μ Ö α s ³ ²ÒÌ Q 2 μ Éμ É μ²ó μ ³μ - ² Ö ÒÌ μ ÉμÖ μ ² Î ÒÌ Ì ±É É ± μ μ. μμé É É É μ É Î ± Ì Î Éμ Ô± ³ É ²Ó Ò³ ² Î ³ μ² μ μ ÉÓ ± μ ² - μ³ê μ Î Õ μ Ö ÊÐ ±μ É ÉÒ, ±μéμ Ö Ö ²Ö É Ö μ ³ ³ É μ ³μ ². μé Ì É ± Ò ³μ ³ ² ±μ Ê Ò [17, 19] ( ³. É ± [20]), ³± Ì ² ³μ ³ ³μ ² ³ μ μ [21,22] μ μ ² μ μ ³μ μ μ μ Ö. 1. ² Î Ò ÔËË ±É Ò ÊÐ ±μ É ÉÒ ²Ó μ μ ³μ É Ö ( ³. (1)Ä(5), (7))

584.. ( α ) s Q 2 Ìμ Ö μμé É É Ö ³μ ²Ó ÒÌ Î Éμ ³ ³ μ μ Ô± ³ É ²Ó Ò³ Ò³. μé Ì [3, 6, 7, 23, 24] ²Ö μ Ö μ ³μ μ μ μ Ö Ò² μ²ó μ Ê Ö Ô± ³ É ²Ó Ö Ëμ ³ Í Ö. ±, ³, [23, 24] μ μ ² ʳ³ ÒÌ Jlab Ò²μ ² μ μ Q 2 - μ μ ² É 0,4 1 ƒô. μ μé ² É Ö ³ Éμ ± ÊÎ Ö μ Ö α s (Q 2 ) ÉÊ É - μ μ ² É ³± Ì Ê ± -±μ É μ ± ±μ μ ³μ ², μ μ μ - Í Ì ²ÖÉ É ±μ ³ ²ÓÉμ μ μ ³ ± ( ƒ ). Í Ò ƒ μ ³μ Ò ²μ Ö ³μ μ É μé Ì [25Ä27]. μ Ò³ É μ ³, μ Î ÕÐ ³ μ ³μ μ μ α s (Q 2 ) μ ³ - Éμ ±, Ö ²Ö É Ö Ê ²μ μμé É É Ö ³μ ²Ó ÒÌ Î Éμ Ô± ³ É ²Ó Ò³ Î - Ö³ ² Éμ ÒÌ ±μ É É μ ³ μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ. μ μ Ö μ Ö ³μ ² Ê ³μ ±μ É ÉÒ μ ³ É É- μ ±μ É ÉÒ (1) Q>1 ƒô Ö ²Ö É Ö μ μ² É ²Ó Ò³ Ê ²μ ³. ÔÉμ³ μ- ÊÐ ±μ É ÉÒ ³μ ² Ê É Ö μ³μðóõ ʲÊÎÏ μ Ë μ³ μ²μ Î ±μ ³ É Í (6) ²Ö ÒÌ μ μ α k,γ k (k =1,...,7). 1. Š -Š ˆ Ÿ Š Š Ÿ Œ œ Œ μ μ Ê ± -±μ É ÒÌ ³μ ² Ö ÒÌ É ³ ² É ƒ, μ- É Ö [28]. μ Ò³ É μ ³ ƒ Ö ²Ö É Ö Ê ²μ μì Ö Ê ± - É μ É ± ± ²Ö É ³ ³μ É Ö, É ± ²Ö ³μ É ÊÕÐ Ì Î É Í. ƒ É ± Ò ÕÉ Ê ± - É μ ± Éμ μ ³ Ì ±μ ( ³., ³, [27]). ²ÊÎ É ³Ò ÊÌ ³μ É ÊÕÐ Ì Î É Í ³ ³ m q m Q μμé- É É μ 4- ³ Ê²Ó ³ p 1 = ( ) ω mq (p 1 ), p 1 p2 = ( ) ω mq (p 2 ), p 2 ÔÉμ É μ ³± Ì ³ μ μ ÉμÎ Î μ Ëμ ³ ƒ μ É ± ²Ó μ³ê Ê Õ ²Ö ÊÌÎ É Î μ μ Ö μ μ μ ÉμÖ Ö c μ² μ μ ËÊ ±Í Φ Jμ L,S (k) ³ μ M: L,S 0 VL,S J ;L,S (k, k )Φ Jμ L,S (k ) k 2 dk =(M M 0 )Φ Jμ L,S (k), (8) M 0 = ω mq (k) +ω mq (k) Å ÔËË ±É Ö ³ É ³Ò ³μ É ÊÕÐ Ì Î - É Í, ³ ÕÐ Ì ³ Ê²Ó μé μ É ²Ó μ μ Ö k (k = k ): k = 1 2 (p 1 p 2 )+ (p 1 + p 2 ) M 0 ( [ m 2 Q m 2 q M 0 ωmq (p 2 ) ω mq (p 1 ) ] ). ω M0 (P )+M 0 ²Ö μ Ö ±μ ± É ÒÌ Ö ÒÌ É ³ μ Ìμ ³μ μ ² ÉÓ μé Í ² - ³μ É Ö ³ Ê Î É Í ³. ÔÉμ³ ²Ö μ Ö μ μ Éμ μ μ É Ê Ö- μ É ³Ò ³μ ÊÉ μ²ó μ ÉÓ Ö ² Î Ò μé Í ²Ò. ±μ Ò μ μé Í ²μ Éμ³ É Î ± μ ²Ö É ² Î Ò Ê ± -±μ É Ò ³μ ². Ï ³ ²ÊÎ μ²ó Ê ³ ³ ± ±μ Ò μé Í ² μéò [2], ±μéμ Ò ²ÊÎ μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ É ²Ö É Ê³³Ê ±Ê²μ μ ±μ, ÕÐ - μ μ

