ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω



Σχετικά έγγραφα
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Every set of first-order formulas is equivalent to an independent set

2 Composition. Invertible Mappings

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Example Sheet 3 Solutions

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homework 3 Solutions

ST5224: Advanced Statistical Theory II

Chapter 3: Ordinal Numbers

Section 8.3 Trigonometric Equations

C.S. 430 Assignment 6, Sample Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

The Simply Typed Lambda Calculus

Fractional Colorings and Zykov Products of graphs

Other Test Constructions: Likelihood Ratio & Bayes Tests

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Approximation of distance between locations on earth given by latitude and longitude

Bounding Nonsplitting Enumeration Degrees

Inverse trigonometric functions & General Solution of Trigonometric Equations

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

5. Choice under Uncertainty

Statistical Inference I Locally most powerful tests

Reminders: linear functions

Finite Field Problems: Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Matrices and Determinants

From the finite to the transfinite: Λµ-terms and streams

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Instruction Execution Times

derivation of the Laplacian from rectangular to spherical coordinates

Uniform Convergence of Fourier Series Michael Taylor

About these lecture notes. Simply Typed λ-calculus. Types

A Note on Intuitionistic Fuzzy. Equivalence Relation

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

The challenges of non-stable predicates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Section 8.2 Graphs of Polar Equations

Second Order RLC Filters

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

4.6 Autoregressive Moving Average Model ARMA(1,1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

CRASH COURSE IN PRECALCULUS

Srednicki Chapter 55

Areas and Lengths in Polar Coordinates

Concrete Mathematics Exercises from 30 September 2016

Solutions to Exercise Sheet 5

Lecture 34 Bootstrap confidence intervals

Lecture 15 - Root System Axiomatics

Trigonometric Formula Sheet

Lecture 2. Soundness and completeness of propositional logic

Commutative Monoids in Intuitionistic Fuzzy Sets

6.3 Forecasting ARMA processes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

D Alembert s Solution to the Wave Equation

12. Radon-Nikodym Theorem

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Areas and Lengths in Polar Coordinates

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Tridiagonal matrices. Gérard MEURANT. October, 2008

Trigonometry 1.TRIGONOMETRIC RATIOS

Strain gauge and rosettes

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Galatia SIL Keyboard Information

( y) Partial Differential Equations

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Chapter 2. Ordinals, well-founded relations.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

1 String with massive end-points

Homomorphism in Intuitionistic Fuzzy Automata

Example of the Baum-Welch Algorithm

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Distances in Sierpiński Triangle Graphs

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Notes on the Open Economy

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Lecture 13 - Root Space Decomposition II

Transcript:

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 + ω 2 ω 3 2 ω 4 ω ω ω ω + 1 ω ω + 2 ω ω + 3 ω ω + ω ω ω + ω + 1 ω ω + ω2 ω ω + ω 2 ω ω + ω 2 + ω ω ω + ω 2 2 ω ω 2 ω ω 2 + 1 ω ω 2 + 2 ω ω 2 + ω ω ω 2 + ω 2 ω ω 3 ω ω 3 + 1 ω ω 4 ω ω+1 ω ω+1 + 1 ω ω+1 + ω ω ω+1 + ω ω ω ω+1 + ω ω 2 ω ω+1 2 1

ω ω+1 2 + ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω+2 2 + ω ω ω ω+2 2 + ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω ω+1 2 ω ω2 + ω ω+2 ω ω2 2 ω ω2+1 ω ω3 ω ω2 ω ω2 + 1 ω ω2 + 2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω2 ω ω2 2 ω ω2 2 + 1 ω ω2 3 ω ω2 +1 ω ω2 +1 2 ω ω2 +ω ω ω2 2 ω ω3 ω ω3 + 1 ω ω3 2 ω ω4 ω ωω ω ωω + 1 ω ωω + 2 ω ωω + ω ω ωω + ω ω ω ωω 2 ω ωω 2 + 1 ω ωω 3 ω ωω +1 ω ωω +1 2 ω ωω +ω ω ωω 2 ω ωω 3 ω ωω+1 2

