Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu.

Σχετικά έγγραφα
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΚΤΙΜΗΣΗ ΔΙΑΦΟΡΕΤΙΚΩΝ ΜΕΤΡΩΝ ΑΝΑΛΗΨΗΣ ΚΙΝΔΥΝΟΥ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ

Mean-Variance Analysis

35 90% %

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Multi-dimensional Central Limit Theorem

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Power allocation under per-antenna power constraints in multiuser MIMO systems

Βέλτιστο Χαρτοφυλάκιο μετοχών του δείκτη FTSE/ΧΑΑ20 στο Χρηματιστήριο Αθηνών για τα έτη

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Fractional Colorings and Zykov Products of graphs

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

α & β spatial orbitals in

ST5224: Advanced Statistical Theory II

Multi-dimensional Central Limit Theorem

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Matrices and Determinants

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Arbitrage Analysis of Futures Market with Frictions

Reading Order Detection for Text Layout Excluded by Image

A Class of Orthohomological Triangles

1 Complete Set of Grassmann States

Research on Economics and Management

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

!"#$%&'(!"# ! O == N N !"#$% PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

The Simply Typed Lambda Calculus

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

C.S. 430 Assignment 6, Sample Solutions

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Inverse trigonometric functions & General Solution of Trigonometric Equations

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

A three mutual fund separation theorem

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 2. Soundness and completeness of propositional logic

EE512: Error Control Coding

Constant Elasticity of Substitution in Applied General Equilibrium

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Quantum annealing inversion and its implementation

Ειδικό πρόγραμμα ελέγχου για τον ιό του Δυτικού Νείλου και την ελονοσία, ενίσχυση της επιτήρησης στην ελληνική επικράτεια (MIS )

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΤΗΣ ΕΛΙΑΣ

2 Composition. Invertible Mappings

5.4 The Poisson Distribution.

Homework 3 Solutions

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

Models for Probabilistic Programs with an Adversary

Galatia SIL Keyboard Information

Χρειάζεται να φέρω μαζί μου τα πρωτότυπα έγγραφα ή τα αντίγραφα; Asking if you need to provide the original documents or copies Ποια είναι τα κριτήρια

Μελέτη μονοπωλιακής δύναμης της Ελληνικής βιομηχανίας τροφίμων και ποτών κατά τη χρονική περίοδο

Homework 8 Model Solution Section

A Lambda Model Characterizing Computational Behaviours of Terms

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Granger FIA JOSEPH. Stock index futures 2005

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Finite Field Problems: Solutions

A summation formula ramified with hypergeometric function and involving recurrence relation

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Approximation Expressions for the Temperature Integral

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

The Construction of Investor Sentiment Index for China's Stock Market Based on the Panel Data of Shanghai A Share Companies

Statistical Inference I Locally most powerful tests

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

Quick algorithm f or computing core attribute

0#// SCA !. >8'

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Transcript:

5 6 202 6 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 5 No 6 Jun 202 36005 CAPM F830 9 A 007 9807 202 06 0040 09 0 4 5 6 2 7 8 9 5 2 20 03 24 20 0 0 70974 702 2009J036 966 Emal zlzheng@ xmu edu cn NYSE NASDAQ

6 4 6 7 Parlour Sepp 8 Parlour t ~ T Sepp 8 t 3 T Parlour Sepp 8 4 Parlour Sepp 8 t ~ T r T f P t T P T ~ N P T σ T W t θ t t n Θ B t Θ S t 3 4

42 202 6 n a T 2 Θ B t = 2 Θ S t Θ B t Θ B t Θ S t n W Θ B T Θ S T = B t Θ B tp LOB + r T f + T θ t Θ0 P S T + Θ B texe B TP T + 5 Θ B T = Θ B t exe B T Θ B t exe B T P LOB + r T f + Θ S T = Θ S t exe S T exe B T exe S T n Θ S texe S TP LOB + Θ S t exe S T P T 0 6 6 exe B T 2 t T Pr B t Pr S 6 r T f 9 E t exe B T = Pr B t 3 B t Θ B tp LOB + r T f P LOB t 0 00 9 99 T P LOB = n 4 0 00 Tck n θ t Θ S t t 0 00 0 00 Tck n 7 T n P LOB P LOB = P LOB + + θ t Θ S t P T t ~ T Tck 2 t ~ T W t t ~ T θ t P t B t 8 t ~ T T CARA U = e aw T 5 W t = θ t P t + B t W T = W t θ t P t + r T f + θ t P T + 5 0 T 6 Pr B t Pr S t 7 Tck 0 0 8 P T 9 6