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 585 Î É : ˆV (r) = ˆV Coul (r)+ ˆV lin (r)+ ˆV SS (r), ˆV Coul (r) = 4 α s (r) = 4 7 α k erf(τ k r), 3 r 3r [ exp ( b ˆV 2 r 2 ) lin (r) =σr + πbr ˆV SS (r) = 32 (S qs Q ) 9 πm q m Q k=1 ( 1+ 1 ) ] erf(br) + w 0, 2b 2 r 2 7 α k τk 3 exp ( τk 2 r 2 ), ³ É τ k μ ²Ö É Ö μμé μï Ö 1/τk 2 =1/γ2 k +1/b2, erf(x) Å ËÊ ±Í Ö μï μ±, S q, Q Å μ Éμ Ò μ ± ±μ. ²Ö μ²êî Ö μé Í ² (9) Ò² ³ μí Ê ³ ± μ ² ÊÕÐ ³Ê ²Ê [2, 29]: f (r) = d 3 r ρ (r r ) f (r ), k=1 ËÊ ±Í Ö ³ ± c ³ É μ³ b Ò [ ρ (r r )= b3 π exp b (r r ) 2], 3/2 É ± Ë μ³ μ²μ Î ±μ μ μ Ö ÊÐ ±μ É ÉÒ, Ê μ μ ²Ö - ² É Î ± Ì Î Éμ : n=7 ) α s (Q 2 )= α k exp ( Q2 4γ 2. (10) k=1 k μ ±μ²ó±ê μ Î μ Ö ÊÐ ±μ É ÉÒ μ μ μ μ²ó μ μμé É É Ö Ô± ³ É ²Ó ÒÌ ³μ ²Ó ÒÌ Î Ì ±É É ± μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ, ±μéμ ÒÌ ±μ É É α s (Q 2 = k 2 ) É Ê É Ö, Éμ ³ Éμ ±, μμ Ð μ μ Ö, Ê É ÎÊ É É ²Ó ± Éμ ²μÐ, ±μéμ Ö Ìμ É Ö μ ± μ, ÕÐ μ α s (k 2 ). μ ÔÉμ Î μ Ö É ²Ó μ μ²ó μ ÉÓ ËÊ ±Í Õ É (1), μ É ÉμÎ μ - μ²ó μ ÉÓ μ± ³ Í Õ (10), ±μéμ Ö μ² μ μ μ ÉÓ Ìμ μïμ ÊÎ ÊÕ μ ² ÉÓ Q>1,5 ƒô. ²Ö ³μ ² μ Ö ² Î μ μ μ Ö ±μ É ÉÒ ÉÊ É μ μ ² É μ³μðóõ μí Ê Ò Ë É μ Ö ±μ É ÉÒ (1) Ò ³ (10) ³ μ²êî Ò μ Ò ³ É μ, μé² Î ÕÐ Ì Ö Î ³ α crit Î ³ É ² Ā (μ) = 1 μ μ 0 dk α s (k) π ²Ö μ =2ƒÔ, μí ± ±μéμ μ μ ² μé [3] (É ². 1, 2). ³ ³μ ² Ê É Ö ³μ : Ò É ²Ö É μ μ ³μ μ ±Ê - ÊÐ ±μ É ÉÒ, Î Ö ±μéμ μ μ Î Ö Q 0 ( ³. É ². 1), Éμ μ ³ É Ê É μ ±μ³ ÉÊ É μ μ ² É ( ³. É ². 2). (9) (11)

586.. ² Í 1. μ Ò ±μ É ÉÒ (10) ² Î Ò³ α crit ²Ö ³μ ³μ μ ± ( ³.. 2) º μ α crit Ā (2 ƒô ) 1-a 8,809 ± 1,058 0,593 ± 0,070 2-a 3,394 ± 0,324 0,333 ± 0,033 3-a 1,307 ± 0,037 0,207 ± 0,007 4-a 1,078 ± 0,028 0,190 ± 0,006 5-a 0,937 ± 0,041 0,177 ± 0,008 6-a 0,821 ± 0,040 0,166 ± 0,008 7-a 0,667 ± 0,029 0,150 ± 0,006 ² Í 2. μ Ò ±μ É ÉÒ (10) ² Î Ò³ α crit ²Ö ³μ ±μ³ ÉÊ É μ μ ² É ( ³.. 3) º μ α crit Ā (2 ƒô ) 1-b 2,197 ± 0,091 0,289 ± 0,012 2-b 0,000 ± 0,087 0,244 ± 0,011 3-b 0,585 ± 0,047 0,212 ± 0,007 4-b 0,434 ± 0,047 0,198 ± 0,007 5-b 0,797 ± 0,035 0,182 ± 0,006 6-b 0,187 ± 0,040 0,165 ± 0,008 7-b 0,692 ± 0,040 0,155 ± 0,009 8-b 0,300 ± 0,023 0,140 ± 0,007 Î Ö Š -±μ É ÉÒ (1) μï ±, ±μéμ Ò μ²ó ÊÕÉ Ö ²Ö ÒÎ ² Ö - μ ÒÌ ±μôëë Í Éμ, μ²êî Ò μ É μ³ μ ³³Ò, É ² μ http://wwwtheory.lbl.gov ianh/alpha/alpha.html. Ñ ³ ÉμÎ ± Ë É μ Ö ³ Ö É Ö ² Ì 125 300 ³μ É μé ³ μ ² É μμé É É Ö ±μ É É Š (1).. 2. ³μ ÉÓ ÊÐ ±μ É ÉÒ ²Ó μ μ ³μ É Ö ²Ö ³ É Í (1) (10) (c³. É ². 1). Š É ±μ³ μéμ μ Ô± ³ É ²Ó μ Î ÊÐ ±μ É ÉÒ Ö