ω ωω+1 + 1 ω ωω+1 2 ω ωω+2 ω ωω2 ω ωω2 + 1 ω ωω2 2 ω ωω2 +1 ω ωω2 +1 2 ω ωω2 +ω ω ωω2 2 ω ωω2+1 ω ωω3 ω ωω2 ω ωω2 +1 ω ωωω ω ωωω + 1 ω ωωω 2 ω ωωω +1 ω ωωω +ω ω ωωω 2 ω ωωω +1 ω ωωω +ω ω ωωω 2 ω ωωω+1 ω ωωω2 ω ωωω2 ω ωωωω = φ 1 (0) = ψ(0) + 1 + 2 + 3 + ω + ω + 1 + ω2 + ω3 + ω 2 + ω 2 2 + ω ω + ω ωω + ω ωωω 2 2 + 1 2 + ω 2 + ω ω 3 ω = ω +1 (ω + 1) = ω +1 + ω2 = ω +1 2 ω ω = ω +ω 3

2 = ω 2 2 + ω 2 + 2 + ω 2 2 2 ω = ω 2+1 3 = ω 3 ω = ω ω +1 ω + ω 2 ω ω = ω ω +1 +1 ω+1 = ω ω +1 + ω+1 + ω ω+1 2 ω+1 ω = ω ω +1 + +1 ω+2 = ω ω +1 + 2 ω2 = ω ω +1 2 ω 2 = ω ω +2 ω ω = ω ω +ω ω ω +1 = ω ω +ω + ω ω2 = ω ω +ω 2 ω ω+1 = ω ω +ω+1 ω ω2 = ω ω +ω2 ω ω2 = ω ω +ω2 ω ωω = ω ω +ωω = ω ω 2 2 = ω ω 3 ω = ω ω ω +1 = ω ωω 2 ω = ω ω ωω +1 = ω ω ωω 2 ε 1 = φ 1 (1) = ψ(1) 4

ε 1 + 1 ε 1 + 2 ε 1 + ω ε 1 + ε 1 + 2 ε 1 + ω ε 1 + 2 ε 1 2 ε 1 2 + ε 1 ω = ω ε 1+1 ε 1 = ω ε 1+ ε 1 2 = ω ε 12 ε 1 ω = ω ωε 1 +1 ε 1 ω ω = ω ωε 1 +ω ε 1 = ω ωε 1 + ε 1 ω = ω ω ε 1 +ω +1 ε 1 = ω ωε 1 +ω 2 ε 1 ε 1 = ω ωε 1 2 ε 1 ε 1 ω = ω ω ωε 1 +1 ε 1 ε 1 = ω ωωε 1 + ε 1 ε 1 ε 1 = ω ωωε 1 2 ε 2 = φ 1 (2) = ψ(2) ε 2 + 1 ε 3 = φ 1 (3) = ψ(3) ε ω = φ 1 (ω) = ψ(ω) ε ω + 1 ε ω + ω ε ω + ε ω + ε 1 5

ε ω2 ε ω 2 ε ω = φ 1 (ω) φ 1(0) ε ω ε 1 = φ 1 (ω) φ 1(1) ε ω ε ω = φ 1 (ω) φ 1(ω) ε ω ε ω εω = φ 1 (ω) φ 1(ω) φ 1 (ω) ε ω+1 = φ 1 (ω + 1) = ψ(ω + 1) ε ω2 = φ 1 (ω2) = ψ(ω2) ε ω 2 = φ 1 (ω 2 ) = ψ(ω 2 ) ε ω ω = φ 1 (ω ω ) = ψ(ω ω ) ε ε0 = φ 1 (φ 1 (0)) = ψ(ψ(0)) ε ε0 2 = φ 1 (φ 1 (0) 2) = ψ(ψ(0) 2) ε ε0 = φ 1 (φ 1 (0) φ 1(0) ) = ψ(ψ(0) ψ(0) ) ε ε1 = φ 1 (φ 1 (1)) = ψ(ψ(1)) ε εε0 = φ 1 (φ 1 (φ 1 (0))) = ψ(ψ(ψ(0))) φ 2 (0) = ψ(ω) φ 2 (0) + 1 = ψ(ω) + 1 φ 2 (0) + 2 = ψ(ω) + 2 φ 2 (0) + ω = ψ(ω) + ω φ 2 (0) 2 = ψ(ω) 2 φ 2 (0) ω = ψ(ω) ω φ 2 (0) ω = ψ(ω) ω φ 2 (0) φ 2(0) = ψ(ω) ψ(ω) φ 1 (φ 2 (0) + 1) = ψ(ω + 1) φ 1 (φ 2 (0) + 2) = ψ(ω + 2) φ 1 (φ 2 (0) + ω) = ψ(ω + ω) φ 1 (φ 2 (0) 2) = ψ(ω + ψ(ω)) φ 1 (φ 1 (φ 2 (0) + 1)) = ψ(ω + ψ(ω + 1)) φ 2 (1) = ψ(ω2) 6

