Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Higher Derivative Gravity Theories

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

Partial Trace and Partial Transpose

Homework 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Srednicki Chapter 55

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

( ) 2 and compare to M.

Tutorial problem set 6,

Tridiagonal matrices. Gérard MEURANT. October, 2008

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Section 8.3 Trigonometric Equations

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SPECIAL FUNCTIONS and POLYNOMIALS

Notes on the Open Economy

Congruence Classes of Invertible Matrices of Order 3 over F 2

Math221: HW# 1 solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Numerical Analysis FMN011

Second Order Partial Differential Equations

Section 7.6 Double and Half Angle Formulas

C.S. 430 Assignment 6, Sample Solutions

6.3 Forecasting ARMA processes

Abstract Storage Devices

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Approximation of distance between locations on earth given by latitude and longitude

CRASH COURSE IN PRECALCULUS

Exercises to Statistics of Material Fatigue No. 5

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Space-Time Symmetries

Concrete Mathematics Exercises from 30 September 2016

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Fractional Colorings and Zykov Products of graphs

Lecture 10 - Representation Theory III: Theory of Weights

EE512: Error Control Coding

Dirac Matrices and Lorentz Spinors

PARTIAL NOTES for 6.1 Trigonometric Identities

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The q-commutators of braided groups

Partial Differential Equations in Biology The boundary element method. March 26, 2013

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Uniform Convergence of Fourier Series Michael Taylor

Reminders: linear functions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Areas and Lengths in Polar Coordinates

A Note on Intuitionistic Fuzzy. Equivalence Relation

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Finite Field Problems: Solutions

Every set of first-order formulas is equivalent to an independent set

Areas and Lengths in Polar Coordinates

If we restrict the domain of y = sin x to [ π 2, π 2

TMA4115 Matematikk 3

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Empirical best prediction under area-level Poisson mixed models

Geodesic Equations for the Wormhole Metric

Distances in Sierpiński Triangle Graphs

w o = R 1 p. (1) R = p =. = 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 8 Model Solution Section

Commutative Monoids in Intuitionistic Fuzzy Sets

Symmetric Stress-Energy Tensor

Other Test Constructions: Likelihood Ratio & Bayes Tests

3+1 Splitting of the Generalized Harmonic Equations

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Parametrized Surfaces

SOLVING CUBICS AND QUARTICS BY RADICALS

Trigonometry 1.TRIGONOMETRIC RATIOS

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

The ε-pseudospectrum of a Matrix

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

dim(u) = n 1 and {v j } j i

Matrix Hartree-Fock Equations for a Closed Shell System

Lecture 2. Soundness and completeness of propositional logic

Problem Set 3: Solutions

Transcript:

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr. 7, D-91051 Erlangen, Germany e mail: kleefeld@theorie3.physik.uni erlangen.de / mdillig@theorie3.physik.uni erlangen.de 1 Abstract. In the following short paper we list some useful results concerning determinants and inverses of matrices. First we show, how to calculate determinants of d d matrices, if their traces are known. As a next step 4 4 matrices are expressed in terms of Dirac covariants. The third step is the calculation of the corresponding inverse matrices in terms of Dirac covariants. 1 Calculation of matrix determinants and permanents in terms of their traces We denote the determinant of a quadratic d d matrix A by: A 11 A 1d det A =.. A d1 A dd The calculation of the determinant of A for different dimensions d is straight forward: (1) d =1 det A = A 11 d =2 det A = A 11 A 22 A 12 A 21 d =3 det A = A 11 A 22 A 33 + A 12 A 23 A 31 + A 13 A 21 A 32 A 31 A 22 A 13 A 32 A 23 A 11 A 33 A 21 A 12 1 Preprint-No. FAU-TP3-97/4 1