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 587. 3. ³μ ÉÓ ÊÐ ±μ É ÉÒ ²Ó μ μ ³μ É Ö ²Ö ³ É Í (1) (10). μ³ Ë ±μ μμé É É ÊÕÉ μ³ ³ ³μ μ Ö É ². 2 É ²Ó μ μ ±μ É É Ö, μ ²Ö ³ÒÌ Ê Ö³ (1) ² Î- Ò³ ³ ³ μ Ö ÔËË ±É μ ±μ É ÉÒ (10), μéμ μ. 2 3. 2. Š Œ Š -Š ˆ Œ ˆ μ ÉμÖ Ö f P ² Éμ μ μ P (Q q) l + ν l ²Ö μ ± ²Ö μ μ ³ μ P (Q q) μ ² Ê ² Ö Ô² ³ É ³ É ÍÒ Š μäšμ ÖÏ ÄŒ ± Ò V Qq μ ÒÎ μ μ - ²Ö É Ö ² ÊÕÐ ³ μμé μï ³: ( ) 3/2 j μ P 0 Ĵ μ 1 A (0) P,MP in = i P μ f P 2π 2 ωmp (P ), (12) Ô² ±É μ ² Ò ± ²Ó Ò Éμ± Ĵ μ A (0) ±Éμ μ ÉμÖ Ö ³ μ ³ μ M P - ÊÉ Ö É ² ƒ [31]. ±Éμ Ò μ ÉμÖ ÔÉμ³ Ò ³ ÕÉ μ ³ μ ±Ê P,M P P,M P = δ(p P ). μμé É É μ Ï P (Q q) l + ν l É Ö Ò ³ Γ P = G2 F V Qq 2 ( ) 2 m 2 l 8π M P fp 2 1 m2 l MP 2, (13) m l Å ³ ² Éμ l, G F Å ±μ É É ³. ²ÊÎ ² Éμ ÒÌ μ ±Éμ ÒÌ ³ μ μ V (Q q) l + l μμé μï Ö, - ²μ Î Ò Ò Ö³ (12) (13), ³ÊÉ ( ) 3/2 j μ V 0 Ĵ μ 1 V (0) P,MV,λ = i ε μ λ M V f V in 2π 2 ωmv (P )

588.. c ±Éμ μ³ μ²ö Í ε μ λ ±Éμ μ μ ³ μ ³ Ò M V. μμé É É μ Ï V (Q q) l + l É Ö Ò ³ ( Γ V = 4πα2 fv 2 1+ 2 ) m2 l 3 M V MV 2 1 4 m2 l MV 2, (14) α Å μ ÉμÖ Ö Éμ ±μ É Ê±ÉÊ Ò. μé Ì [32Ä35] μ²êî Ò μ ÕÐ É ²Ó Ò É ² Ö ²Ö ² Éμ - ÒÌ ±μ É É μ μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ f P, f V ³± Ì Ê ± - ±μ É ÒÌ ³μ ², μ μ ÒÌ ÉμÎ Î μ ³ μ ÒÌ Ëμ ³ Ì ƒ : f P (m q,m Q )= N c π 2 0 dk k 2 ψ P (k) M 2 0 (m q m Q ) 2 ω mq (k) ω mq (k) (m q + m Q ), (15) M 3/2 0 f V (m q,m Q )= N c 2π (ωmq (k)+m q )( ωmq (k)+m Q ) dk k 2 ψ V (k) ωmq (k)+ω mq (k) ω mq (k) ω mq (k) 0 ( ) k 2 1+ 3 ( )( ), (16) ω mq (k)+m q ωmq (k)+m Q N c Å Î ²μ Í Éμ ± ±μ. ²μ Î μ É ²Ó μ É ² ²Ö f P μ²êî μ [36] Ê ± -±μ - É μ ³μ ², μ μ μ ³ ± Éμ μ μ Ë μ É. É ² Ö (15) (16) ²ÖÉ É ±μ³ ²ÊÎ Ìμ ÖÉ ±² Î ± Ò Ö, ±μéμ ÒÌ ±μ É ÉÒ Ö³μ μ μ Í μ ²Ó Ò μ² μ μ ËÊ ±Í ³ μ ±μμ É μ³ μ É É Éμα r =0. 3. Œ Œ ˆ Ï Î μ É Ò Î Ö (8) μé Í ²μ³ (9) μ ³ - Í μ Ò³ ³ Éμ μ³ μ²ó μ ³ μ² μ ÒÌ ËÊ ±Í μ Í ²²ÖÉμ μ μ ±Ê²μ μ ±μ μ ( ²Ö B-³ μ μ ) É μ. μ²ó μ Í μ μ μ ³ Éμ É Ê É Ö Ìμ ³ ³Ê³ ËÊ ±Í μ ² M (m q,m Q,β,w 0,b,σ)= ψ (β) ˆM ψ (β) = ψ ˆM 0 ψ + ψ ˆV ψ, ψ (β) Å μ Ö μ² μ Ö ËÊ ±Í Ö. μé Í ² ³μ ² (9) ³ É ² ÊÕÐ μ μ Ò ³ É Ò: ³ É ÉÖ Ö ²Õμ μ É Ê Ò σ, ³ É ³ ± b ³ É w 0. ± ³ É ³ Ö ²ÖÕÉ Ö ³ Ò ± ±μ m q,q μ Ò ±μ É É α k, γ k, Ì ±É ÊÕÐ μ ÔËË ±É - μ ±μ É ÉÒ ²Ó μ μ ³μ É Ö. ɳ É ³, ÎÉμ Î Ö ³ É μ β, w 0, σ ÖÉ μé μ³ Éμ ± ±μ.

