Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2α: Επιταχυντές

Σχετικά έγγραφα
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 1γ: Επιταχυντές (α' μέρος) Λέκτορας Κώστας Κορδάς

Μαθηµα Φεβρουαρίου 2011 Tuesday, February 22, 2011

Βασικές Ιδιότητες των Επιταχυντών Σωµατιδίων

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 15/2/2011

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων. Μάθηµα 1ο 2/3/2017

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 26/2/2015

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 24/4/2007

Τα μεγάλα πειράματα στο LHC

Μεγάλα πειράματα για τη Φυσική Στοιχειωδών Σωματιδίων

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

+ E=mc 2! Οι επιταχυντές επιλύουν δυο προβλήματα :

Τα μεγάλα πειράματα στη Φυσική Στοιχεωδών Σωματιδίων: Τα τηλεσκόπια του μικροκοσμου και η ανακάλυψη του Higgs. Κώστας Κορδάς και. Δέσποινα Σαμψωνίδου

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 1β: Εισαγωγή

Μεγάλα πειράματα στη Φυσική Στοιχειωδών Σωματιδίων

Πλησιάζοντας την ταχύτητα του φωτός. Επιταχυντές. Τα πιο ισχυρά μικροσκόπια

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων

Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Μάθημα 1

ΕΑΠ ΦΥΕ40 : Κβαντική Φυσική. Τμήμα Θεσσαλονίκης: Κ. Κορδάς

Cosmotron. Το COSMOTRON ενέργειας 3 GeV ήταν το πρώτο σύγχροτρο πρωτονίων που τέθηκε σε λειτουργία το 1952.

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Q2-1. Πού βρίσκεται το νετρίνο; (10 μονάδες) Theory. Μέρος A. Η Φυσική του Ανιχνευτή ATLAS (4.0 μονάδες) Greek (Greece)

Κωστής Χαλκιαδάκης, φυσικός. Συσκάκης Γιάννης, φυσικός. 10 Ερωτήσεις και 10 απαντήσεις για το CERN

Καλώς Ορίσατε στο CERN

Η κατακόρυφη τομή...

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Ευτράπελα σχετικά με τον επιταχυντή LHC και τους ελέφαντες. Μετάφραση του Fun facts about LHC and elephants του Πανεπιστημίου του Birmingham

Σχετικιστική Κινηματική

Μαγνητικό πεδίο.

Τα μεγάλα πειράματα στη Φυσική Στοιχεωδών Σωματιδίων: τα εργαλεία μας για την εξερεύνηση του μικρόκοσμου

To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι

Φυσική Στοιχειωδών Σωµατιδίων. 8 ου Εξαµήνου ιδ. Αν.Καθ Πετρίδου Χαρά Φεβρουάριος 2006

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Δύο Συνταρακτικές Ανακαλύψεις

Άσκηση ATLAS Z path Τι θα μετρήσουμε σήμερα και πώς

Φυσικά ή τεχνητά ραδιονουκλίδια

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W

Εκλαϊκευτική Ομιλία. Θεοδώρα. Παπαδοπούλου, Ομ. Καθηγήτρια Φυσικής, ΕΜΠ Μέλος του Συμβουλίου Πελοποννήσου. Ημερίδα CERN Τρίπολη, 13 Νοεμβρίου 2013

ΠΕΡΙΕΧΟΜΕΝΑ. Το πείραμα στο CERN και ο σκοπός του. Το «πολυπόθητο» μποζόνιο Higgs. Μηχανισμοί ανίχνευσης του μποζονίου Higgs. και τι περιμένουμε;

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 4 Mέγεθος πυρήνα

Όλοι οι επιταχυντές αξιοποιούν ηλεκτρικά πεδία για την επιτάχυνση φορτισμένων σωματιδίων (ηλεκτρονίων, πρωτονίων ή βαρύτερων ιόντων) σε υψηλές

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις


Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Καλώς Ορίσατε στο CERN

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Αναζητώντας παράξενα σωματίδια στο A LargeIonColliderExperimnent. MasterClasses : Μαθήματα στοιχειωδών σωματιδίων

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 9o' 12/5/2014

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Νετρίνο το σωματίδιο φάντασμα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΠΙΣΚΕΨΗΣ ΤΩΝ ΜΑΘΗΤΩΝ : ΤΟΥ ΠΣΠΑ ΤΗΣ ΒΠΣ ΣΤΟ. public.web.cern.ch/ public/en/about/ About-en.html

