= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
|
|
- Ἔβέρ Γλυκύς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D α, D α } = 2iσ µ α α µ, which commutes with all the superderivatives. Consequently, [D α, D 2 ] = {2iσ µ α α µ, D α } = 4iσ µ α α D α µ. (S.2) Similarly, Finally, [D α, D 2 D α D α ] = {D α, {D α, D α }} = 4iD α σ µ α α µ. (S.3) [D 2, D 2 ] = D α [D α, D 2 ] + [D α, D 2 ]D α = D α [D α, D 2 ] [D α, D 2 ]D α = [D α, [D α, D 2 ]] (S.4) = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. Using the anticommutator {D α, D α } = 2iσ µ α α µ we may rewrite the commutator [D α, D α ] on the last line of eq. (S.4) as 2D α D α 4i σ ααν ν and consequently [D 2, D 2 ] = 8iσ µ α α Dα D α µ + 16σ µ α α µ σ ααν ν = 8iσ µ α α Dα D α µ (S.5) where the second equality follows from σ µ α α σ ααν = tr(σµ σ ν ) = 2g µν. Alternatively, we may use [D α, D α ] = 2D α D α + {D α, D α } on the bottom line of eq. (S.4) to obtain [D 2, D 2 ] = 8iσ µ α α D α D α µ 16σ µ α α µ σ ααν ν = 8i σ ααµ D α D α µ (S.6) 1
2 Problem 2(b): Thanks to eqs. (S.2) and (S.3), we have D α [D 2, D α ] = 4iσ µ α α Dα D α µ = [D α, D 2 ]D α. (S.7) Consequently, D α D 2 D α = D 2 D 2 + D α [D 2, D α ] = D 2 D 2 + [D α, D 2 ]D α = D α D 2 D α. (S.8) Problem 2(c): In light of part (b), 2D α D 2 D α D 2 D 2 D 2 D 2 = D α D 2 D α D 2 D 2 + D α D 2 D α D 2 D 2 = D α [D 2, D α ] + [D α, D 2 ]D α = 4iσ µ α α Dα D α µ 4iσ µ α α Dα D α D α µ = 4iσ µ α α µ{d α, D α } (S.9) = 4iσ µ α α µ 2i σ ααν ν = 8 tr(σ µ σ ν ) µ ν = Problem 2(d): Consider the superderivative product D 2 D 2 D 2. Because the D α operators anticommute with each other and there are only two of them, any product of 3 such operators in a row must vanish, D α D β D γ 0, regardless of indices. In particular, D α D 2 = 0. Consequently, D α D 2 D 2 = [D α, D 2 ]D 2 (S.10) and D 2 D 2 D 2 = D α [D α, D 2 ]D 2 = {D α, [D α, D 2 ]}D 2, (S.11) 2
3 where {D α, [D α, D 2 ]} = 4iσ µ α α {Dα, D α µ } = 4iσ µ α α µ 2i σ ααν ν = (S.12) Thus, D 2 D 2 D 2 = 16 2 D 2 (S.13) and similarly D 2 D 2 D 2 = 16 2 D 2. (S.14) Now let s consider the putative projector operators (1). Thanks to eq. (S.13), (D 2 D 2 ) 2 = 16 2 D 2 D 2 (S.15) and consequently Π 2 C = Π C. Similarly, (D 2 D 2 ) = = 16 2 D 2 D 2 (S.16) and hence Π 2 A = Π A. Next, using D α D β = 1 2 δα β D2 which follows from the anticommutativity of the D operators and the fact that there are only two of them we have (D α D 2 D α ) 2 = D α D 2 D α D β D 2 D β = 1 2 Dα D 2 D 2 D 2 D α = +8 2 D α D 2 D α (S.17) and therefore Π + L 2 = Π L. This proves that all three operators (1) are indeed projector operators. And thanks to part (c), they do add up to the unit operator. All we need to prove now is that the three projectors (1) commute with each other. In fact, all products of these projectors vanish, regardless of the order of multiplication. Indeed, using DDD 0 and DDD 0, we have D 2 D 2 D 2 D 2 = 0 = Π A Π C = 0, (S.18) 3
4 D 2 D 2 D 2 D 2 = 0 = Π C Π A = 0, (S.19) D α D 2 D α D 2 D 2 = 0 = Π L Π C = 0, (S.20) D 2 D 2 D α D 2 D α = 0 = Π C Π L = 0, (S.21) D α D 2 D α D 2 D 2 = 0 = Π L Π A = 0, (S.22) D 2 D 2 D α D 2 D α = 0 = Π A Π L = 0. (S.23) Problem 2(e): Since DDD 0, for any superfield Y (x, θ, θ), D α D 2 Y = 0, which makes D 2 Y a chiral superfield. Consequently, for any general superfield X, Π C X = D 2 D2 X is a chiral superfield (S.24) Likewise, DDD 0 makes D 2 anything an antichiral superfield, hence for any X(x, θ, θ), Π A X = D 2 D2 X is an antichiral superfield (S.25) Finally, Π L X = D α D2 D α 8 2 X = D α D2 D α 8 2 X (S.26) satisfies both D 2 Π L X = D 2 D α = 0 (S.27) and D 2 Π L X = D 2 D α = 0, (S.28) which makes Π L X a linear superfield. 4