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 589 ³μÉ ³ μí Ê Ê Ë ± Í Î ² ÒÌ Î ³ É μ μé Í ². - ³ É ² μ Î É μé Í ² μ²óïμ³ ±μ² Î É ³μ ² ² É ² Ì σ =0,18 0,20 ƒô 2 [2, 11, 37, 38], μôéμ³ê Ï Ì Î É Ì Ê ³ μ² ÉÓ, ÎÉμ σ = σ ± Δσ =(0,19 ± 0,01) ƒô 2. (17) ² ³ É μ² μ μ ËÊ ±Í β μ É ²Ó ÒÌ ³ É μ μé Í ² μ ³ ÊÉ ³ Ï Ö É ³Ò Ê : M P,V (β,σ) β =0, βmin, σ M P (w 0,β min, σ) =M P ± ΔM P, (18) MV S=1 (β,σ) MP S=0 (β,σ) = M βmin, σ V M P ± δm vp, (19) f P (m q,m Q,β min )=fexp P ± Δf exp P, (20) f V (m q,m Q,β min )=fexp V ± Δf exp V, (21) Ê Ö (18), (19) Ö ²ÖÕÉ Ö Ê ²μ ³ ³ ³Ê³ É μ ³ Éμ μ, ÎÉμ Ò ³μ ²Ó- Ò Î Ö ³ ³ μ μ μμé É É μ ² Ô± ³ É ²Ó Ò³ Î Ö³. ² Î Ò M P,V Å Ô± ³ É ²Ó Ò Î Ö ³ Ò μ ± ²Ö μ μ ±Éμ μ μ ³ μ μ, ΔM P,V Å Ô± ³ É ²Ó Ö μï ± ³ Ö ÔÉ Ì ³. μ ² Ê - Ö (20), (21) μ Î ÕÉ, ÎÉμ Î Ö ² Éμ μ ±μ É ÉÒ Ö ²Ö μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ, μ²êî Ò ³± Ì Ê ± -±μ É μ ³μ ², μ ² (c³. (15), (16)) ² Ì μï ± Ô± ³ É ²Ó Ò³ Î Ö³ f exp. 3.1. Œ Ò u-, d-, s-± ±μ. μ² Ö, ÎÉμ ±μ É ÉÊÔ É Ò ³ Ò u-, d-± ±μ ² É ²Ó μ Ò [2]: m d m u Δm ud =(4± 1) ŒÔ, (22) μ²êî ³ (18)Ä(21) É ³Ê Ê μ μ ² Éμ ÒÌ ±μ É É μ : { f V (m u,m d,β)=fexp ρ0 ρ0 ± Δfexp, f P (m u,m d,β)=fexp π± ± Δfexp. π± ˆ μ²ó ÊÖ Ô± ³ É ²Ó Ò Ò ²Ö π ± - ρ 0 -³ μ μ [30] fπ P = (130,4 ± 0,04 ± 0,2) ŒÔ, ± fv ρ0 = (156,2 ± 1,2) ŒÔ, μ ² μμé μï μ²êî μ Ò Ö (14) Ô± ³ É ²Ó μ μ Î Ö Ï Ò Γ ρ 0 =(7,02 ± 0,11) ±Ô ²Ö ρ 0 e + e [30], Ìμ ³ ± ² ÊÕÐ ³ Î Ö³ ³ u-, d-± ±μ : m u = (239,8 ± 2,3) ŒÔ, m d = (243,8 ± 2,3) ŒÔ. (23) ³μ É μé μ Ö ÊÐ ±μ É ÉÒ ²Ó μ μ ³μ É Ö α s (Q 2 ) Ï É ³Ò Ê M V (β,...) =0, M β K + (β,...)=m K ± ± ΔM K ±, MV S=1 (β,...) MP S=0 (β,...)=m K M K ± ± δm K K ±, (24) f P (m u,m s,β)=fexp K± ± Δfexp K±

590.. ² Í 3. Ï Ò Î Ö ³ s-± ± ²Ö ³μ μ Ö α s (c ² Î Ò³ α crit Ā(μ) (11)) º α crit m s,œô º α crit m s,œô 1-a 8,809 ± 1,058 500,1 ± 34,7 1-b 2,197 ± 0,091 465,2 ± 27,9 2-a 3,394 ± 0,324 468,3 ± 32,0 2-b 0,000 ± 0,087 464,6 ± 27,9 3-a 1,307 ± 0,037 457,4 ± 28,7 3-b 0,585 ± 0,047 459,0 ± 28,1 4-a 1,078 ± 0,028 457,4 ± 29,2 4-b 0,434 ± 0,047 459,3 ± 28,3 5-a 0,937 ± 0,041 457,5 ± 30,1 5-b 0,797 ± 0,035 458,5 ± 29,4 6-a 0,821 ± 0,040 458,0 ± 30,7 6-b 0,187 ± 0,040 458,6 ± 30,8 7-a 0,667 ± 0,029 459,9 ± 31,7 7-b 0,692 ± 0,040 459,4 ± 31,5 8-b 0,300 ± 0,023 465,4 ± 33,0 ÊÎ Éμ³ Ô± ³ É ²Ó ÒÌ ÒÌ [30] M K + = (493,677 ± 0,016) ŒÔ, fk P ± = (155,5 ± 0,2 ± 0,8 ± 0,2) ŒÔ, ΔM exp = M K M K ± = (397,983 ± 0,261) ŒÔ Î ³ Ò u-± ± (23) μ É ± ʲÓÉ É ³, É ² Ò³ É ². 3 ÊÎ Éμ³ Ô± ³ É ²Ó ÒÌ É μ É Î ± Ì μ Ï μ É. 3.2. Œ Ò c- b-± ±μ. ²Ö ÒÎ ² Ö ² Éμ ÒÌ ±μ É É ÉÖ ²ÒÌ ³ μ μ ³ μ Ìμ ³Ò ³ Ò c-, b-± ±μ. ²Ö Î É μ Î ³ ÉÖ ²ÒÌ c-, b-± ±μ μ²ó Ê ³ Ò ²Ö c c (η c - J/ψ-³ μ Ò) b b (η b - γ (1S)-³ μ Ò) É ³: M η = (2980,3 ± 1,2) ŒÔ, M J/ψ = (3096,916 ± 0,011) ŒÔ, M ηb = (9390,9 ± 2,8) ŒÔ, M γ(1s) = (9460,30 ± 0,26) ŒÔ. (25) μ ±μ²ó±ê ÔÉ É ³Ò μ ÉμÖÉ Î É Í μ ±μ μ ³ Ò, Éμ ²Ö Ë ± Í ³ ± ±μ μ É ÉμÎ μ μ²ó μ ÉÓ Ô± ³ É ²Ó Ò Ò Éμ²Ó±μ ²Ö ² Éμ ÒÌ - μ ±Éμ ÒÌ μ ÉμÖ : fγ(1s) V = (238,4 ± 1,6) ŒÔ, fv J/ψ = (277,6 ± 4) ŒÔ. (26) Ï É ³ Ê, ²μ Î ÒÌ Ê Ö³ (24), μ É ± μ Î Ö³ ³ c-, b-± ±μ, É ² ÒÌ É ². 4. μî ± É ². 4 ²Ö ³ Ò b-± ± ² Í 4. Ï Ò Î Ö ³ c-, b-± ±μ ²Ö ³μ μ Ö α s (c ² Î Ò³ α crit Ā(μ)) º m c,ƒô m b,ƒô º m c,ƒô m b,ƒô 1-a 1,558 ± 0,094 3,506 ± 0,072 1-b 1,466 ± 0,078 Å 2-a 1,481 ± 0,094 3,724 ± 0,069 2-b 1,462 ± 0,077 4,000 ± 0,439 3-a 1,418 ± 0,077 3,917 ± 0,125 3-b 1,433 ± 0,076 3,873 ± 0,135 4-a 1,405 ± 0,076 3,960 ± 0,129 4-b 1,429 ± 0,076 3,883 ± 0,134 5-a 1,392 ± 0,081 4,005 ± 0,110 5-b 1,407 ± 0,077 3,953 ± 0,131 6-a 1,379 ± 0,082 4,049 ± 0,103 6-b 1,383 ± 0,082 Å 7-a 1,358 ± 0,081 4,127 ± 0,105 7-b 1,367 ± 0,085 4,089 ± 0,093 8-b 1,368 ± 0,082 4,072 ± 0,082

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 591 μ Î ÕÉ, ÎÉμ Ê ²μ Ó É Ï Ö É ³Ò Ê, μμé É É ÊÕÐ Ì Ô± - ³ É ²Ó Ò³ Ò³ (25), (26). 4. ˆ ˆŒ œ ƒ α crit Ò μ μ É ³ ²Ó μ μ Î Ö α crit μμé É É μ μ ³μ μ μ ³ μ - Ö α s μ ² ³ μ³μðóõ Ô± ³ É ²Ó ÒÌ ÒÌ ²Ö ±μ É É ² Éμ ÒÌ μ μ ± ²Ö ÒÌ ÉÖ ²ÒÌ ³ μ μ (D-, D s -³ μ Ò). ± Î É μ μ μ μ ± É Ö Ò μ μ²ó Ê ³ ± É χ 2. ²Ö ÔÉμ μ ÒÎ ² ³ ² Î Ê χ 2 (α crit )= ( k f P i, exp fi P (m q,m Q,β) ) 2 ( ) δf P 2 ( ) i, exp + δf P 2 (27) i, teor i=1 ²Ö ² Î ÒÌ ³μ μ Ö ±μ É ÉÒ ²Ó μ μ ³μ É Ö ³ ³ - ³ ²Ó μ Î. ² Î δfteor P ±²ÕÎ É μ ² μ É, Ö Ò ± ± É μ É Î ± ³ μ ² μ ÉÖ³, μ ± ÕÐ ³ ʲÓÉ É Î Éμ, É ± Ô± - ³ É ²Ó Ò³ μï ± ³ ³ ³ μ μ, μ Î Ö³ ±μéμ ÒÌ Ìμ ² Ó ³ É Ò ³μ ². ² Î χ 2 (α crit ) ³ ÉμÉ Î ±μ³ ² Ê É ³ ÉÓ ² χ 2 k É Ö³ μ μ Ò ( ³., ³, [39]). ˆ μ²ó ÊÖ Ô± ³ É ²Ó Ò Î Ö PDG-2010 [30] f P D = (205,8 ± 8,5 ± 2,5) ŒÔ, fp D s = (273 ± 10) ŒÔ ÒÎ ² Ö ² Éμ ÒÌ ±μ É É μ ± ²Ö ÒÌ ³ μ μ ³± Ì Ê ± -±μ- É μ ³μ ², Ìμ ³ ³μ ÉÓ χ 2 (α crit ) μé ³μ μ Ö α s, ±μéμ Ö É ² É ². 5 ³ É μöé μ ÉÖ³ ÖÉ Ö ³μ ² P ( %). ² ÒÌ É ². 5 μ± Ò É, ÎÉμ ³ ³ ²Ó Ò χ 2 μμé É É μ ³ ± ³ ²Ó- ÊÕ μöé μ ÉÓ ÖÉ Ö P ³μ ±μ³ ÉÊ É μ μ ² É ³ É ³μ ²Ó º 8-b ( ³.. 3, É ². 2), ³μ ³μ μ ±μ ±μ É ÉÒ μ º 7-a ( ³.. 2, É ². 1). ±μ μ Ìμ ³μ μé³ É ÉÓ, ÎÉμ ³μ ² μ³ ³ º 5-a, 6-a º 5-b, 6-b, 7-b ³ ÕÉ É ± μé μ É ²Ó μ Ê Ì μ²óï μöé μ É ³μ ÊÉ ÒÉÓ μ μ Î μ μé μï Ò, É ± ± ± Ì χ 2 /n 1. ² Í 5. Î Ö χ 2 (α crit) (27) μöé μ É ÖÉ Ö ³μ ² P ²Ö ³μ μ Ö α s º χ 2 (α crit) P, % º χ 2 (α crit) P, % 1-a 8,3 1,6 1-b 5,1 7,9 2-a 4,4 10,8 2-b 4,8 9,1 3-a 2,6 26,9 3-b 3,3 19,0 4-a 2,2 35,4 4-b 3,1 21,7 5-a 1,6 45,4 5-b 2,0 36,0 6-a 1,3 52,9 6-b 1,3 52,7 7-a 0,9 63,3 7-b 1,0 60,7 8-b 0,8 67,6