6 43 Θ B t exe S T P T + r T f P LOB + Θ s t exe S T P LOB P T 7 7 6 T Θ B t Θ S t 7 EU = 0 EU = 0 Θ B t Θ S t exe B T P T + r T f P LOB E W T + a 2 Var W T = 0 exe B T P T exe S T P LOB + r T f P LOB PG B T P T PG S 瑏瑠 T T max EU = exp Θ B 0 ΘS 0 { } ae W T + a2 2 Var W T 8 6 W T E t W t = W t θ t P t + r T f + θ t P T + Θ B te t PG B T + Θ S te t PG S T E t PG B T = E t exe B TP T Pr B t + r T f P LOB E t PG S T = Pr B tp LOB E t exe S TP T W T Var W T =θ 2 t σ 2 T+var 2θ t cov P T = θ 2 t σ 2 T + Θ B tpg B T+ Θ S2 t var PG S T + 2 2 2 Θ B tpg B T + 9 Θ S tpg S T + Θ B2 t var PG B T + Θ S tpg S T Θ B tθ B tj cov PG B T PG B Tj + j = Θ S tθ S tjcov PG S T PG S Tj + j = Θ B tθ S tjcov PG B T PG S Tj + j = 2θ t [ Θ B tcov P T PG B T + Θ B t Θ S tcov P T PG S T ] E W T + a 2 Var W T = 0 Θ S t Θ B t E t PG B T + aθ t cov P T PG B T + [ a Θ B tj cov PG B T PG B Tj + Θ S tjcov PG B T PG S Tj ] = 0 Θ B t = var PG B T { E t PG B T a Θ B tj cov PG B T PG B Tj j = Θ S tjcov PG B T PG S Tj θ t cov P T PG B T } Θ S t = var PG S T { E t PG S T a Θ S tjcov PG S T PG S Tj j = Θ B tj cov PG B T PG S Tj θ t cov P T PG S T } 0 2 3 2 3 瑏瑠 PG B T PG S T T Potental Gan

44 202 6 βbb β SB β 2 3 CAPM CAPM beta 2 β BB = cov PG B T PG B Tj var PG B T cov PG S T PG B Tj var PG B T cov P T PG B T var PG B T = βbb j = βsb j = βpb 2 Θ B t = E t PG B T a var PG B T Θ B tj β BB j 4 Θ S tjβ SB j θ t β PB 5 5 CAPM Θ B t Θ 瑏瑡 [ ] B tn = S Θt Θ S t Θ S tn [ βbb β SB ] β [ β BB β SB ] β Θ S t3 5 β Θ S t = E t PG S T a var PG S T Θ S tjβ SS j Θ B tj β BS j θ t β PS 6 β 2n Θ B t Θ S t n [ βbb β SB β ] [ Θ B t S Θ ] t E t PG B T a var PG B T θ tβ PB = 7 E t PG S Tn a var PG S Tn θ tβ PS n [ ] β SB = β BB 2 β BB 3 β BB n β BB n β BB 2 β BB 23 β BB 2n β BB 2n β BB 3 β BB 32 β BB 3n β BB 3n β BB n β BB n2 β BB n3 β BB nn β SB 2 β SB 3 β SB n β SB n β SB 2 β SB 23 β SB 2n β SB 2n β SB 3 β SB 32 β SB 3n β SB 3n β SB n β SB n2 β SB n3 β SB nn Θ B t [ β BB β SB ] Θ B t [ S ] Θt [ ] = βbb β SB β E t PG B T a var PG B T θ tβ PB E t PG S Tn a var PG S Tn θ tβ PS n 8 瑏瑡 CAPM Jonhn H Cochrane Asset Prcng revsed edton 200554

6 45 E t PG B T a var PG B T θ tβ PB 3 s = θ m t P m T + m = m = Θ Bs tj cov PG Bm j = T PG Bs Tj 9 Θ Ss tj cov PG Bm s = j = s = T PG Ss Tj [ βbb β SB ] θ s tcov P m T PG Bs β M Tj } 8 Θ B B B 2 B m B m t max EU = exp { ae W T + a2 Θ Bm 0 Θ Sm 2 Var W T } Θ S B 2 B 22 B 2m B 2m t 0 Θ B t Θ S t n = Θ BM B s B s2 B sm B sm t Θ Bm t Θ Sm t n m = M Θ SM t B m B m2 B mm B mm M m E t PG B T 9 a var PG B T θ t β PBs E t W T = W t s = θ m t P m t + r T f + m = E t PG SM Θ Bm t E t PG Bm Tn T + a var PG SM Tn θ M t β PMSs n s = [ ] Θ Sm t E t PG Sm T B sm = βbsbm β SsBm m = β BsSm s β m SsSm β BsBm 2 β BsBm n m β BsBm β BsBm 2 β BsBm 2n = s n m = M E W T + a 2 Var W T m = 0 Θ Bm t E W T + a 2 Var W T β BsBm j = cov PGBs T PG Bm Tj = 0 var PG Bs Θ Sm T t s m 2 j θ m Θ Bm t = var PG Bm T { E t PG Bm t m T a