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

The Large Hadron CERN Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων

Ο Πυρήνας του Ατόμου

ΕΣΧΑΤΑ ΣΥΣΤΑΤΙΚΑ ΤΗΣ ΥΛΗΣ

Επιταχυντές και Ανιχνευτές στην Πυρηνική και Σωµατιδιακή Φυσική

Κατερίνα Αρώνη Δεκέμβριος 2012

ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN. Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ. 3ο Λύκειο Γαλατσίου

CERN black board, Jul Presse écrite après l annonce de la découverte du boson de Higgs au séminaire du 4 juillet 2012 au CERN

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 2β Μέτρηση ορμής σωματιδίου

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

ΕΙΣΑΓΩΓΗ ΤΙ ΕΙΝΑΙ ΤΟ CERN ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΔΙΑ ΙΣΤΟΡΙΑ ΤΟΥ CERN ΜΕΓΑΛΕΣ ΦΥΣΙΟΓΝΩΜΙΕΣ ΤΟΥ CERN ΚΑΙ ΤΗΣ ΣΩΜΑΤΙΔΙΑΚΗΣ ΦΥΣΙΚΗΣ ΕΠΙΤΑΧΥΝΤΕΣ ΠΕΙΡΑΜΑΤΑ

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Νετρίνα υπερ-υψηλών ενεργειών UHE

Τα ευρήματα δύο ερευνητικών ομάδων συμπίπτουν ως προς τις τιμές μάζας του μποζονίου Χιγκς

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

λ Ε Πχ. Ένα σωματίδιο α έχει φορτίο +2 όταν επιταχυνθεί από μια διαφορά Για ακτίνες Χ ή ακτινοβολία γ έχουμε συχνότητα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ


ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

Πειραµατική Θεµελείωση της Φυσικής

Καλώς Ορίσατε στο CERN

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Ανιχνευτές σωματιδίων

ΑΝΙΧΝΕΥΤΕΣ ΚΑΒΑΛΑΡΗ ΑΝΝΑ ΟΙΚΟΝΟΜΙΔΟΥ ΙΩΑΝΝΑ ΚΟΥΣΟΥΝΗ ΜΑΡΓΑΡΙΤΑ

Επιταχυντϋσ Σωματιδύων

Yπεύθυνη καθηγήτρια Ομίλου Φυσικής, Γεωργία Ρουμπέα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6: Xρυσός κανόνας του Fermi, χώρος των φάσεων, υπολογισμοί, ισοσπίν

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Transcript:

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς Μάθημα 2α: Επιταχυντές Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 28 Φεβρουαρίου 2013

Προεπισκόπηση Θ/νίκη - 13-Μαρ-2010 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 2

Φυσική Στοιχειωδών Σωματιδίων Πολύπλοκα πειράματα Συνέργεια πολλών: Δέσμες σωματιδίων Επιταχυντές δεσμών Σωματιδίων Ανιχνευτές Ηλεκτρονικά Ανιχνευτική Διάταξη Υπολογιστές Συλλογή Δεδομένων Πειράματα στο CERN: πειράματα στο LEP: Ανάλυση Δεδομένων > 300 άτομα πειράματα στο LHC: > 2000 άτομα (φυσικοί, μηχανικοί, τεχνικοί) Φυσική - Νέα Γνώση 3

Μελετάμε τον κόσμο παράγοντας και ανιχνεύοντας σωματίδια ( η μέθοδος ) 4

Επιταχυντές - αρχή Κβαντική Φυσική τα σωματίδια συμπεριφέρονται και ως κύμματα Όσο μεγαλύτερη είναι η ορμή (= ταχύτητα x μάζα) ενός σωματιδίου τόσο μικρότερο μήκος κύματος (λ) έχει 10,000 h λ = p ρίες α τ α π μ ~ 0.08 nm λ 0 0 0, 0 1 άα; ρίες ρ ι ε σ η μπατ στ! ς 00 0 ή, ε 0 τ χ ί 1 ε ν υ Με θα χ, ά α ρ ι τ ε ι ησ λ, Ε ό στπ ρ κ ι άμ τ ε κ ει ρ ν ί α ρ κ α δι α ν ε τ ώσ ο! μ ο τ ά ένα 5

