Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Σχετικά έγγραφα
Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Approximation of distance between locations on earth given by latitude and longitude

Démographie spatiale/spatial Demography

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

Spherical Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

APPENDIX B NETWORK ADJUSTMENT REPORTS JEFFERSON COUNTY, KENTUCKY JEFFERSON COUNTY, KENTUCKY JUNE 2016

derivation of the Laplacian from rectangular to spherical coordinates

CURVILINEAR COORDINATES

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Strain gauge and rosettes

Areas and Lengths in Polar Coordinates

Assalamu `alaikum wr. wb.

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homework 8 Model Solution Section

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Reminders: linear functions

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Abstract Storage Devices

Finite Field Problems: Solutions

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

The Simply Typed Lambda Calculus

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Instruction Execution Times

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

EE512: Error Control Coding

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

TMA4115 Matematikk 3

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Δομές δεδομένων και ψηφιακή αναπαράσταση χωρικών φαινομένων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Example Sheet 3 Solutions

The challenges of non-stable predicates

Solutions to Exercise Sheet 5

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

2 Composition. Invertible Mappings

Block Ciphers Modes. Ramki Thurimella

Homework 3 Solutions

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

CE 530 Molecular Simulation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

[1] P Q. Fig. 3.1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ηλεκτρονικοί Υπολογιστές IV

Section 8.3 Trigonometric Equations

Liner Shipping Hub Network Design in a Competitive Environment

ECE 468: Digital Image Processing. Lecture 8

Numerical Analysis FMN011

ST5224: Advanced Statistical Theory II

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Other Test Constructions: Likelihood Ratio & Bayes Tests

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Ανάκτηση Πληροφορίας

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

D Alembert s Solution to the Wave Equation

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Monolithic Crystal Filters (M.C.F.)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Αλγόριθμοι και πολυπλοκότητα Graphs

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Μηχανική Μάθηση Hypothesis Testing

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

the total number of electrons passing through the lamp.

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Statistical Inference I Locally most powerful tests

Lecture 2. Soundness and completeness of propositional logic

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Section 9.2 Polar Equations and Graphs

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Transcript:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Χρήση συστημάτων πληροφορικής στην οδική υποδομή Συστήματα αναφοράς θέσης Βύρωνας Νάκος Καθηγήτης ΕΜΠ bnakos@central.ntua.gr

Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς. 2

Συστήματα Γεωγραφικών Πληροφοριών & Μεταφορές Συστήματα αναφοράς θέσης Βύρωνας Νάκος, Καθηγητής Ε.Μ.Π.

Contents Locational Reference Systems Datum geographic co-ordinates Linear location referencing methods Route Milepost Route Refernce Post Link-Node Route-Street Reference Developing a Linear Location Reference System

Locational reference systems - Georeferencing Georeferencing is defined as positioning objects in either two- or three-dimesional space Continuous Continuous georeferencing system implies continuous measurement of the position of geographic phenomena in relation to a refernce point with no abrupt changes or breaks Discrete In discrete georeferencing systems the positions of geographic phenomena are referenced relative to fixed, limited units of the surface of the Earth

Locational reference systems - Georeferencing Continuous systems include direct & relative georeferencing: Direct georeferencing Datum Coordinate systems Map projections Relative georeferencing Offset distance Measurement along (road) networks

Datum To determine a position on the Earth s surface we have to know the shape & the size of the Earth The shape of the Earth is expressed by the shape of the ellipsoid Datum is a model & gives the relationship of a co-ordinate system to the Earth Datum is defined by: 1. Size & shape (semi-major axis a & semi-minor axis b) of the ellipsoid 2. Positioning of the ellipsoid in relation to the physical surface of the Earth by an anchor point

Geodetic Reference System 1980 GRS-80 a b a Major-semi axis: a Minor-semi axis: b Flattening: f = (a-b)/a a = 6,378,137 m b = 6,356,752 m 1/f = 298.257

Prime meridian (Greenwich) Geographic co-ordinates Earth s rotation axis meridians parallels Equator

Geographic co-ordinates Parallel Earth s rotation axis Equator Geographic longitude (λ) Prime meridian Meridian Geographic latitude (φ)

Map projection co-ordinates Map projection co-ordinate systems give the positions of points relative to two mutually perpendicular axes in a plane (Cartesian co-ordinates) The axis are called Northings and Eastings and are writen as y & x resp. Many countries have national, and even local, georeference systems of rectangular co-ordinates The best known map projection co-ordinate system is the UTM. UTM covers the surface of the Earth from 84 North to 80 South with the help of 60 zones of 6 width