2 F. Kleefeld and M. Dillig (2) In a more unfamiliar way the determinants can be given by: d =1 det A = 1 1 A 1 1 ii = A ii 1! i=1 1! i=1 d =2 det A = 1 2 A ii A ij 2! A i,j=1 ji A jj 2 (A ii A jj A ij A ji ) 2! i,j=1 d =3 det A = 1 3 A ii A ij A ik A 3! ji A jj A jk = i,j,k=1 A ki A kj A kk = 1 3! d =4 det A = 1 4! = 1 4! d=5 det A = 1 5! = 1 5! 3 i,j,k=1 4 i,j,k,l=1 4 (A ii A jj A kk + A ij A jk A ki + A ik A ji A kj A ki A jj A ik A kj A jk A ii A kk A ji A ij ) i,j,k,l=1 5 i,j,k,l,m=1 5 i,j,k,l,m=1 A ii A ij A ik A il A ji A jj A jk A jl A ki A kj A kk A kl A li A lj A lk A ll (A ii A jj A kk A ll ±...) = A ii A ij A ik A il A im A ji A jj A jk A jl A jm A ki A kj A kk A kl A km A li A lj A lk A ll A lm A mi A mj A mk A ml A mm (A ii A jj A kk A ll A mm ±...) = (3) From these expansions it is easy to read off the following expressions which evaluate det A in terms of the tra: d =1 det A = 1 1! tra d =2 det A = 1 2! {(tra)2 tra 2 } d =3 det A = 1 3! {(tra)3 tra tra 2 +2trA 3 }

Matrix determinants and 4 4 matrix inversion 3 d =4 det A = 1 4! {(tra)4 6 (tra) 2 tra 2 +8trAtrA 3 + 3 (tra 2 ) 2 6trA 4 } d=5 det A = 1 5! {(tra)5 10 (tra) 3 tra 2 + 20 (tra) 2 tra 3 30 tra tra 4 20 tra 2 tra 3 +15trA(trA 2 ) 2 +24trA 5 } (4) For permanents the minus signs in the upper sums just have to be replaced by plus signs. In general we obtain the following formula for arbitrary dimension d: det A = 1 d! 1k 1 +2k 2 +...+dk d =d ( 1) d k 1... k d d! 1 k 1...d k d k1!...k d! ( tra 1 ) k 1... ( tra d) k d (k 1,...,k d {0,1,2,...}) (5) For permanents we obviously get: per A = 1 d! 1k 1 +2k 2 +...+dk d =d d! 1 k 1...d k d k1!...k d! ( tra 1 ) k 1... ( tra d) k d (k 1,...,k d {0,1,2,...}) (6) The coefficients d!/(1 k 1...d k d k1!...k d!) are discussed e.g. in [Lud96, p. 44]. 2 Expansion of 4 4 matrices in terms of Dirac covariants As a complete linear independent set of sixteen 4 4 matrices we can use the following so called Dirac covariants (g µν is the metric tensor): 1 4 γ 5 γ µ (µ =0,1,2,3), iγ 5 γ µ (µ =0,1,2,3) σ µν (µ<ν)(µ, ν =0,1,2,3) (7) (γ µ γ ν + γ ν γ µ := 2g µν 1 4, γ 5 := iγ 0 γ 1 γ 2 γ 3, σ µν = σ νµ := i 2 (γµ γ ν γ ν γ µ ) [Itz88, p. 692]) Apart from the 4 dimensional unit matrix 1 4 all Dirac covariants are traceless. All Dirac covariants are trace orthogonal, i.e. if Γ and Γ are two Dirac covariants we obtain: tr(γγ ) = 0 for Γ Γ (8)

4 F. Kleefeld and M. Dillig Very useful are the following traces: tr(1 4 1 4 ) = 4 tr(γ 5 γ 5 ) = 4 tr(γ µ γ ν ) = 4g µν tr(iγ 5 γ µ iγ 5 γ ν ) = 4g µν tr(σ µν σ ρσ ) = 4(g µρ g νσ g µσ g νρ ) (9) Using the notation a := a µ γ µ (Einstein sum convention!) and the completeness of the Dirac covariants we can expand every 4 4 matrix M in terms of the Dirac covariants: M = A 1 4 + Bγ 5 + C + iγ 5 D + 1 2 E µν σ µν (E µν = E νµ ) (10) The coefficients are easily calculated by the trace properties of the Dirac covariants: A = 1 4 tr(m) B = 1 4 tr(mγ 5) C µ = 1 4 tr(mγµ ) D µ = 1 4 tr(miγ 5γ µ ) E µν = 1 4 tr(mσµν ) (11) Products, commutators and anticommutators of Dirac covariants evaluated and expanded in terms of Dirac covariants are given in appendix A. 3 Inversion of 4 4 matrices in terms of Dirac covariants 3.1 General case Like in the previous section we consider an arbitrary 4 4 matrix expanded in terms of Dirac covariants: M = A 1 4 + Bγ 5 + C + iγ 5 D + 1 2 E µν σ µν (E µν = E νµ ) (12) Now we define the following shorthand notations: E µν := ε µνρσ E ρσ (dual tensor of E µν )