Χρειαζόμαστε λοιπόν επιταχυντές τον Μεγάλο Επιταχυντή Αδρονίων (Large Hadron Collider, LHC) στο CERN 6

Το τούνελ του επιταχυντή LHC: 100 μέτρα βάθος Άλπεις Γενεύη ~300 τρισεκατομύρια πρωτόνια (~3000 δέσμες των 10 11 πρωτονίων) ταξιδεύοντας με ταχύτητα 99.9999991% αυτής του φωτός, Γυρίζουν ~11000 φορές το δευτερόλεπτο γύρω από τον επιταχυντή που έχει περίμετρο 27km Η ενέργεια σύγκρουσης των πρωτονίων είναι 14 000 GeV 7

Μεγάλος Επιταχυντής Αδρονίων στο CERN Από τις γρηγορότρες πίστες του πλανήτη, και απ'τα πιο Methodology άδεια και κρύα (1.9 Κ = -271.1 C) μέρη του σύμπαντος κενό και θερμοκρασίες μέσα στους σωλήνες του επιταχυντή καλύτερα απ'του μεσοαστρικού χώρου! 8

Το πείραμα ATLAS στο τούνελ του LHC p p 9

Χρειαζόμαστε μεγάλους ανιχνευτές 43 m 22 m 7000 T (όσο ζυγίζει το σίδηρο στον πύργο του Eiffel) 10 T. Virdee, ICHEP08 10

Επιταχυντές σημαντικό εργαλείο έρευνας μικροσκόπια Οι μεγάλες ενέργειες συγκρούσεων επιτρέπουν: Να κοιτάμε όλο και πιο βαθιά στην ύλη λ = h/p De Broglie (1924) Να ανακαλύπτουμε βαρύτερα σωματίδια τηλεσκόπια Μεγάλη Ενέργεια μικρό μήκος κύματος Η μάζα είναι μιά μορφή ενέργειας E = mc2 Einstein (1905) Να μελετάμε συνθήκες σαν του πρώιμου σύμπαντος Πολύ Ενέργεια σε μικρό χώρο μεγάλες θερμοκρασίες E=kT Μελετάμε φαινόμενα και σωματίδια που Boltzman (~1900) δεν είναι πιά ορατά ή υπαρκτά στον σύμπαν 11

Ταξίδι σε συνθήκες πρώιμου σύμπαντος Μεγάλος Επιταχυντής Αδρονίων (LHC) στο CERN: συγκρούσεις πρωτονίων σε ενέργεια 14 TeV ~ 10-14 sec ( Σημείωση: 1 TeV = 1000 GeV = ενέργεια όση η μάζα 1000 πρωτονίων ) 12

Επιταχυντές για το απειροστό & το άπειρο! 13

Το απειροστό συνταντά το άπειρο! 14

Μετά από ~100 χρόνια πειραμάτων σκέδασης 15

Μετά από ~100 χρόνια πειραμάτων σκέδασης Λεπτόνια κουάρκ Φορείς των δυνάμεων Οι δομικοί λίθοι της ύλης 3 γενιές σωματιδίων ύλης 16

Κάποια από τα ερωτήματα που περιμένουν απάντηση Έχουμε μιά επιτυχημένη θεωρία, αλλά... Ο κ. Higgs πάντως έχει προτείνει έναν τρόπο/μηχανισμό. Το σωματίδιο Higgs στο LHC! (φαίνεται να έχει μάζα ~125 GeV) Πώς τα σωματίδια αποκτούν μάζα; - έχουμε θεμελιώδη σωμάτια (δηλ. χωρίς δομή) με πολύ διαφορετικές μάζες Από τι αποτελείται το 96% του σύμπαντος; Η βαρύτητα δεν περιγράφεται στην ίδια θεωρία Μπορούμε να περιγράψουμε τα πάντα στη βάση μιας θεωρίας; Υπάρχουν άλλες δυνάμεις? Ζούμε σε περισσότερες από 3+1 διαστάσεις? 17

Επιταχυντές Θ/νίκη - 13-Μαρ-2010 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 18

Επιταχυντές α' μέρος Γενικά - συστατικά επιταχυντών ηλεκτρικά και μαγνητικά πεδία Γραμμικοί και κυκλικοί επιταχυντές Σταθερού στόχου (fixed target) και Συγγρουόμενων δεσμών (colliding beams colliders) Τι σωματίδια επιταχύνουμε και συγκρούουμε; Επιταχυντές - ελεγχόμενο περιβάλλον σκεδάσεων 19

