Drude Model for dielectric constant of metals.

Σχετικά έγγραφα
6. Dispersion relation of surface plasmons on dielectric-metal boundaries

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

A Class of Orthohomological Triangles

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

EE101: Resonance in RLC circuits

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Constant Elasticity of Substitution in Applied General Equilibrium

α & β spatial orbitals in

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Dielectric Wave Guide

8.324 Relativistic Quantum Field Theory II

Example Sheet 3 Solutions

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Note: Please use the actual date you accessed this material in your citation.

Section 8.3 Trigonometric Equations

Matrices and Determinants

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Capacitors - Capacitance, Charge and Potential Difference

Approximation of distance between locations on earth given by latitude and longitude

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Phasor Diagram of an RC Circuit V R

Section 9.2 Polar Equations and Graphs

Finite Field Problems: Solutions

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Space-Time Symmetries

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Second Order Partial Differential Equations

Solution Set #2

Solar Neutrinos: Fluxes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

C.S. 430 Assignment 6, Sample Solutions

ST5224: Advanced Statistical Theory II

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order RLC Filters

F19MC2 Solutions 9 Complex Analysis

derivation of the Laplacian from rectangular to spherical coordinates

( y) Partial Differential Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Local Approximation with Kernels

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Strain gauge and rosettes

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Assalamu `alaikum wr. wb.

[1] P Q. Fig. 3.1

6.4 Superposition of Linear Plane Progressive Waves

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Math221: HW# 1 solutions

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1 Complete Set of Grassmann States

Solutions to Exercise Sheet 5

Derivation of Optical-Bloch Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

The Simply Typed Lambda Calculus

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lifting Entry (continued)

Homework 8 Model Solution Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

CS348B Lecture 10 Pat Hanrahan, Spring 2002

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:


Dr. D. Dinev, Department of Structural Mechanics, UACEG

Fractional Colorings and Zykov Products of graphs

Lecture 21: Scattering and FGR

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Solution Series 9. i=1 x i and i=1 x i.

Numerical Analysis FMN011

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Graded Refractive-Index

Homework 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

D Alembert s Solution to the Wave Equation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

ωλi τ~γ ο (ανεξάρτητα από το πόσο μεγάλο είναι το γ ο ) [Μη ρεαλιστικό; ισχύει μόνο για μικρά γ ο ]

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MathCity.org Merging man and maths

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Transcript:

Drue Moel for electrc constant of etals. Conucton Current n Metals EM Wave Proagaton n Metals Sn Deth Plasa Frequency Ref : Prof. Robert P. Lucht, Purue Unversty

Drue oel Drue oel : Lorenz oel (Haronc oscllator oel) wthout restoraton force (that s, free electrons whch are not boun to a artcular nucleus) Lnear Delectrc Resonse of Matter

Conucton Current n Metals The equaton of oton of a free electron (not boun to a artcular nucleus; C 0), r r r r r uur r uur e r v e Cr ee e + eγ v ee t τ t t 1 14 ( τ : relaxaton te 10 s) γ Lorentz oel (Haronc oscllator oel) If C 0, t s calle Drue oel The current ensty s efne : r r J Nev wth unts of C s Substtutng n the equaton of oton we obtan : r J r N e r + γ J E t e

Conucton Current n Metals Assue that the ale electrc fel an the conucton current ensty are gven by : r r r r E E ex t J J t ( ) ex( ) 0 0 Local aroxaton to the current-fel relaton Substtutng nto the equaton of oton we obtan : r J0 ex( t) r r r + γ J0ex t J0ex t + γ J0ex t t Ne r E0 ex( t) e ( γ) ( ) ( ) ( ) ( + ) Multlyng through by ex t : r Ne r + J0 E0 e r Ne r or equvalently ( + γ) J E e

Conucton Current n Metals For statc fels ( ) 0 we obtan : r Ne r r Ne J E σ E σ statc conuctvty eγ eγ For the general case of an oscllatng ale fel : r σ r r J E σ E σ ynac conuctvty 1 ( / γ) ( γ) For very low frequences, << 1, the ynac conuctvty s urely real an the electrons follow the electrc fel. As the frequency of the ale fel ncreases, the nerta of electrons ntrouces a hase lag n the electron resonse to the fel, anthe ynac conuctvty s colex. ( ) For very hgh frequences, γ >> 1, the ynac conuctvty s urely agnary an the electron oscllatons are 90 out of hasewth the ale fel.