5 Now consider Π C Φ for a chiral superfield Φ(y, θ). Since D α Φ = 0, it follows that D 2 D 2 Φ = D α [D α, D 2 ]Φ = {D α, [D α, D 2 ]}Φ (S.29) where {D α, [D α, D 2 ]} = 16 2 (S.30) similar to eq. (S.12). Thus D 2 D 2 Φ = 16 2 Φ = Π C Φ = Φ. (S.31) Similarly, any antichiral superfield Φ satisfies D α Φ = 0 and hence D 2 D 2 Φ = D α [D α, D 2 ]Φ = {D α, [D α, D 2 ]}Φ = 16 2 Φ = Π A Φ = Φ. (S.32) Finally, for a linear superfield L D α D 2 D α L = D α [D 2, D α ]L = 4iσ µ α α Dα D α µ L, D α D 2 D α L = D α [D 2, D α ]L = D α [D 2, D α ]L = 4iσ µ α α D α D α µ L, (S.33) hence D α D 2 D α L D α D 2 D α L cf. part (b) = 1 2 Dα D 2 D α L D αd 2 D α L = 2iσ µ α α µ{d α, D α }L (S.34) = 2iσ µ α α µ 2i σ ααν ν L = +8 2 L and therefore Π L L = L. 5
6 Problem 3(a): Thanks to D 2 D α D 2 D α = 0 and D 2 D α D 2 D α = D 2 D α D 2 D α = 0, equation (3) implies D 2 V = 1 8m 2 D2 D α D 2 D α V = 0 and D 2 V = 1 8m 2 D2 D α D 2 D α V = 0. This makes the on-shell V a linear superfield. And having established that point, we have Π L V = V = 1 8 Dα D 2 D α V = 2 V and hence eq. (3) becomes the Klein Gordon equation (m )V = 0. Note that the equation of motion (3) for the massive vector field V implies both the linear superfield equations D 2 V = D 2 V = 0 and the Klein Gordon equation for all the components. This is similar to what happens to the ordinary (non-susy) massive vector field A µ : its free equation of motion µ F µν + m 2 A ν = 0 (S.35) implies both the 4D-transversality equation µ A µ = 0 and the Klein Gordon equation (m )A µ = 0 for all the components A µ. Problem 3(b): Without gauge fixing, the off-shell vector superfield V has 16 components according to V (x, θ, θ) = C(x) + θ 2 f(x) + θ 2 f (x) + θ α σ µ α α θ α A µ (x) θ2 θ2 (D(x) C(x)) + θ α χ α (x) + θ 2 θ α ( λ α (x) + 2 i σ ααµ µ χ α (x)) + θ α χ α (x) + θ 2 θ α (λ α (x) + 2 i σµ α α µ χ α (x)). (S.36) We need to express the D 2 V = D 2 V = 0 equations in component form. This can be done directly in the (x, θ, θ) coordinates, but it s easier to work with (y, θ, θ) coordinates for the 6
7 D 2 V and (ȳ, θ, θ) for the D 2 V. Indeed, in the (y, θ, θ) coordinates D α = θ and D 2 = 4 α y,θ ( θ 2 ) y,θ (S.37) while in the (ȳ, θ, θ) coordinates D α = θ α ȳ, θ and D 2 = 4 (θ 2 ) ȳ, θ (S.38) Thus, to calculate D 2 V all we need is to change the coordinates from (x, θ, θ) to (y, θ, θ) which gives V (y, θ, θ) = C(y) + θ 2 f(y) + θ 2 f (y) + θ α σ µ α α θ α( A µ (y) i µ C(y) ) θ2 θ2 ( D(y) 2 C(y) i µ A µ (y) ) + θ α χ α (y) + θ 2 θ α λ α (y) + θ α χ α (y) + θ 2 θ α( λ α (y) + iσ µ α α µ χ α (y) ) (S.39) and then drop the θ 2 factors from terms which have them and discard the terms which don t, thus 1 4 D2 V (y, θ) = f (y) + θ α( λ α (y)+iσ µ α α µ χ α (y) ) + θ 2( D(y) 2 C(y) i µ A µ (y) ). (S.40) Similarly, 1 4 D2 V (ȳ, θ) = f(ȳ) + θ α ( λ α (ȳ)+i σ ααµ µ χ α (ȳ) ) + θ 2( D(ȳ) 2 C(ȳ)+i µ A µ (ȳ) ). (S.41) According to these formulae, the D 2 V = D 2 V = 0 equations of motion for the on-shell superfield V expand to component-field equations f = f = 0, (S.42) D 2 C ± i µ A µ = 0, (S.43) 7
8 λ α + iσ µ α α µ χ α = 0, (S.44) λ α + i σ ααµ µ χ α = 0. (S.45) Note that eq. (S.43) is equivalent to D = 2 C and µ A µ = 0. (S.46) Thus, only 4 out of eight bosonic components of V are independent on shell: The 3 component of the A µ (x) (which is proper for the massive vector field in dimensions), plus one real scalar C(x). The remaining scalars either vanish or follow C: f = f = 0 while D = 2 C = m 2 C. Problem 3(c): Finally, consider the fermionic components of V. There are 8 of them χ α, χ α, λ α, and but they give rise to only 4 physical degrees of freedom because they satisfy first-order equations of motion. Specifically, there are 4 two-component Weyl equations λ α = iσ µ α α µ χ α, (S.44) λ α = i σ ααµ µ χ α, (S.45) m 2 χ α = iσ µ α α µ λ α, (S.47) m 2 χ α = i σ ααµ µ λ α. (S.48) The first two equations here follow from the expansion of D 2 V = D 2 V = 0 as we have already seen in part (b). The other two equations follow from the first two and the Klein-Gordon equations (m )(any component) = 0. Indeed, iσ µ α α µ λ α = iσ µ α α µ ( i) σ αβν ν χ β = 2 χ α = +m 2 χ α (S.49) and likewise i σ ααµ µ λ α = i σ ααµ µ ( i)σ ν α β ν χ β = 2 χ β = +m 2 χ β. (S.50) λ α The Weyl equations (S.44) through (S.48) have unconventional powers of the mass m because the χ and the χ fields have a different scaling dimension from the λ and the λ. We 8