Επιτάχυνση σωματιδίων σε δέσμες Γραμμικός επιταχυντής + - + - Φορά σωματιδίων Πηγή σωματιδίων Κοιλότητες επιτάχυνσης με εναλλασόμενο πεδίο Γραμμικός επιταχυντής Βending DE Με τις κοιλότητες πετυχαίνουμε ομαδοποίηση των επιταχυνόμενων σωματιδίων σε δέσμες z Μαγνήτες καμπύλωσης 20

Κυκλικοί επιταχυντές αρχές: κύκλοτρο + - - + Εναλλάσουμε το ηλεκτρικό πεδίο και κρατάμε το μαγνητικό σταθερό μεγαλώνει η ακτίνα της κυκλικής τροχιάς 1930, στοπρωτόνια κύκλοτρο 100 του MeV Lawrence; πρωτόνια 100 MeV = 0.1 GeV 1930, Lawrence, Σημείωση: 1 πρωτόνιο έχει μάζα ~1 GeV η ενέργεια που έχει επειδή απλά υπάρχει: όση Kινητική Ενέργεια αποκτά επιταχνόμενο σε 10 9 Volts 1930, Lawrence, πρωτόνια 100 MeV 1 ηλεκτρόνιο έχει μάζα ~2000 φορές λιγότερο (0.51 MeV) 21

Κυκλικοί επιταχυντές Τα επιταχυνόμενα σωματίδια περνούν πολλές φορές από τις ίδιες κοιλότητες ραδιοσυχνοτήτων (RF cavities) Κράτημα σε κυκλική τροχιά με διπολικούς μαγνήτες Αλλά τότε: Όσο η ενέργεια της δέσμης αυξάνει, πρέπει να αυξάνουν ταυτόχρονα (συγχρόνως) και η συχνότητα αλλαγής του ηλεκτρικού πεδίου και τα μαγνητικά πεδία (synchronously -> Synchrotron ) LHC tunnel 22

Ακτινοβολία Σύγχροτρον Όταν ένα φορτισμένο σωμάτιο επιταχύνεται, εκπέμπει ακτινοβολία χάνει ενέργεια Στον κυκλικό επιταχυντή, τα σωματίδια έχουν κεντρομόλο επιτάχυνση, ακόμα κι όταν φτάσουν στη μέγιστη ενέργεια και δεν αποκτούν επιπλέον ορμή Απώλεια ενέργειας ανά περιστροφή: Παράδειγμα: LEP, 2πR=27Km, Ee=100 GeV (το 2000 είχαμε ηλεκτρόνια) ΔΕ = 2GeV! => στο LEP χρειάζεται ενέργεια για να αντισταθμίσει αυτή που χάνεται,και να παραμείνουν τα ηλεκτρόνια με ενέργεια 100 GeV ΝΒ: για σχετικιστιστικά πρωτόνια(β 1) ΔΕ[p]/ΔΕ[e] = (me/mp)4 = 10-13! επιταχυντής HERA : Ee = 27.6 GeV & Ep =920 GeV, ΔΕ[p]/ΔΕ[e] = 10-8 23

Επιταχυντές για πειράματα σταθερού στόχου Σταθερού στόχου = fixed targetσυγκρουστήρες δεσμών Βλήμα Στόχος Η εξαγόμενη δέσμη (p) προσκρούει σε σταθερό στόχο --> παράγονται δευτερεύουσες δέσμες: (μ ±, Κ±, π ±, p ±, e ±, v, γ, Κ L) Έτσι μπορούμε να παράγουμε δέσμες «σταθερών» σωματιδίων: e+, e-, p, pbar, An+, μ±?(μέλλον) Κατά κανόνα λίγη ενέργεια είναι διαθέσιμη για την παραγωγή σωματιδίων (Εcm = ενέγεια στο κέντρο μάζας), ενώ πολύ ενέργεια γίνεται κινητική ενέργεια των προϊόντων της σύγκρουσης 24

Επιταχυντές για πειράματα συγκρουόμενων δεσμών Σταθερού στόχου δεσμών Συγκρουστήρες Συγκρουστήρες δεσμών 1 M Μ Κατά κανόνα πολύ ενέργεια είναι διαθέσιμη για την παραγωγή σωματιδίων (Εcm = ενέγεια στο κέντρο μάζας) Παράδειγμα: Συγκρουόμενες δέσμες πρωτονίων με 450 GeV η κάθε μία --> Ecm = (450 + 450) GeV = 900 GeV διαθέσιμη για τη δημιουργία σωματιδίων 25