Proagaton of EM Waves n 1 E 1 E + 0 1 1 σ E + 0 1 ( / γ) Metals Maxwell ' s relatons gve us the followng wave equaton for etals : r r r J c t c t P 0, J 0 r σ r But J E 1 ( / γ) Substtutng n the wave equaton we obtan : r r r E E c t c t The wave equaton s satsfe by electrc fels of the for : r r r E E0 ex r ( t) where σμ 0 + c c 1 ( / γ) 1 μ 0 0

Sn Deth Conser the case where s sall enough that s gven by σμ 0 π + σμ0 ex σμ0 c 1 ( / γ) 0 Then, % π π π π σ μ ex σμ0 ex σμ0 cos + sn σμ0 ( 1+ ) 4 4 4 : σμ0 R I nr σ c μ σ c 0 R n I 0 In the etal, for a wave roagatng n the z recton : r r r z E E0ex( Iz) ex ( Rz t) E0ex ex ( Rz t) δ The sn eth δ s gven by : 1 δ σμ I 0 0c σ 7 1 1 7 C s For coer the statc conuctvty σ 5.76 10 Ω 5.76 10 δ 0.66μ J

Plasa Frequency Now conser agan the general case : σμ + c 1 ( / γ) 0 c σ c μ 0 γ σ c μ 0 n 1+ 1 + 1 ( / γ) γ 1 ( / γ) n γσc μ + γ 0 1 The lasa frequency s efne : γσ μ Ne γ c 0 c eγ μ 0 Ne e 0 The refractve nex of the eu s gven by n 1 + γ

Plasa Frequency If the electrons n a lasa are slace fro a unfor bacgroun of ons, electrc fels wll be bult u n such a recton as to restore the neutralty of the lasa by ullng the electrons bac to ther orgnal ostons. Because of ther nerta, the electrons wll overshoot an oscllate aroun ther equlbru ostons wth a characterstc frequency nown as the lasa frequency. E σ / Ne( δ x) / : electrostatc fel by sall charge searaton δ x s o o o δ x δ x ex( t) : sall-altue oscllaton o ( δ x) Ne Ne ( e) E s t o o

Plasa Frequency n c σ c μo σc μoγ 1+ 1 ( 1 / γ) + γ R I n ( n + n ) 1 + γ n 1 by neglectng γ, val for hgh frequency ( >> γ). For <, n s colex an raaton s attenuate. For >, n s real an raaton s not attenuate(transarent).

Plasa Frequency λ λ c πc Born an Wolf, Otcs, age 67.

Plasa Frequency

Delectrc constant of etal : Drue oel ( ) + n R I + ( nr ni) 1 + ( nr ni ) nrni + γ γ 1 + 3 + γ + γ >> γ 1 τ ( ) 1 + 3 / γ

Ieal case : etal as a free-electron gas no ecay (nfnte relaxaton te) no nterban transtons ( ) ( ) 1 τ γ 0 r 1 0

Plasa waves (lasons) Note: SP s a TM wave!

Plaso ns Plasa oscllaton ensty fluctuaton of free electrons + + + - - - + - + Plasons n the bul oscllate at eterne by the free electron ensty an effectve ass rue Ne Plasons confne to surfaces that can nteract wth lght to for roagatng surface lason olartons (SPP) 0 rue 1 Confneent effects result n resonant Ne artcle 3 0 SPP oes n nanoartcles

Dserson relaton for EM waves n electron gas (bul lasons) Dserson relaton: ( )

Dserson relaton of surface-lason for electrc-etal bounares

Dserson relaton for surface lason olartons TM wave Z > 0 Z < 0 At the bounary (contnuty of the tangental E x, H y, an the noral D z ): E x Ex Hy Hy Ez Ez

Dserson relaton for surface lason olartons z z x x E E y y H H x y z E H y z y z H H ),0, ( z x E E ),0, ( y x y z H H x y z E H x y z E H

Dserson relaton for surface lason olartons For any EM wave: x + z x x x, where c SP Dserson Relaton x c +

Dserson relaton: relaton for surface lason olartons x-recton: z-recton: For a boun SP oe: x ' x+ " x c + z x c z ust be agnary: + < 0 1/ + ' " z ' z + z ± c + 1/ z ± x ± x x > c c c x ust be real: < 0 + for z < 0 - for z > 0 So, ' <

Plot of the serson relaton 1 ) ( x c + Plot of the electrc constants: Plot of the serson relaton: s + 1,, When x ) (1 ) ( s x c +

Surface lason serson relaton: x c + 1/ z c + 1/ + c x c x Raatve oes (' > 0) real x real z Quas-boun oes ( < ' < 0) agnary x real z 1+ z Delectrc: x Metal: ' + " Boun oes (' < ) real x agnary z Re x