Matrix determinants and 4 4 matrix inversion 5 C D := C µ D µ C 2 := C µ C µ, D 2 := D µ D µ (D ± ic) 2 := (D µ ± ic µ )(D µ ± ic µ ) E 2 := E µν E µν and observe the following identities: E E := E µν Eµν =: EE (13) (D ic) 2 (D + ic) 2 = (D 2 C 2 ) 2 +4(C D) 2 = (D 2 +C 2 ) 2 +4(C D) 2 4C 2 D 2 (14) ( 1 2 σ µνe µν ) 2 = 1 2 E2 + i 4 γ 5EE (15) [ C iγ 5 D] [ C iγ 5 D] = C 2 +D 2 +2γ 5 σ µν C µ D ν (16) [ C iγ 5 D] [ C+iγ 5 D] = C 2 D 2 2iγ 5 C D (17) Using the trace formula (4) for d = 4 you can verify that: det M = = (D ic) 2 (D + ic) 2 + [(A B) 2 1 2 E2 + i ][(A+B) 4 EE 2 1 2 E2 i ] 4 EE 2 { (A 2 B 2 + 1 2 E2 )(D 2 + C 2 )+4 [ i 2 AE µν BE µν ] C µ D ν 2 E λ µe λν (C µ C ν + D µ D ν ) E λ µe λν (C µ D ν D µ C ν ) } (18) It is somewhat involved to derive the following expression for the inverse matrix M 1 : M 1 = 1 det M { [ (A+Bγ 5 1 2 σ µν E µν )(A Bγ 5 ) ] [ C iγ 5 D] [ C iγ 5 D] [A Bγ 5 C iγ 5 D] (A + Bγ 5 1 2 σ µν E µν ) [ 1 2 E2 i 4 γ 5EE [ C + iγ 5 D] 1 ] 2 σ αβ E αβ

6 F. Kleefeld and M. Dillig [ C iγ 5 D] 1 2 σ µν E µν [ C iγ 5 D] } (19) For some purposes the following expression is more suitable: M 1 = 1 det M { (A + Bγ 5 1 [ 2 σ µν E µν ) (A Bγ 5 ) 2 1 2 E2 + i 4 γ 5EE [ C + iγ 5 D](A+Bγ 5 1 ] 2 σ αβ E αβ ) [ C iγ 5 D] [ (A + Bγ 5 + 1 2 σ αβ E αβ )[ C iγ 5 D] [ C iγ 5 D] [ C+iγ 5 D] ]} (20) 3.2 The case E µν =0 In this subsection we take the limit E µν = 0, i.e.: M = A 1 4 + Bγ 5 + C + iγ 5 D (21) In this limit we obtain for det M: det M = = (A 2 B 2 C 2 D 2 ) 2 +4(C D) 2 4C 2 D 2 = = (A 2 B 2 ) 2 2(A 2 B 2 )(C 2 + D 2 )+(C 2 +D 2 ) 2 +4(C D) 2 4C 2 D 2 = = (A 2 B 2 ) 2 2(A 2 B 2 )(C 2 + D 2 )+(C 2 D 2 ) 2 +4(C D) 2 = = (A 2 B 2 ) 2 2(A 2 B 2 )(C 2 + D 2 )+(C id) 2 (C + id) 2 = = (A 2 B 2 2C 2 2C 2 )(A 2 B 2 )+(C id) 2 (C + id) 2 (22) The corresponding inverse matrix M 1 is: M 1 = 1 det M = 1 det M [ ] A 2 B 2 [ C iγ 5 D] [ C iγ 5 D] [A Bγ 5 C iγ 5 D] ] [A 2 B 2 C 2 D 2 2γ 5 σ µν C µ D ν [A Bγ 5 C iγ 5 D] (23)