Είδη επιταχυνόμενων σωματιδίων Φορτισμένα Σταθερά ή αταθή αλλά αρκετά μακρόβια Ασταθή; αλλά, εξ' αιτίας του παράγοντα Lorentz: γτ Ένα σωματίδιο με χρόνο ζωής τ (στο δικό του σύστημα) Έχει χρόνο ζωής γτ στο δικό μας σύστημα παρατήρησης Στην πράξη σήμερα οι συγκρουστήρες σωματιδίων χρησιμοποιούν: Ηλεκτρόνια (e-) Ποσιτρόνια (e+) Πρωτόνια Αντιπρωτόνια (p) (p) 26

Όλο και μεγαλύτερη ενέργεια ανακαλύψεις FT 2 E Lab = E cm 2mp αναγωγή σε αντίστοιχη ενέργεια βλήματος για πείραμα σταθερού στόχου ( fixed target experiment ) 1 EeV LHC 100 PeV 10 PeV Tevatron 1 PeV SppS 100 TeV HERA 10 TeV LEP ISR 1 TeV 100 GeV 10 GeV 1 GeV 100 MeV 10 MeV 1 MeV 1930 1950 1970 1990 2010 Χρονιά Έναρξης Λειτουργίας 27

Σύμπαν vs. Συγκρουστές δεσμών (colliders) 10000 particles/km2/year LHC Κοσμική ακτινοβολία προσπίπτει στην ανώτερη ατμόσφαιρα και δίνει συγκρούσεις σταθερού στόχου με ενέργεια πολύ μεγαλύτερη από το LHC Αλλά και πολύ πιο σπάνιες και προς όλες τις κατευθύνσεις LHC: 109 συγκρούσεις ανά δεπτερόλεπτο σε ελεγχόμενο περιβάλλον 28

Επιταχυντές β' μέρος Φωτεινότητα και ενεργός διατομή Συγκρουστές ηλεκτρονίων ή πρωτονίων; Τι συγκρούεται πραγματικά σε σκεδάσεις πρωτονίων Παραδείγματα επιταχυντών 29

Φωτεινότητα και ενεργός διατομή Προϋπόθεση για αλληλεπίδραση δύο σωματιδίων, είναι να βρεθούν κοντά. Πόσα σωματίδια περνoύν ανά cm2 σε κάθε δευτερόλεπτο; Δηλ., ποιά είναι η φωτεινότητα της περιοχής συγκρούσεων; Η πιθανότητα αλληλεπίδρασης δίνεται από την ενεργό διατομή (σ) dn/dt = σ L αριθμός αλληλεπιδράσεων ανά sec Η ενεργός διατομή σ μιας αλληλεπίδρασης, έχει μονάδες επιφάνειας Τα σωματίδια ως πιάτα επιφανειας σ, που αλληλεπιδρούν με ό,τι βρούν στο διάβα τους. Ενεργός διατομή = Cross section Φωτεινότητα = Luminosity 30

Φωτεινότητα σε πειράματα fixed target Προϋπόθεση για αλληλεπίδραση δύο σωματιδίων, είναι να βρεθούν κοντά. Πόσα σωματίδια περνoύν ανά cm2 σε κάθε δευτερόλεπτο; Δηλ., ποιά είναι η φωτεινότητα της περιοχής συγκρούσεων; Η πιθανότητα αλληλεπίδρασης δίνεται από την ενεργό διατομή (σ) 31

Φωτεινότητα σε colliders Πόσα σωματίδια περνoύν ανά cm2 σε κάθε δευτερόλεπτο; Δηλ., ποιά είναι η φωτεινότητα της περιοχή συγκρούσεων; Η πιθανότητα αλληλεπίδρασης δίνεται από την ενεργό διατομή (σ) Η φωτ εινό γεωμε τρικό τητα έιναι χ των σ υγκρο αρακτηριστ υόμεν ων δε ικό σμών Προϋπόθεση για αλληλεπίδραση δύο σωματιδίων, είναι να βρεθούν κοντά. 32