592.. ²Ö ²Ó Ï Ì μ Î μ Ìμ ³ μ μ² É ²Ó Ö Ëμ ³ Í Ö. ± ³ - ÉμÎ ±μ³ ³μ ÊÉ ÒÉÓ Ò μ ³ B-³ μ μ. ÉμÖÐ ³Ö, Ï Éμα Ö, ÊÐ É Ê É Î É ²Ó Ò μ μ ² ² Éμ μ ±μ É ÉÒ Ö - μ μ B-³ μ. ± ³ É ²Ó μ Î ² Î Ò (c³. [40Ä44]) f P B V ub =(7,2 10,1) 10 4 ƒô c μ ³ Ò³ μ Î ³ ²Ö V ub =3,93 ± 0,36 [30] μ É ± Î É ²Ó Ò³ μ ³ fb P : fb P = (183,2 257,0) ŒÔ μï ± ³, μ É ÕÐ ³ 40 ŒÔ. ÊÐ É Ê É É ± Î É ²Ó Ò μ É μ É - Î ± Ì ± ÖÌ ² Éμ ÒÌ ±μ É É μ B ± -³ μ μ : μé fb P = 147+34 38 ŒÔ [45] μ fb P = (230 ± 23) ŒÔ μé [46]. Ï ³ ²ÊÎ ²Ö μ É ³ ²Ó μ μ ³ ³μ μ ±μ º 7-a ±μ É É ² Éμ - μ μ = (226,3 ± 4,7) ŒÔ, (28) f P B ²Ö ³ ±μ³ º 8-b ³ ³, ÎÉμ f P B = (217,0 ± 4,7) ŒÔ. (29) Î (29) Ìμ μïμ μ ² Ê É Ö Ò³ É μ É Î ±μ μ Œ- ± Ö [47]: f P B = (216,0 ± 22,0) ŒÔ, μ μ É ÉμÎ μ ² ±μ μé ÒÌ Ê BaBar Belle [40,42,44], Ìμ ÖÐ Ì Ö ² Ì fb,exp P = (246,8 ± 45,6) ŒÔ. Š Ò³ Ê BaBar Belle ² Î (28). ± ³ μ μ³, c ÊÎ Éμ³ ÊÐ É ÊÕÐ Ì μ ² μ É Ô± ³ É ²Ó ÒÌ ÒÌ μ ² Éμ Ò³ ±μ É É ³ ÉÖ ²ÒÌ ³ μ μ ³μ μ μ²μ ÉÓ, ÎÉμ μ ³μ - Ò³ μ ³ ±μ É ÉÒ α s Ö ²ÖÕÉ Ö ³Ò º 7-a α crit =(0,667 0,821)±0,040, É ± ³Ò º 7-b, 8-b, α crit =(0,300 0,692) ± 0,040. Ï Ê²ÓÉ ÉÒ μ² μ ² ÊÕÉ Ö Î É ³ [2, 4, 49] ( ³. É ². 6) ÊÐ - É μ μé² Î ÕÉ Ö μé ÒÌ [24, 50]. ɳ É ³, ÎÉμ É Ë Í μ ÉÓ μ μ Î μ Ì ±É μ Ö μ ³ Éμ ± Ê É Ö, μ ±μ²ó±ê μ μ μ ³ É Ā(μ), ± ±μéμ μ³ê ÎÊ É É ² Ò μ μ, Ö μ ³ α s ±μ μ, Î É μ μ μ³ê ³ Ê²Ó Ê Q. ² Í 6. Î Ö α crit ² Î ÒÌ ³μ ²ÖÌ μ Ìμ Ì α crit μé 0,53 0,60 [4] 0,757 [49] 0,60 [2] 1,4 1,5 [8, 15] 3,14 [24, 50] 0,667 0,821 É μé ( ³ ³μ μ ±μ ) 0,300 0,692 É μé ( ³ ±μ³)

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 593. 4. ËË ±É Ò ÊÐ ±μ É ÉÒ ²Ó μ μ ³μ É Ö ² Î ÒÌ μ Ìμ Ì Ê ± -±μ É μ ³μ ² (± Ò 5, 6). 1 Å ² É Î ± Ö É μ Ö ±μ Ä μ²μ Íμ ( ³. (3)); 2 Å G p-³μ ²Ó μ Ö α s (4) ( É ² ³. [3]); 3 Å ÔËË ±É Ö ±μ É É α s ( É ² ³. [20, 48]); 4 Å ÉÊ É Ö Ëμ μ Ö ³μ ²Ó μ Ö α s ( ³. [4, 12]); 5 Å ÔÉ μé ( ³Ò º 7-b, 8-b, ³. É ². 2); 6 Å ÔÉ μé ( ³Ò º 6-a, 7-a, ³. É ². 1) É É ²Ó μ, ± ± ² Ê É É ². 1 2, Î Ö Ā(μ) ²Ö ± Î É μ ² Î ÒÌ ³μ ³μ μ ±μ ±μ³ ² ± ² É ² Ì 0,140 0,166. Š ± Ò²μ μé³ Î μ [4], Î Āfit(μ) =0,18±0,01(exp.)±0,02(th.), μ²êî μ ÊÉ ³ Ë É μ Ö Ô± ³ É ²Ó ÒÌ ÒÌ [3], Ö μ μ²óï ³ μ ³ μ μî Ò³ Î ³ α s (MZ 2 ) = 0,125 ± 0,003(exp.) ± 0,004(th.) μ Õ μ ³ Ò³ α s (MZ 2 )=0,1184 ± 0,0007. μôéμ³ê μ²êî Ò μ μé Î Ö Ā(μ) = 0,140 0,166 μ² μμé É É ÊÕÉ Ô± ³ É ²Ó Ò³ Ò³ [3]. ˆ É ². 5 μ² μîé É ²Ó Ò³ Ö ²Ö É Ö μ α s ±μ³ (± Ö 5. 4). ²Ö Ö. 4 É ² Ò ² Î Ò ³μ É μ Ö ÔËË ±É μ ±μ É ÉÒ α s ÉÊ É μ μ ² É ² Î ÒÌ μ Ìμ Ì Ê ± -±μ É μ ³μ ² (± Ò 5, 6). ²Ö ÊÉμÎ Ö μ Ö ÔËË ±É μ ±μ É ÉÒ ² É ²Ó μ μ É μ² Ï μ- ± ² ² Î ÒÌ Ô± ³ É ²Ó ÒÌ ÒÌ. Š ˆ μé ²μ ³ Éμ ±, μ μ²öõð Ö μí ÉÓ μ ÊÐ ±μ É ÉÒ Š ÉÊ É μ μ ² É. μ μ ³ Éμ ± ² É É μ μμé É É Ö Î Éμ, μ μ ³ÒÌ ³± Ì ²ÖÉ É ±μ ± ±μ μ ³μ ² ( Ê ± -±μ É- Ö ³μ ²Ó) ³ ± ±μ Ò³ μé Í ²μ³ (9), Ô± ³ É ²Ó ÒÌ ÒÌ μ ³ ³ ±μ É É ³ ² Éμ ÒÌ μ μ ± ²Ö ÒÌ ±Éμ ÒÌ ³ μ μ. ²Ö ʲÊÎÏ Ö ÉμÎ μ É Î ² ÒÌ Î Éμ μ²ó Ê É Ö Ë μ³ μ²μ Î ± Ö ³ É Í Ö α s (Q 2 ), ²μ Ö μé [2].