φ 2 (1) + 1 = ψ(ω2) + 1 φ 2 (1) 2 = ψ(ω2) 2 φ 2 (1) φ 2(1) = ψ(ω2) ψ(ω2) φ 1 (φ 2 (1) + 1) = ψ(ω2 + 1) φ 1 (φ 1 (φ 2 (1) + 1)) = ψ(ω2 + ψ(ω2 + 1)) φ 2 (2) = ψ(ω3) φ 2 (ω) = ψ(ωω) φ 2 ( ) = φ 2 (φ 1 (0)) = ψ(ωψ(0)) φ 2 (ε 1 ) = φ 2 (φ 1 (1)) = ψ(ωψ(1)) φ 2 (φ 1 (φ 1 (0))) = ψ(ωψ(ψ(0))) φ 2 (φ 2 (0)) = ψ(ωψ(ω)) φ 1 (φ 2 (φ 2 (0)) + 1) = ψ(ωψ(ω) + 1) φ 2 (φ 1 (φ 2 (0) + 1)) = ψ(ωψ(ω + 1)) φ 2 (φ 2 (1)) = ψ(ωψ(ω2)) φ 2 (φ 2 (φ 2 (0))) = ψ(ωψ(ωψ(ω))) φ 3 (0) = ψ(ω 2 ) φ 3 (0) + 1 = ψ(ω 2 ) + 1 φ 3 (0) 2 = ψ(ω 2 ) 2 φ 3 (0) φ 3(0) = ψ(ω 2 ) ψ(ω2 ) φ 1 (φ 3 (0) + 1) = ψ(ω 2 + 1) φ 1 (φ 1 (φ 3 (0) + 1)) = ψ(ω 2 + ψ(ω 2 + 1)) φ 2 (φ 3 (0) + 1) = ψ(ω 2 + Ω) φ 1 (φ 2 (φ 3 (0) + 1) + 1) = ψ(ω 2 + Ω + 1) 7