Φωτεινότητα σε colliders - Παραδείγματα Τυπικές τιμές φωτεινότητας (luminosity): Συνήθως τα δεδομένα που συλλέγονται εκφράζονται σε [pb-1] integrated luminosity Lint = Ldt Το πλήθος των δεδομένων σε μια χρονική περίοδο: Ν = σ Lint = σ Lint = σ Ldt Μονάδες ενεργoύ διατομής: 1 barn = 10-24 cm2 1 pb (= pico-barn) = 10-12 barn To LEP (e+e-) μπορούσε να παράγει 3 pb-1 σε μια μέρα σ (e+e- hadrons) = 30 nb => 90000 hadronic events/day 33

Φωτεινότητα σε colliders - Παραδείγματα Τυπικές τιμές φωτεινότητας (luminosity): e+ e- @ Ecm = 91 GeV e+ e- @ Ecm = 10.5 GeV pp @ Ecm = 14 TeV Συνήθως τα δεδομένα που συλλέγονται εκφράζονται σε [pb-1] integrated luminosity Lint = Ldt Το πλήθος των δεδομένων σε μια χρονική περίοδο: Ν = σ Lint = σ Lint = σ Ldt Μονάδες ενεργoύ διατομής: 1 barn = 10-24 cm2 1 pb (= pico-barn) = 10-12 barn To LEP (e+e-) μπορούσε να παράγει 3 pb-1 σε μια μέρα σ (e+e- hadrons) = 30 nb => 90000 hadronic events/day 34

Φωτεινότητα σε colliders - Παραδείγματα Τυπικές τιμές φωτεινότητας (luminosity): e+ e- @ Ecm = 91 GeV e+ e- @ Ecm = 10.5 GeV pp @ Ecm = 14 TeV Συνήθως τα δεδομένα που συλλέγονται εκφράζονται σε [pb-1] integrated luminosity Li n t = Ldt Το πλήθος των δεδομένων σε μια χρονική περίοδο: Ν = σ Lint = σ Li n t = σ Ldt Μονάδες ενεργoύ διατομής: 1 barn = 10-2 4 cm2 1 pb (= pico-barn) = 10-1 2 barn To LEP (e+e-) μπορούσε να παράγει 3 pb-1 σε μια μέρα σ (e+e- hadrons) = 30 nb => 90000 hadronic events/day 35

Γιατί είναι σημαντικό να έχουμε μεγάλη φωτεινότητα; Π.χ. Συγκρουστές πρωτονίων σ (nb) ==> Διότι : 1) Τα ενδιαφέροντα γεγονότα είναι σπάνια! (μικρή ενεργό διατομή για την παραγωγή τους) 2) Όσο περισσότερα δεδομένα συλλέγουμε, τόσο καλύτερη μέτρηση κάνουμε (με μικρότερο στατιστικό σφάλμα) Ecm (TeV) Δυό γενιές συγκρουστών πρωτονίων - Tevatron: proton antiproton - LHC: proton - proton 36

Σύγκρουση ηλεκτρονίων, π.χ. στο LEP Έχουμε δεί ότι η ενέργεια που χάνει ένα σωματίδιο σε μια περιστροφή του γύρω σ'έναν κυκλικό επιταχυντή έιναι: ΔΕ ~ Ανάγκη γραμμικού επιταχυντή για μεγαλύτερες ενέργειες Σε e+ e-, συκρούονται στοιχειώδη σωμάτια (χωρίς δομή) R M4 Με το LEP (e+ e-- @ Ecm = 91-209 GeV) φτάσαμε στο όριο των κυκλικών επιταχυντών ηλεκτρονίων. 1 όλη η ενέργεια σύγκρουσης είναι διαθέσιμη για παραγωγή νέων σωματιδίων Η ενέργεια είναι ~καθορισμένη ρυθμίζουμε για παραγωγή συγκεριμένου σωματιδίου (π.χ. e+ e-- Ζ, στα 91 GeV) 37

Σύγκρουση ηλεκτρονίων: π.χ. στο LEP Η ενέργεια ρυθμίζεται για παραγωγή συγκεριμένου σωματιδίου (π.χ. e+ e-- Ζ, με Ecm = 91 GeV) Αλλά όταν ψάχνουμε για νέα σωματίδια, με άγνωστη μάζα πρέπει να αλλάζουμε την ενέργεια της δέσμης για να ερευνήσουμε μια περιοχή μάζας ( energy scan ) μέχρι να πέσουμε σε συντονισμό 38