46 202 6 4 CAPM 瑏瑢 P t θ [ t + ( t Θ B tp t 23 瑏瑣 exe B T t P t PG B T j = 0 23 CAPM P t P t CAPM PG B T = exe B T P T + r T f P LOB = P T + r T f P t PG S T = P t P T 20 E t r p r f E t PG B T = E t P T + r T f P t E t PG S T = P t = P t E t r p r T f E t P T = P t E t r p var t PG B T = var t PG S T = var P T + r T f P 2 = var P T = P 2 t var r p 22 beta 20 PG B Tj = P T +r f P t 4 β BB j β SB j β PB = cov P T PG B Tj var P T = = cov P T PG B Tj var P T = 2 22 5 Θ B t = P t E t r p r f ap 2 t var r p θ t P LOB j > P t Θ B tj + P LOB j S Θtj < P t CAPM 5 E t r p r f CAPM 0 avar r p = P LOB j B Θ > P t S Θt j P LOB j < P t ) tj ] 23 CAPM avar r p [ = P m t s = Θ Ss tj ) ] PmPs β ( θ s t + Θ Bs tj t m 9 5 瑏瑢 瑏瑣

6 47 CAPM Markovtz H Portfolo selecton J Journal of Fnance 952 7 77 9 2 Sharpe W F Captal asset prces A theory of market equlbrum under condtons of rsk J Journal of Fnance 964 3 425 442 3 Grossman S J Stgltz J E On the mpossblty of nformatonally effcent markets J The Amercan Economc Revew 980 70 3 393 408 4 L D Ng W L Optmal dynamc portfolo selecton Multperod meanvarance formulaton J Mathmatcal Fnance 2000 0 3 387 406 5 Easley D Hvdkjaer S O Hara M Is nformaton rsk a determnant of asset returns J Journal of Fnance 2002 57 5 285 222 6 Barber B Odean T Zhu Nng Do retal trades move markets J Revew of Fnancal Studes 2009 22 5 86 7 Copeland T E Gala D Informaton effects on the bdask spread J Journal of fnance 983 38 5 457 469 8 Kyle A S Contnuous auctons and nsder tradng J Econometrca Journal of the Econometrc Socety 985 53 6 35 335 9 Sepp D J Lqudty provson wth lmt orders and strategc specalst J Revew of Fnancal Studes 997 0 03 50 0 Sandas P Adverse selecton and compettve market makng Emprcal evdence from a lmt order market J Revew of Fnancal Studes 200 4 3 705 734 Parlour C A Prce dynamcs n lmt order markets J Revew of Fnancal Studes 998 4 789 86 2 Foucault T Kadan O Kandel E Lmt order book as a market for lqudty J Revew of Fnancal Studes 2005 8 4 7 27 3 Goettler R L Parlour C A Rajan U Equlbrum n a dynamc lmt order market J Journal of Fnance 2005 60 5 249 292 4 Goettler R L Parlour C A Rajan U Informed traders and lmt order markets J Journal of Fnancal Economcs 2009 93 67 87 5 Rosu I A dynamc model of the lmt order book J Revew of Fnancal Studes 2009 22 460 464 6 J 200 3 2 58 65 Chen We Qu Wenzhou Study of nvestors order placement strategy based on duraton J Journal of Management Scences n Chna 200 3 2 58 65 n Chnese 7 J 200 3 9 68 75

48 202 6 Chen Shou L Shuangfe L Chuanguo Stock prce response to order mbalance and change of volume J Journal of Management Scences n Chna 200 3 9 68 75 n Chnese 8 Parlour C A Sepp D J Lmt order markets A survey J Handbook of Fnancal Intermedaton and Bankng 2008 5 Order allocaton model A model combnng mcrostructure theory and asset allocaton theory ZHENG Zhenlong LIU Yangshu Department of Fnance School of Economcs Xamen Unversty Xamen 36005 Chna Abstract Ths paper extends asset allocaton model to order allocaton model whch brdges the gap between mcrostructure theory and asset allocaton theory In partcular by maxmzng nvestor s utlty of order submsson problem n the same way wth solvng asset allocaton problem we receve a closeform soluton on allocaton about order submsson In addton we prove that CAPM s a specal case of our model when submsson s constraned to be margnal market order Key words order submsson order allocaton asset allocaton 檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿 39 techncal reasons and s dfferent from the classcal batchng machne An nteger nonlnear programmng s proposed and a heurstc algorthm based on dynamc programmng s appled to the total weghted completon tme for the new batchng machne The worst case performance of the heurstc algorthm s proved to be at most 3 If any two steps processng tmes are the same the heurstc algorthm can obtan the optmal soluton If any one step s processng tme of all the jobs s the same the worst performance of the heurstc algorthm s proved to be at most 2 and the bound s tght We also analyze the worst case of the heurstc algorthm for the general case where jobs processng are composed of any stepprocessng Key words batchng machne bell type annealng furnace threestep processng tme dynamc programmng