φ 2 (φ 2 (φ 3 (0) + 1)) = ψ(ω 2 + Ωψ(Ω 2 )) φ 3 (1) = ψ(ω 2 2) φ 3 (φ 3 (0)) = ψ(ω 2 ψ(ω 2 )) φ 4 (0) = ψ(ω 3 ) φ ω(0) = ψ(ω ω ) φ ω(0) + 1 = ψ(ω ω ) + 1 φ 1 (φ ω(0) + 1) = ψ(ω ω + 1) φ 2 (φ ω(0) + 1) = ψ(ω ω + Ω) φ 3 (φ ω(0) + 1) = ψ(ω ω + Ω 2 ) φ ω(1) = ψ(ω ω 2) φ ω(ω) = ψ(ω ω ω) φ ω(φ ω(0)) = ψ(ω ω ψ(ω ω )) φ ω+1 (0) = ψ(ω ω+1 ) φ ω2 (0) = ψ(ω ω2 ) φ ω(φ ω2 (0) + 1) = ψ(ω ω2 + Ω ω ) φ ω+1 (φ ω2 (0) + 1) = ψ(ω ω2 + Ω ω+1 ) φ ω2 (1) = ψ(ω ω2 2) φ ω ω (0) = ψ(ω ωω ) φ ε0 (0) = φ φ1 (0)(0) = ψ(ω ψ(0) ) φ ε0 (1) = φ φ1 (0)(1) = ψ(ω ψ(0) 2) φ ε0 ( ) = φ φ1 (0)(φ 1 (0)) = ψ(ω ψ(0) ψ(0)) φ φ1 (0)(φ φ1 (0)(0)) = ψ(ω ψ(0) ψ(ω ψ(0) )) φ ε0 +1(0) = φ φ1 (0)+1(0) = ψ(ω ψ(0)+1 ) φ ε1 (0) = φ φ1 (1)(0) = ψ(ω ψ(1) ) φ εε0 (0) = φ φ1 (φ 1 (0))(0) = ψ(ω ψ(ψ(0)) ) φ φ2 (0)(0) = ψ(ω ψ(ω) ) φ φφ1 (0) (0) (0) = ψ(ω ψ(ωψ(0)) ) Γ 0 = φ(1, 0, 0) = ψ(ω Ω ) 8

Γ 0 + 1 Γ 0 + 2 Γ 0 + ω Γ 0 2 Γ 0 2 Γ 0 ω Γ 0 Γ 0 ε Γ0 +1 = φ(1, φ(1, 0, 0) + 1) = ψ(ω Ω + 1) φ(φ 1 (0), φ(1, 0, 0) + 1) = ψ(ω Ω + Ω ψ(0) ) φ(φ φ1 (0)(0), φ(1, 0, 0) + 1) = ψ(ω Ω + Ω ψ(ωψ(0)) ) φ(φ(1, 0, 0), 1) = ψ(ω Ω + Ω ψ(ωω) ) φ(1, φ(φ(1, 0, 0), 1) + 1) = ψ(ω Ω + Ω ψ(ωω) + 1) φ(φ 1 (0), φ(φ(1, 0, 0), 1) + 1) = ψ(ω Ω + Ω ψ(ωω) + Ω ψ(0) ) φ(φ φ1 (0)(0), φ(φ(1, 0, 0), 1) + 1) = ψ(ω Ω + Ω ψ(ωω) + Ω ψ(ωψ(0)) ) φ(φ(1, 0, 0), 2) = ψ(ω Ω + Ω ψ(ωω) 2) φ(φ(1, 0, 0), φ 1 (0)) = ψ(ω Ω + Ω ψ(ωω) ψ(0)) φ(φ(1, 0, 0), φ(1, 0, 0)) = ψ(ω Ω + Ω ψ(ωω) ψ(ω Ω )) φ(φ(1, 0, 0), φ(φ(1, 0, 0), φ(1, 0, 0))) = ψ(ω Ω + Ω ψ(ωω) ψ(ω Ω + Ω ψ(ωω) ψ(ω Ω ))) φ(φ(1, 0, 0) + 1, 0) = ψ(ω Ω + Ω ψ(ωω )+1 ) 9

φ(φ(φ(1, 0, 0), 1), 0) = ψ(ω Ω + Ω ψ(ωω +Ω ψ(ωω ) ) ) Γ 1 = φ(1, 0, 1) = ψ(ω Ω 2) Γ 1 + 1 Γ 2 = φ(1, 0, 2) = ψ(ω Ω 3) Γ ω = φ(1, 0, ω) = ψ(ω Ω ω) Γ Γ0 = φ(1, 0, φ(1, 0, 0)) = ψ(ω Ω ψ(ω Ω )) Γ ΓΓ0 = φ(1, 0, φ(1, 0, φ(1, 0, 0))) = ψ(ω Ω ψ(ω Ω ψ(ω Ω ))) φ(1, 1, 0) = ψ(ω Ω+1 ) φ(1, 1, 0) + 1 φ(1, 0, φ(1, 1, 0) + 1) = ψ(ω Ω+1 + Ω Ω ) φ(1, 1, 1) = ψ(ω Ω+1 2) φ(1, 2, 0) = ψ(ω Ω+2 ) φ(1, ω, 0) = ψ(ω Ω+ω ) φ(1, φ(1, 0, 0), 0) = ψ(ω Ω+ψ(ΩΩ) ) φ(2, 0, 0) = ψ(ω Ω2 ) φ(2, 0, 0) + 1 φ(2, 0, 1) = ψ(ω Ω2 2) φ(2, 1, 0) = ψ(ω Ω2+1 ) φ(3, 0, 0) = ψ(ω Ω3 ) φ(ω, 0, 0) = ψ(ω Ωω ) φ(ω, 0, 0) + 1 φ(ω, 0, 0) 2 φ(ω, 0, 0) φ(ω,0,0) φ(1, φ(ω, 0, 0) + 1) = ψ(ω Ωω + 1) φ(2, φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω) φ(φ 1 (0), φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω ψ(0) ) φ(φ(1, 0, 0), φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω ψ(ωω) ) 10