Σύγκρουση ηλεκτρονίων: π.χ. στο LEP Η ενέργεια ρυθμίζεται για παραγωγή συγκεριμένου σωματιδίου (π.χ. e+ e-- Ζ, με Ecm = 91 GeV) Αλλά όταν ψάχνουμε για νέα σωματίδια, με άγνωστη μάζα πρέπει να αλλάζουμε την ενέργεια της δέσμης για να ερευνήσουμε μια περιοχή μάζας ( energy scan ) μέχρι να πέσουμε σε συντονισμό Λεπτομέρεια : η ενέργεια σύγκρουσης δεν είναι πάντα ακριβώς αυτή που ορίσαμε: αν έχουμε ακτινοβολία γ στην αρχική κατάσταση ( initial state radiation ) τότε έχουμε μια σύγκρουση e+ e-- με λιγότερη ενέργεια απ' ό,τι υπολογίζαμε 39

Σύγκρουση πρωτονίων p p: Συγκρούονται MH στοιχειώδη σωμάτια A+B: A+B: Ουσιαστικά, συγκρούονται κάποια απ' τα συστατικά τους ( παρτόνια = κουάρκ και γκλουόνια) a + b, τα οποία είναι στοιχειώδη EC M2 ~ 4 EA EB a+b: (Effective EC M)2 ~ 4 (xa EA) (xb EB) = xa xb EC M2 Effective EC M = sqrt(xa xb) EC M Σημείωση: s = EC M2 EC M = sqrt(s) s^= (Effective EC M)2 40

Σύγκρουση πρωτονίων p p: Συγκρούονται MH στοιχειώδη σωμάτια A+B: Ουσιαστικά, συγκρούονται κάποια απ' τα συστατικά τους ( παρτόνια = κουάρκ και γκλουόνια) a + b, τα οποία είναι στοιχειώδη Το κλάσμα της ορμής (xa) που μεταφέρει το παρτόνιο a δεν είναι πάντα το ίδιο κατανομή Παρτόνια μέσα στο πρωτόνιο: valence quarks : u u d gluons sea quarks (απ' όλα τα είδη) x = momentum fraction 41

Σύγκρουση πρωτονίων Σύγκρουση p p: τα xa, xb είναι τυχαία Πλεονεκτήματα: διερευνούμε μια περιοχή της ΕC M: καλό για ανακάλυψη άγνωστων/νέων σωματιδίων x = momentum fraction 42

Σύγκρουση πρωτονίων Σύγκρουση p p: τα xa, xb είναι τυχαία Πλεονεκτήματα: διερευνούμε μια περιοχή της ΕC M: καλό για ανακάλυψη άγνωστων/νέων σωματιδίων Μειονεκτήματα: Δεν είναι γνωστό ποιά σωματίδια αλληλεπέδρασαν => περίπλοκοι υπολογισμοί x = momentum fraction 43

Σύγκρουση πρωτονίων Σύγκρουση p p: τα xa, xb είναι τυχαία Πλεονεκτήματα: διερευνούμε μια περιοχή της ΕC M: καλό για ανακάλυψη άγνωστων/νέων σωματιδίων Μειονεκτήματα: Δεν είναι γνωστό ποιά σωματίδια αλληλεπέδρασαν => περίπλοκοι υπολογισμοί η ΕC M ΔΕΝ είναι γνωστή εκ των προτέρων => θέλουμε p p δέσμες μεγάλης ενέργειας για να έχουμε αρκετή πιθανότητα για μεγάλα pa, pb => για παραγωγή βαρέων σωματιδίων x = momentum fraction 44

Σύγκρουση πρωτονίων Σύγκρουση p p: τα xa, xb είναι τυχαία Πλεονεκτήματα: διερευνούμε μια περιοχή της ΕC M: καλό για ανακάλυψη άγνωστων/νέων σωματιδίων Μειονεκτήματα: Δεν είναι γνωστό ποιά σωματίδια αλληλεπέδρασαν => περίπλοκοι υπολογισμοί η ΕC M ΔΕΝ είναι γνωστή εκ των προτέρων => θέλουμε p p δέσμες μεγάλης ενέργειας για να έχουμε αρκετή πιθανότητα για μεγάλα pa, pb => για παραγωγή βαρέων σωματιδίων xa xb => pa -pb => C.M. boosted w.r.t. lab frame => δεν ξέρουμε την αρχική ορμή κατά μήκος των δεσμών πρωτονίων (άξονας z) => μόνο (x,y) x = momentum fraction 45