Matrix determinants and 4 4 matrix inversion 7 If C µ is proportional to D µ, i.e. C µ D µ, we get significant simplifications. We note that: i.e. C µ D µ 4(C D) 2 4C 2 D 2 =0, σ µν C µ D ν = 0 (24) For the inverse matrix we obtain: C µ D µ det M =(A 2 B 2 C 2 D 2 ) 2 (25) C µ D µ M 1 = 1 det M (A2 B 2 C 2 D 2 )[A Bγ 5 C iγ 5 D] = = A Bγ 5 C iγ 5 D (26) A 2 B 2 C 2 D 2 Some special examples with respect to this case are: (A + Bγ 5 + C) 1 = A Bγ 5 C A 2 B 2 C 2 (A+Bγ 5 + iγ 5 D) 1 = A Bγ 5 iγ 5 D (27) A 2 B 2 D 2 Another interesting situation is the case A = ± B, i.e. we start from the matrix: Then we get for det M: M = A (1 4 ± γ 5 )+ C+iγ 5 D (28) The inverse M 1 is given by: det M = (C id) 2 (C + id) 2 (29) M 1 = 1 det M [ C iγ 5 D] [ C iγ 5 D] [A(1 4 γ 5 ) C iγ 5 D] (30) 3.3 The case C µ = D µ =0 In this subsection we take the limit C µ = D µ = 0, i.e.: M = A 1 4 + Bγ 5 + 1 2 E µν σ µν (E µν = E νµ ) (31) In this limit we obtain for det M: det M = [(A B) 2 1 2 E2 + i 4 EE ][(A+B) 2 1 2 E2 i 4 EE ] (32) The inverse matrix M 1 is given by:

8 F. Kleefeld and M. Dillig M 1 = = 1 det M (A + Bγ 5 1 2 σ µν E µν ) [(A Bγ 5 ) 2 12 E2 + i4 ] γ 5EE = 1 [(A Bγ 5 ) 2 12 det M E2 + i4 ] γ 5EE (A + Bγ 5 1 2 σ µν E µν ) (33) A Products, commutators and anticommutators of Dirac covariants The totally antisymmetric Levi-Civita tensor is defined by [Itz88, p. 692]: ε µνρσ := g µ0 g µ1 g µ2 g µ3 g ν0 g ν1 g ν2 g ν3 g ρ0 g ρ1 g ρ2 g ρ3 g σ0 g σ1 g σ2 g σ3 (34) For the commutator and anticommutator of A and B we write: [A, B] :=AB BA, {A, B} := AB + BA (35) Some calculation yields the following expansions of products of Dirac covariants in terms of Dirac covariants (ε µν λλ ελλ ρσ! = 2 (g µρ g νσ g µσ g νρ )): 1 4 1 4 = 1 4 1 4 γ 5 = γ 5 1 4 γ µ = γ µ γ 5 1 4 = γ 5 γ 5 γ 5 = 1 4 γ 5 γ µ = i(iγ 5 γ µ ) γ µ 1 4 = γ µ γ µ γ 5 = i(iγ 5 γ µ ) γ µ γ ν = g µν 1 4 iσ µν iγ 5 γ µ 1 4 = iγ 5 γ µ iγ 5 γ µ γ 5 = iγ µ iγ 5 γ µ γ ν = ig µν γ 5 + i 2 ε µνρσ σ ρσ σ µν 1 4 = σ µν σ µν γ 5 = i 2 ε µνρσ σ ρσ σ µν γ ρ = iε σµνρ iγ 5 γ σ + + i 2 ε µνλλ ελλ ρσ γσ