φ(1, 0, φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω Ω ) φ(2, 0, φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω Ω2 ) φ(ω, 0, 1) = ψ(ω Ωω 2) φ(ω, 0, φ(ω, 0, 0)) = ψ(ω Ωω ψ(ω Ωω )) φ(ω, 1, 0) = ψ(ω Ωω+1 ) φ(ω, φ(ω, 0, 0), 0) = ψ(ω Ωω+ψ(ΩΩω) ) φ(ω + 1, 0, 0) = ψ(ω Ω(ω+1) ) φ(ω2, 0, 0) = ψ(ω Ωω2 ) φ(ω ω, 0, 0) = ψ(ω Ωωω ) φ(φ 1 (0), 0, 0) = ψ(ω Ωψ(0) ) φ(φ 1 (0), 0, 0) 2 φ(φ 1 (0), 0, 0) φ(φ 1(0),0,0) φ(1, φ(φ 1 (0), 0, 0) + 1) = ψ(ω Ωψ(0) + 1) φ(ω, φ(φ 1 (0), 0, 0) + 1) = ψ(ω Ωψ(0) + Ω ω ) φ(φ 1 (0), 0, 1) = ψ(ω Ωψ(0) 2) φ(φ 1 (0), 0, φ 1 (0)) = ψ(ω Ωψ(0) ψ(0)) φ(φ 1 (0), 0, φ(φ 1 (0), 0, 0)) = ψ(ω Ωψ(0) ψ(ω Ωψ(0) )) φ(φ 1 (0), 1, 0) = ψ(ω Ωψ(0)+1 ) φ(φ 1 (0), φ 1 (0), 0) = ψ(ω Ωψ(0)+ψ(0) ) φ(φ 1 (0), φ(φ 1 (0), 0, 0), 0) = ψ(ω Ωψ(0)+ψ(ΩΩψ(0)) ) φ(φ 1 (0) + 1, 0, 0) = ψ(ω Ω(ψ(0)+1) ) φ(φ 1 (1), 0, 0) = ψ(ω Ωψ(1) ) 11