Παραδείγματα κυκλικών επιταχυντών LEP TEVATRON HERA LHC 46

+ -- LEP: Large Electron Positron (e e ) 47

+ -- LEP: Large Electron Positron (e e ) 48

Tevatron: p p @ 2 TeV energies 49

HERA: electron-proton collider 50

HERA: electron-proton collider Proton beam on top of electron beam 51

HERA: electron-proton collider 52

LHC: Large Hadron Collider @ 14 TeV 53

LHC: Large Hadron Collider @ 14 TeV 54

LHC: Large Hadron Collider @ 14 TeV Γιατί πρωτόνιο πρωτόνιο? Και όχι πρωτόνιο αντιπρωτόνιο, όπως στο Fermilab? Για σωμάτιο-αντισωμάτιο μπορούμε να χρησιμοποιήσουμε τον ίδιο σωλήνα δέσμης και τις ίδιες κοιλότητες επιτάχυνσης Ενώ, για πρωτόνιο-πρωτόνιο χρειάζονται δύο σωλήνες δέσμης... Απάντηση: Χρειαζόμαστε μεγάλη φωτεινότητα (L Np a r t I c l e s δεσμών) Δύσκολο να πάρουμε πολλά αντιπρωτόνια, εύκολο να πάρουμε πολλά πρωτόνια Βέβαια, χρειαζόμαστε πρωτόνια-αντιπρωτόνια για κουάρκ-αντικουάρκ αλληλεπιδράσεις συμμετέxουν κυρίως τα κουάρκ σθένους Αλλά: σε υψηλές ενέργειες, τα πολλά γκλουόνια και sea quarks με χαμληλό κλάσμα ορμής x έχουν ήδη μπόλικη ενέργεια => τα αντιπρωτόνια δεν έχουν πια πλεονεκτήματα σε σχέση με τα πρωτόνια 55

LHC: Large Hadron Collider @ 14 TeV Γιατί πρωτόνιο πρωτόνιο? Και όχι πρωτόνιο αντιπρωτόνιο, όπως στο Fermilab? Για σωμάτιο-αντισωμάτιο μπορούμε να χρησιμοποιήσουμε τον ίδιο σωλήνα δέσμης και τις ίδιες κοιλότητες επιτάχυνσης Ενώ, για πρωτόνιο-πρωτόνιο χρειάζονται δύο σωλήνες δέσμης... Απάντηση: Χρειαζόμαστε μεγάλη φωτεινότητα (L Np a r t I c l e s δεσμών) Δύσκολο να πάρουμε πολλά αντιπρωτόνια, εύκολο να πάρουμε πολλά πρωτόνια Βέβαια, χρειαζόμαστε πρωτόνια-αντιπρωτόνια για κουάρκ-αντικουάρκ αλληλεπιδράσεις συμμετέxουν κυρίως τα κουάρκ σθένους κ, ρ ά υ ο Αλλά: σε υψηλές ενέργειες, τα πολλά γκλουόνια καιτή sea quarks με χαμληλό ςκ : σ ς υ ι ε μπόλικη υ ρο => τα αντιπρωτόνια ψήδη κ ύ κλάσμα ορμής x έχουν ενέργεια δεν γ λ α ν σ κ ω ι α ί ν ν α υο εί ν ο λ έχουν πιααπλεονεκτήματα n σε σχέση με τα πρωτόνια Για κ o r γ t va ής e τ T σ υ ο ο τ γκρ υ σ C - το LH 56

Υπάρχοντες επιταχυνες 57

Καινούργιοι / Προτεινόμενοι Ξεκίνησε, ανακάλυψε! Μέλλον (δεν έχει προγραμματιστεί τίποτα ακόμα μάλλον ο Linear Collider θα κατασκευαστεί πρώτα) 58

Τι συζητήσαμε Η μέθοδος για τη μελέτη του μικρόκοσμου Επιταχυντές γενικά Φωτεινότητα και ενεργός διατομή Συγκρουστές ηλεκτρονίων ή πρωτονίων; Τι συγκρούεται πραγματικά σε σκεδάσεις πρωτονίων Παραδείγματα επιταχυντών 59