Matrix determinants and 4 4 matrix inversion 9 1 4 iγ 5 γ µ = iγ 5 γ µ 1 4 σ µν = σ µν γ 5 iγ 5 γ µ = iγ µ γ 5 σ µν = i 2 ε µνρσ σ ρσ γ µ iγ 5 γ ν = ig µν γ 5 i 2 ε µνρσ σ ρσ γ ρ σ µν = iε σµνρ iγ 5 γ σ i 2 ε µνλλ ελλ ρσ γ σ iγ 5 γ µ iγ 5 γ ν = g µν 1 4 iσ µν iγ 5 γ ρ σ µν = iε σµνρ γ σ i 2 ε µνλλ ελλ ρσ iγ 5γ σ σ µν iγ 5 γ ρ = iε σµνρ γ σ + σ µν σ ρσ = (g µρ g νσ g µσ g νρ )1 4 + + i 2 ε µνλλ ελλ ρσ iγ 5γ σ + i (σ µσ g νρ σ µρ g νσ + + g µσ σ νρ g µρ σ νσ )+ + iε µνρσ γ 5 (36) The commutators of the Dirac covariants are evaluated to be: [1 4, 1 4 ] = 0 [1 4,γ 5 ] = 0 [1 4,γ µ ] = 0 [γ 5,1 4 ] = 0 [γ 5,γ 5 ] = 0 [γ 5,γ µ ] = 2i(iγ 5 γ µ ) [γ µ, 1 4 ] = 0 [γ µ,γ 5 ] = 2i(iγ 5 γ µ ) [γ µ,γ ν ] = 2iσ µν [iγ 5 γ µ, 1 4 ] = 0 [iγ 5 γ µ,γ 5 ] = 2iγ µ [iγ 5 γ µ,γ ν ] = 2ig µν γ 5 [σ µν, 1 4 ] = 0 [σ µν,γ 5 ] = 0 [σ ρσ,γ µ ] = 2i (γ ρ g µσ γ σ g µρ )

10 F. Kleefeld and M. Dillig [1 4,iγ 5 γ µ ] = 0 [1 4,σ µν ] = 0 [γ 5,iγ 5 γ µ ] = 2iγ µ [γ 5,σ µν ] = 0 [γ µ,iγ 5 γ ν ] = 2ig µν γ 5 [γ µ,σ ρσ ] = 2i (γ σ g µρ γ ρ g µσ ) [iγ 5 γ µ,iγ 5 γ ν ] = 2iσ µν [iγ 5 γ µ,σ ρσ ] = 2i (iγ 5 γ σ g µρ iγ 5 γ ρ g µσ ) [σ ρσ,iγ 5 γ µ ] = 2i (iγ 5 γ ρ g µσ iγ 5 γ σ g µρ ) [σ µν,σ ρσ ] = 2i (σ µσ g νρ σ µρ g νσ + + g µσ σ νρ g µρ σ νσ ) (37) For the anticommutators of the Dirac covariants we obtain: {1 4, 1 4 } = 21 4 {1 4,γ 5 } = 2γ 5 {1 4,γ µ } = 2γ µ {γ 5,1 4 } = 2γ 5 {γ 5,γ 5 } = 21 4 {γ 5,γ µ } = 0 {γ µ,1 4 } = 2γ µ {γ µ,γ 5 } = 0 {γ µ,γ ν } = 2g µν 1 4 {iγ 5 γ µ, 1 4 } = 2iγ 5 γ µ {iγ 5 γ µ,γ 5 } = 0 {iγ 5 γ µ,γ ν } = iε µνρσ σ ρσ {σ µν, 1 4 } = 2σ µν {σ µν,γ 5 } = iε µνρσ σ ρσ {σ µν,γ ρ } = 2iε σµνρ iγ 5 γ σ

Matrix determinants and 4 4 matrix inversion 11 {1 4,iγ 5 γ µ } = 2iγ 5 γ µ {1 4,σ µν } = 2σ µν {γ 5,iγ 5 γ ν } = 0 {γ 5,σ µν } = iε µνρσ σ ρσ {γ µ,iγ 5 γ ν } = iε µνρσ σ ρσ {γ ρ,σ µν } = 2iε σµνρ iγ 5 γ σ {iγ 5 γ µ,iγ 5 γ ν } = 2g µν 1 4 {iγ 5 γ ρ,σ µν } = 2iε σµνρ γ σ {σ µν,iγ 5 γ ρ } = 2iε σµνρ γ σ {σ µν,σ ρσ } = 2 (g µρ g νσ g µσ g νρ )1 4 +2iε µνρσ γ 5 References (38) [Itz88] [Lud96] C. Itzykson, J.-B. Zuber: Quantum field theory (4th printing 1988) c McGraw Hill, Inc., 1980 W. Ludwig, C. Falter: Symmetries in physics (Group theory applied to physical problems) (Second edition) c Springer Verlag Berlin Heidelberg, 1996