φ(φ 1 (φ 1 (0)), 0, 0) = ψ(ω Ωψ(ψ(0)) ) φ(φ 2 (0), 0, 0) = ψ(ω Ωψ(Ω) ) φ(φ φ1 (0)(0), 0, 0) = ψ(ω Ωψ(Ωψ(0)) ) φ(φ(1, 0, 0), 0, 0) = ψ(ω Ωψ(ΩΩ) ) φ(φ(φ 1 (0), 0, 0), 0, 0) = ψ(ω Ωψ(ΩΩψ(0)) ) φ(1, 0, 0, 0) = ψ(ω Ω2 ) φ(1, 0, 0, 0) + 1 φ(1, 0, 0, 0) + 2 φ(1, 0, 0, 0) + ω φ(1, 0, 0, 0)2 φ(1, 0, φ(1, 0, 0, 0) + 1) = ψ(ω Ω2 + Ω Ω ) φ(1, 0, 0, 1) = ψ(ω Ω2 2) φ(1, 0, 0, 1) + 1 φ(1, 0, 0, 2) = ψ(ω Ω2 3) φ(1, 0, 0, ω) = ψ(ω Ω2 ω) φ(1, 0, 1, 0) = ψ(ω Ω2 +1 ) φ(1, 0, 1, 0) + 1 φ(1, 0, 1, 1) = ψ(ω Ω2 +1 2) φ(1, 0, 2, 0) = ψ(ω Ω2 +2 ) φ(1, 0, ω, 0) = ψ(ω Ω2 +ω ) φ(1, 1, 0, 0) = ψ(ω Ω2 +Ω ) φ(1, 1, 0, 0) + 1 φ(1, 1, 0, 1) = ψ(ω Ω2 +Ω 2) φ(1, 1, 1, 0) = ψ(ω Ω2 +Ω+1 ) φ(1, 2, 0, 0) = ψ(ω Ω2 +Ω2 ) φ(1, ω, 0, 0) = ψ(ω Ω2 +Ωω ) φ(2, 0, 0, 0) = ψ(ω Ω22 ) φ(2, 0, 0, 0) + 1 φ(2, 0, 0, 1) = ψ(ω Ω22 2) φ(2, 0, 1, 0) = ψ(ω Ω2 2+1 ) φ(2, 1, 0, 0) = ψ(ω Ω2 2+Ω ) 12

φ(3, 0, 0, 0) = ψ(ω Ω23 ) φ(ω, 0, 0, 0) = ψ(ω Ω2ω ) φ(1, 0, 0, 0, 0) = ψ(ω Ω3 ) φ(1, 0, 0, 0, 0) + 1 φ(1, 0, 0, 0, 1) = ψ(ω Ω3 2) φ(1, 0, 0, 1, 0) = ψ(ω Ω3 +1 ) φ(1, 0, 1, 0, 0) = ψ(ω Ω3 +Ω ) φ(1, 1, 0, 0, 0) = ψ(ω Ω3 +Ω 2 ) φ(2, 0, 0, 0, 0) = ψ(ω Ω32 ) φ(1, 0, 0, 0, 0, 0) = ψ(ω Ω4 ) Conventions and notations: The order on finite rooted trees is recursively defined as follows: a tree A is less than a tree B, written A B, iff: either there is some child (=immediate subtree) B of B such that A B, or the following two conditions hold: every child A of A satisfies A B, and the list of children of A is lexicographically less than the list of children of B for the order (with the leftmost children having the most weight, i.e., either B has more children than A, or if A and B are the leftmost children on which they differ then A B ). This is a well-order. ω is the smallest infinite ordinal. Ordinal addition, multiplication and exponentiation are defined as usual: (i) α + 0 = α (ii) α + 1 is the successor of α. (iii) α + (β + 1) = (α + β) + 1 (iv) If δ is limit then α + δ is the limit of the α + β for β < δ. (v) α 0 = 0 (vi) α(β + 1) = αβ + α (vii) α 0 = 1 (viii) α β+1 = α β α φ 1 (α) = ε α is the α-th fixed point of ξ ω ξ (with the smallest: it is the limit of ω, ω ω, ω ωω, etc.). The Veblen hierarchy: For any β > 1, let φ β (α) be the α-th common fixed point of φ γ for all 0 < γ < β (with φ β (0) the smallest). Note: (i) φ β (α) is continuous in α for all β but it is not continuous in β except for α = 0. (ii) φ β+1 (0) is the limit of φ β (0), φ β (φ β (0)), φ β (φ β (φ β (0))), etc. (iii) φ β+1 (α + 1) is the limit of φ β+1 (α) + 1, φ β (φ β+1 (α) + 1), φ β (φ β (φ β+1 (α) + 1)), etc. (iv) If δ is limit (and β is arbitrary) then φ β (δ) is the limit of the φ β (ξ) for ξ < δ. (v) If δ is limit then φ δ (0) is the limit of the φ γ (0) for γ < δ. (vi) If δ is limit then φ δ (α + 1) is the limit of the φ γ (φ δ (α) + 1) for γ < δ. 13