Physical Earth surface Geoid The long trip of spatial data P P E P G Ellipsoid Plane (map) p

Linear location referencing systems/methods When conducting a data collection survey on transportation networks, it is important that the data is properly referenced and that location can be assigned repeatedly over time with a level of confidence The key components of linear referencing are: Linear location referencing methods Linear location referencing systems

Linear location referencing systems/methods Linear Location Referencing System is the total set of procedures for determining and retaining a record of specific points along a transportation network. The system includes the location referencing method(s), together with the procedures for storing, maintaining, and retrieving location information about points and segments on the transportation networks Linear Location Referencing Method is the technique used to identify a specific point (location) or segment of transportation network, either in the field or in the office

Linear location referencing methods Route-Milepost (RMP) Route-Reference Post (RRP) Link-Node (LN) Route-Street Reference (RSR) Geographic Coordinates

Route Milepost Method (RMP) In the RMP method, distance is measured from a given or known point, such as the route beginning or a jurisdictional boundary (e.g., a county line), to the referenced location The point of interest (i.e., crash or roadway feature) is always offset in a positive direction from the zero milepoint, and is not referenced to other intermediate points along the route

Route-Reference Post Method (RRP) The Route-Reference Post (RRP) is a method that uses signs posted in the field to indicate known locations These signs, known as reference posts, may or may not reflect mileposts All data collected in the field are referenced to these markers in terms of distance and direction The advantage of this system over an RMP system is the elimination of the problems caused by changes in route length that may be the result of realignment

Link-Node Method (LN) In a Link-Node (LN) method, specific physical features, such as intersections, are identified as nodes Each node is considered unique and is assigned a unique identifier or node number Links are the logical connection between nodes and may vary in length. Links also have unique identifiers that are often derived from the associated pair of Node identification (ID) numbers All data are measured as an offset distance from the nearest or lowest node number along a link

Route-Street Reference Method (RSR) In the Route-Street Reference method an event is typically recorded as occurring on one street at a specified distance and direction from another street that is used as a reference A variation of this method is the use of two reference streets and no distance measurement (for example, a crash may be coded as occurring on Street A between Streets 22 and 23) The last option results in a loss of detail with regard to precise location, but still provides enough information to determine sections of roadway that may have a high number of events

Geographic Co-ordinate Method Cartesian co-ordinates use x and y to measure distance along perpendicular axes of a co-ordinate plane Geographic co-ordinates use latitude and longitude to measure distance in degrees along the axes of the sphere of the Earth. Events (and beginnings and endings of route segments) can also be located using GPS technology to reference, by latitude and longitude, a location on the Earth s surface Local transportation authorities may use map projection coordinates to measure the distance east and west or north and south along an origin or datum

Developing a Linear Location Reference System The collection of roadway event data (i.e., number of lanes, shoulder type pavement surface) is accomplished in the field by driving along the roadway As the inventory item is located, its attributes are recorded, along with the road name (or Route ID) and the mileage driven (or milepost) Point features (signpost or a culvert) Are recorded as a single mileage attribute Linear features (number of lanes, shoulder type, or pavement surface) Are recorded by a beginning mileage and ending mileage

Developing a Linear Location Reference System Public or private organizations collect and maintain attribute data on roadway characteristics as a single table containing records representing homogeneous sections of highways

Developing a Linear Location Reference System The information may also be entered into a relational database management system (RDBMS). Each record in the database would be entered for each observed and recorded occurrence The attributes for roadway inventory would include Route ID, Mileage, and Inventory Type Each data type could be entered into database tables, such as a Pavement File, Shoulder File, and Intersection File

Developing a Linear Location Reference System Partial illustration of a route system roadway inventory data model

References Bernhardsen T., 2002, Geographic Information Systems. An Introduction (3rd ed.), New York: John Wiley & Sons. Boston S., 2011, Harmonisation of Location Referencing for Related Data Collection, Sydney: Austroads Publication No. AP T190-11. Miller H.J. & Shaw S.-L., 2001, Geographic Information Systems for Transportation: Principles and Applications, Oxford: Oxford University Press. Sutton J., 1998, Data attribution and network representation issues in GIS and transportation, Transportation Planning and Technology, 21(1-2): 25-41. Trentacoste, M.F. (ed.), 2001, Implementation of GIS-Based Highway Safety Analyses: Bridging the Gap, Report No. FHWA-RD-01-039, McLean: U.S. Department of Transportation, Federal Highway Administration.

Χρηματοδότηση Το παρόν υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 1