594.. ²Ö ² μ Ö μ² ³μ μ μ Ö ±μ É ÉÒ Š Ò²μ ³μ ² μ μ 15 ³μ ² Î Ò³ α crit = α s (0) ³μ ÉÓÕ μé Q 2 ÉÊ É μ μ ² É ( ³. É ². 1, 2). ˆ μ²ó μ ² Éμ ÒÌ ±μ É É ³ ÉÖ ²ÒÌ (B, D, D s ) ³ μ μ μ μ²ö É Ê É μ ÉÓ ÍÒ μ² μ É ³ ²Ó μ μ μ Ö Éμα Ö Ô± ³ É ²Ó- ÒÌ ÒÌ: α crit = 0,667 0,821 ²Ö ³ ³μ μ ± ²Ö ± ÒÌ ±μ³ α crit =0,300 0,692. Éμ ² μ É.. μ²μ Íμ Ê, A. E. μ μìμ ÊÎ É ±μ ³ μ Éμ- É μ É Î ±μ Ë ± ˆŸˆ É ³Ê² ÊÕÐ μ Ê Ö ±μ ʲÓÉ Í. ˆ Š ˆ 1. Richardson J. L. The Heavy Quark Potential and the Υ, J/Ψ Systems // Phys. Lett. B. 1979. V. 82, No. 2. P. 272Ä274. 2. Godfrey S., Isgur N. Mesons in a Relativized Quark Model with Chromodynamics // Phys. Rev. D. 1985. V. 32. P. 189Ä231. 3. Dokshitzer Y. L., Khoze V. A., Troian S. I. Speciˇc Features of Heavy Quark Production. LPHD Approach to Heavy Particle Spectra // Phys. Rev. D. 1996. V. 53. P. 89Ä119. 4. Badalian A. M., Kuzmenko D. S. Freezing of QCD Coupling Alpha(s) Affects the Short Distance Static Potential // Phys. Rev. D. 2002. V. 65. P. 016004. 5. Alekseev A. I., Arbuzov B. A. Analyticity and Minimality of Nonperturbative Contributions in Perturbative Region for Alpha(s)-bar // Mod. Phys. Lett. A. 1998. V. 13. P. 1747Ä1756. 6. Boucaud P. et al. Lattice Calculation of 1/p 2 Corrections to Alpha(s) and of Lambda(QCD) in the MOM Scheme // JHEP. 2000. V. 04. P. 006. 7. Webber B. R. QCD Power Corrections from a Simple Model for the Running Coupling // JHEP. 1998. V. 10. P. 012. 8. Shirkov D. V., Solovtsov I. L. Analytic Model for the QCD Running Coupling with Universal Alpha(s)-bar(0) Value // Phys. Rev. Lett. 1997. V. 79. P. 1209Ä1212. 9. Nesterenko A. V. Analytic Invariant Charge in QCD // Intern. J. Mod. Phys. A. 2003. V. 18. P. 5475Ä 5520. 10. ±Ê².. ƒ²μ ²Ó Ö μ μ- ² É Î ± Ö É μ Ö μ ³ÊÐ Š ±μéμ Ò ²μ Ö // Ÿ. 2009. T. 40, º 5. C. 1351Ä1431. 11. Kalashnikova Yu. S., Nefediev A. V., Simonov Yu. A. QCD String in Light-Light and Heavy-Light Mesons // Phys. Rev. D. 2001. V. 64. P. 014037. 12. Badalian A. M., Kuzmenko D. S. A Short Distance Quark Antiquark Potential // Phys. At. Nucl. 2004. V. 67. P. 561Ä563. 13. Milton K. A., Solovtsov I. L., Solovtsova O. P. An Analytic Method of Describing R-related Quantities in QCD // Mod. Phys. Lett. A. 2006. V. 21. P. 1355Ä1368. 14. Milton K. A., Solovtsov I. L., Solovtsova O. P. Remark on the Perturbative Component of Inclusive Tau Decay // Phys. Rev. D. 2002. V. 65. P. 076009. 15. Shirkov D. V., Solovtsov I. L. Ten Years of the Analytic Perturbation Theory in QCD // Theor. Math. Phys. 2007. V. 150. P. 132Ä152. 16. Nesterenko A. V. New Analytic Running Coupling in Spacelike and Timelike Regions // Phys. Rev. D. 2001. V. 64. P. 116009.