φ(1, 0, α) = Γ α is the α-th fixed point of ξ φ ξ (0) (with Γ 0 the smallest: it is the limit of φ 1 (0), φ φ1(0)(0) φ φφ1 (0)(0)(0), etc.; this is known as the Feferman-Schütte ordinal). More generally, let φ(β, α) = φ β (α) (we only use the notation with a subscript for values less than Γ 0 ) and define φ of finitely many variables by: φ(β n, β n 1,..., β r, 0, 0,..., 0, α) is the α-th fixed point of all the ξ φ(γ n, γ n 1,..., γ r, ξ, 0, 0,..., 0) for (γ n,..., γ r ) lexicographically less than (β n,..., β r ) (the leftmost variable having the most weight), with the convention that φ(0, β n 1,..., β 0 ) = φ(β n 1,..., β 0 ). Ω is the first uncountable ordinal. A collapsing function: ψ(α) is defined inductively as the smallest ordinal not expressible from 0, 1, ω and Ω using addition, multiplication, exponentiation, and application of the function ψ itself to ordinals less than α. Or, more rigorously: Assume ψ has been defined for all ordinals β < α. Let C(α) be the set of ordinals constructed starting from 0, 1, ω and Ω by recursively applying the following functions: ordinal addition, multiplication and exponentiation and the function ψ α, i.e., the restriction of ψ to ordinals β < α. Formally, we define C(α) 0 = {0, 1, ω, Ω} and inductively C(α) n+1 = C(α) n {β 1 + β 2, β 1 β 2, β 1 β 2 : β 1, β 2 C(α) n } {ψ(β) : β C(α) n β < α} for all natural numbers n, and we let C(α) be the union of the C(α) n for all n. Define ψ(α) as the smallest ordinal not in C(α). It turns out that: (i) ψ is continuous and non-decreasing. (ii) The range of ψ is precisely the set of ε-numbers (i.e., fixed points of ξ ω ξ ) up to the Bachmann-Howard ordinal. (iii) C(α) consists exactly of those ordinals whose iterated base Ω representation only has pieces less than ψ(α); in particular, C(α) Ω = α. (iv) ψ(α + 1) is always equal either to the first ε-number after ψ(α) this happens when α C(α) or else to ψ(α) which happens when α C(α). (v) If δ is limit then ψ(δ) is the limit of the ψ(ξ) for ξ < δ. (vi) ψ(α + Ω) is the first fixed point of ξ ψ(α + ξ). (vii) ψ(αω) is the first fixed point of ξ ψ(αξ). (viii) ψ(α Ω ) is the first fixed point of ξ ψ(α ξ ). (ix) ψ(α βω ) is the first fixed point of ξ ψ(α βξ ). Certain ordinals have special names: ψ(ω Ω ) = φ(1, 0, 0) = Γ 0 is the Feferman-Schütte ordinal : it is the set of ordinals constructed starting from 0, 1, ω by recursively applying ordinal addition, multiplication and exponentiation and the Veblen functions φ β (α) of two variables; ψ(ω Ωω ) is the small Veblen ordinal: it is the set of ordinals constructed starting from 0, 1, ω by recursively applying ordinal addition, multiplication and exponentiation and the Veblen functions φ( ) of finitely many variables, and it is also the length of the ordering of finite rooted trees; ψ(ω ΩΩ ) is the large Veblen ordinal (it can be defined similarly to the small Veblen ordinal using a generalization of φ( ) to transfinitely many variables all but finitely many of which are zero); ψ(ε Ω+1 ) is the Bachmann-Howard ordinal. 14

α example α example = φ(φ 1 (1), ω, ω 2 + ω) φ(2,0,ωωω2 ) φ(ω ωω+1, ω, φ(1, 0, 0)) φ(ω ω + ω, 0, 2) = ψ(ω Ωψ(1)+ω (ω 2 + ω)) ψ(ωω2 ω ωω2 ) ψ(ω Ωωωω+1 +ω ψ(ω Ω )) ψ(ω Ω(ωω +ω) 3) 15