9 may remedy that by rescaling χ α mχ α and χ α m χ α, which brings the Weyl equations to conventional form mλ α + iσ µ α α µ χ α = mχ α + iσ µ α α µ λ α = 0, m λ α + i σ ααµ µ χ α = m χ α + i σ ααµ µ λ α = 0. (S.51) We may also package the four Weyl spinor fields into a Dirac spinor fields Ψ(x) and it hermitian conjugate according to Ψ = ( λα m χ α ) and Ψ Ψ γ 0 = (mχ α, λ α ). (S.52) In terms of these Dirac spinors, eqs. (S.44) through (S.48) become the Dirac equations (iγ µ µ + m)ψ = 0 and i µ Ψγ µ + mψ = 0. (S.53) 9
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραDirac Matrices and Lorentz Spinors
Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation
Διαβάστε περισσότεραHigher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραMATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραSpace-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότερα1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότερα( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότερα4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc
4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It
Διαβάστε περισσότεραOrbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότερα( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραAppendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Διαβάστε περισσότεραDifferential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Διαβάστε περισσότεραDERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραHomework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4
Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραw o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Διαβάστε περισσότεραNow, suppose the electron field Ψ(x) satisfies the covariant Dirac equation (i D m)ψ = 0.
PHY 396 K. Solutions for homework set #7. Problem 1a: γ α γ α 1 {γα, γ β }g αβ g αβ g αβ 4; S.1 γ α γ ν γ α γ α γ ν g να γ ν γ α γ α γ ν γ ν γ α γ α 4 γ ν ; S. γ α γ µ γ ν γ α γ α γ µ g µα γ µ γ α γ ν
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραOn a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραTutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
Διαβάστε περισσότεραSOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Διαβάστε περισσότεραParametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραThe challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραD Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραForced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότεραAssalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Διαβάστε περισσότερα상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότερα= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραPartial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Διαβάστε περισσότεραSection 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότεραGeneral 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραDIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Διαβάστε περισσότεραQuadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Διαβάστε περισσότεραGeodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραVariational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραdepartment listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Διαβάστε περισσότερα