² ÉÓ ±μ É ÉÒ Š 1 ƒô Ê ± -±μ É μ ³μ ² 595 17. Baldicchi M., Prosperi G. M. Running Coupling Constant and Masses in QCD, the Meson Spectrum // AIP Conf. Proc. 2005. V. 756. P. 152Ä161. 18. Bakulev A. P., Mikhailov S. V., Stefanis N. G. Fractional Analytic Perturbation Theory in Minkowski Space and Application to Higgs Boson Decay into a b b Pair // Phys. Rev. D. 2007. V. 75. P. 056005. 19. Baldicchi M., Prosperi G. M., Simolo C. Extracting Infrared QCD Coupling from Meson Spectrum. http://arxiv.org/pdf/hep-ph/0611087 20. Baldicchi M. et al. Bound State Approach to the QCD Coupling at Low Energy Scales // Phys. Rev. Lett. 2007. V. 99. P. 242001. 21. Baldicchi M., Prosperi G. M. Regge Trajectories and Quarkonium Spectrum from a First Principle Salpeter Equation // Phys. Lett. B. 1998. V. 436. P. 145Ä152. 22. Prosperi G. M., Baldicchi M. BetheÄSalpeter and DysonÄSchwinger Equations in a Wilson Loop Context in QCD, Effective Mass Operator, q anti-q Spectrum // Fizika B. 1999. V. 8. P. 251Ä260. 23. Deur A. et al. Experimental Determination of the Effective Strong Coupling Constant // Phys. Lett. B. 2007. V. 650. P. 244Ä248. 24. Deur A. et al. Determination of the Effective Strong Coupling Constant α s,g1 (Q 2 ) from CLAS Spin Structure Function Data // Phys. Lett. B. 2008. V. 665. P. 349Ä351. 25. Coester F., Polyzou W. N. Relativistic Quantum Mechanics of Particles with Direct Interactions // Phys. Rev. D. 1982. V. 26. P. 1348Ä1367. 26. Keister B. D., Polyzou W. N. Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics // Adv. Nucl. Phys. 1991. V. 20. P. 225Ä479. 27. Š ÊÉμ.., μ ͱ.. Œ μ Ö Ëμ ³ Ê ± - É μ ± Éμ μ ³ Ì ± μ É Ê±ÉÊ Ò μ É ÒÌ É ³ // Ÿ. 2009.. 40, º 2.. 268Ä318. 28. Dirac P. A. M. Forms of Relativistic Dynamics // Rev. Mod. Phys. 1949. V. 21. P. 392Ä399. 29. Gromes D. Theoretical Understanding of Quark Forces. Heidelberg, 1989. 64 p. Preprint Inst. of Theor. Phys. No. HD-THEP-89-17. 30. Nakamura K. et al. The Review of Particle Physics // J. Phys. G. 2010. V. 37. P. 075021. 31. ² Ó±. Œ. ³³Ò ³ Ë ±Ê Ô² ±É μ ² μ μ ³μ É Ö. Œ.: μ Éμ³ É, 1990. 327. 32... ² Éμ ÒÌ μ ³± Ì Ê ± -±μ É μ ± ±μ μ ³μ- ² // Íi AH ² Ê.. Ëi.-³ É. ʱ. 2000. º 2. C. 93Ä98. 33..., Š ÊÉμ.. Šμ³ Éμ μ ± Ö μ²ö Ê ³μ ÉÓ ± μ μ ²ÖÉ É ±μ ³ ²ÓÉμ- μ μ ³ ± // É. ³ ±. μ. Ê -É. É É.- ÊÎ.. Í. Ò. 2004.. 111Ä127. 34. Š ÊÉμ.. ² ±É μ ² Ò μ É ² ± Ì ³ μ μ ²ÖÉ É ±μ ³μ ² μ É ÒÌ ± ±μ // Ÿ. 1997.. 60, º 8.. 1442Ä1450. 35. Š ÊÉμ.., μ ͱ.. μ É μ Ëμ ³Ë ±Éμ μ μ É ÒÌ É ³ μ³μðóõ μ μ - Ð μ É μ ³Ò Ä ±± É ²Ö Ê Ò Ê ± // Œ. 2005.. 143, º 2.. 258Ä277. 36. Jaus W. Relativistic Constituent Quark Model of Electroweak Properties of Light Mesons // Phys. Rev. D. 1991. V. 44. P. 2851Ä2859. 37. Ebert D., Faustov R. N., Galkin V. O. Quark-Antiquark Potential with Retardation and Radiative Contributions and the Heavy Quarkonium Mass Spectra // Phys. Rev. D. 2000. V. 62. P. 034014. 38. ²... μ²ê² Éμ Ò Ò μ ± ²Ö ÒÌ ³ μ μ ³ μ μ Ëμ ³ ²ÖÉ É ±μ ³ ²ÓÉμ μ μ ³ ± // Ÿ. 2000.. 63, º 2.. 301Ä311. 39. ²μ± μ.. Œ É ³ É Î ± ³ Éμ Ò ² Ô± ³ É ²Ó ÒÌ ±É μ ±É μ μ μ - ÒÌ ² // Ÿ. 1985.. 16, º 5.. 1126Ä1163.

596.. 40. Aubert B. et al. A Search for B + τ + ν with Hadronic B Tags // Phys. Rev. D. 2008. V. 77. P. 011107. 41. Aubert B. et al. A Search for B + τ + ν // Phys. Rev. D. 2007. V. 76. P. 052002. 42. Adachi I. et al. Measurement of B τ + ν τ Decay with a Semileptonic Tagging Method. http://arxiv.org/pdf/hep-ex/0809.3834 43. Schwartz A. J. B + and D s + Decay Constants from Belle and Babar // AIP Conf. Proc. 2009. V. 1182. P. 299Ä308. 44. Aubert B. et al. Search for the Rare Leptonic Decays B + l + + ν l (l = e, μ) // Phys. Rev. D. 2009. V. 79. P. 091101. 45. Ali Khan A. et al. B Meson Decay Constants from NRQCD // Phys. Lett. B. 1998. V. 427. P. 132Ä 140. 46. Penin A. A., Steinhauser M. Heavy-Light Meson Decay Constant from QCD Sum Rules in Three- Loop Approximation // Phys. Rev. D. 2002. V. 65. P. 054006. 47. Gray A. et al. The B Meson Decay Constant from Unquenched Lattice QCD // Phys. Rev. Lett. 2005. V. 95. P. 212001. 48. Nesterenko A. V., Papavassiliou J. The Massive Analytic Invariant Charge in QCD // Phys. Rev. D. 2005. V. 71. P. 016009. 49. Ganbold G. QCD Running Coupling in Low-Energy Region // Phys. Rev. D. 2010. V. 81. P. 094008. 50. Deur A. The Strong Coupling Constant at Large Distances // AIP Conf. Proc. 2009. V. 1149. P. 281Ä284. μ²êî μ 4 Ë ²Ö 2010.