Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction Eduardo J. Fernández, a * Antonio Laguna, b * José M. López-de-Luzuriaga, a Miguel Monge, a M. Elena Olmos, a Mihai Nema, c Javier Pérez, a Cristian Silvestru c a Departamento de Química, Universidad de La Rioja, Grupo de Síntesis Química de La Rioja, UA-CSIC. Complejo Científico-Tecnológico, 26004-Logroño, SPAIN. b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009-Zaragoza, SPAIN. c Facultatea de Chimie si Inginerie Chimica, Universitatea Babes- Bolyai, RO-400028 Cluj-Napoca, Romania. ELECTRONIC SUPPLEMENTARY INFORMATION
Experimental Section. General. All reactions were carried out under dry deoxygenated argon atmosphere using Schlenk techniques. All solvents were distilled from an appropriate drying agent. [BiCl(C 6 H 4 CH 2 NMe 2-2) 2 ] 1 and [AuAg(C 6 F 5 ) 2 ] 0.5 OEt 2 2 were prepared according to literature methods. Instrumentation. Infrared spectra were recorded in the 4000-200 cm -1 range on a Perkin-Elmer FT-IR Spectrum 1000 spectrophotometer, using Nujol mulls between polyethylene sheets. Mass spectra were recorded on a HP-5989B Mass Spectrometer API-Electrospray with interface 59987A. 1 H, and 19 F NMR spectra were recorded on a Bruker Avance 400 in d 6 -acetone solutions. Chemical shifts are quoted relative to SiMe 4 ( 1 H external) and CFCl 3 ( 19 F external). Synthesis of [Au(C 6 F 5 ) 2 ][Bi(C 6 H 4 CH 2 NMe 2-2) 2 ] 1: To a dichloromethane solution (15 ml) of the diorganobismuth compound [BiCl(C 6 H 4 CH 2 NMe 2-2) 2 ] (0.100 g, 0.194 mmol) was added [AuAg(C 6 F 5 ) 2 ] 0.5 OEt 2 (0.128 g, 0.194 mmol). The reaction mixture was stirred for 2 h at room temperature and a white precipitate was formed. Filtration of the precipitate and evaporation of the solvent under vacuum and addition of diethyl ether gave rise to complex 1 as a white solid in 50% yield. Mass spectrum (ES-) m/z = 531 ([Au(C 6 F 5 ) 2 ] - ). 19 F NMR (282 MHz, d 6 -acetone), δ -110.25 (m, 4F, F o ), -156.82 (t, 2F, F p ), -160.21 (m, 4F, F m ). 1 H NMR (400 MHz, d 6 -acetone), δ 8.27 (d, 2H, C 6 H 4 ), δ 7.76 (2, 2H, C 6 H 4 ), δ 7.62 (t, 2H, C 6 H 4 ), δ 7.42 (t, 2H, C 6 H 4 ), δ 4.39 (s, 4H, CH 2 -N), δ 2.91 (s, 12H, N(CH 3 ) 2 ). FT-IR (Nujol mulls): ν = 1500, 952, 790 cm -1 (Au-C 6 F 5 ).
Computational details. All calculations were performed using the Gaussian 03 suite of programs 3 using DFT/B3LYP, 4 Hartree-Fock and MP2 5 levels of theory The interaction energy between ionic counterparts at Hartree-Fock (HF) and MP2 levels of theory was obtained according to equation: Δ E = E ( AB) ( AB) ( AB) E E V ( R) AB A B = a counterpoise correction for the basis-set superposition error (BSSE) 6 on ΔE was thereby performed. We fitted the calculated points using a four-parameter equation, which had been previously used 7 to derive the Herschbach-Laurie relation: 8 Δ E = V ( R) = Ae BR CR n Table S1. Experimental and optimized theoretical distances (Å) and angles (deg) for model systems A, B and C. Au-Bi Au-C Bi-C Bi-N C-Au-C N-Bi-N C-Bi-Au Experim. X-Ray 3.728 2.028 2.056 2.249 2.243 2.553 2.477 177.2 167.7 163.5 Model A (DFT) 3.571 2.072 2.077 2.237 2.263 2.583 2.489 177.8 169.5 159.7 Model B (MP2, C s ) 3.148 2.025 2.238 2.661 180.0 140.4 130.0 Model C (MP2, C s ) 3.388 2.071 2.078 2.255 2.293 2.540 179.1 172.4 176.0
Basis Sets. The 19-valence electron (VE) quasirelativistic (QR) pseudopotential (PP) of Andrae 9 was employed for gold together with two f-type polarization functions (exponents: 0.2, 1.19). 10 The atoms Bi, F, N, and C were treated by Stuttgart pseudopotentials, 11 including only the valence electrons for each atom. For these atoms double-zeta basis sets of ref 11 were used, augmented by d-type polarization functions. 12 In the case of Bismuth we have augmented the basis sets as described in reference 13 in which several polarization functions were added. For the H atom, a double-zeta, plus a p-type polarization function was used. 14 (see Table S2) Table S2. Basis sets and Pseudopetentials used in the present work. Atom Pseudo potential Basis set Polarization function Au Andrae (ref. 9) (8s6p5d2f)/[6s5p3d2f) α f = 0.2, 1.19 Bi Dolg (ref 13) (6s6p3d3f)/[4s4p3d3f] α s = 0.040094, 0.015976 α p = 0.022662, 0.007397 α d = 0.27, 0.11, 0.04 α f = 0.50, 0.20, 0.08 C Bergner (ref 11) (4s4p1d)/[2s2p1d] α p = 0.1561 α d = 0.80 N Bergner (4s4p1d)/[2s2p1d] α p = 0.22216 α d = 0.864 F Bergner (4s4p1d)/[2s2p1d] α p = 0.0848 α d = 1.496 H - (4s1p)/[2s1p] α p = 0.8 References. [1] Carmalt, C. J.; Cowley, A. H.; Culp, R. D.; Jones, R. A.; Kamepalli, S.; Norman, N. C. Inorg. Chem. 1997, 36, 2770.
[2] Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M. Spanish Patent P200001391, 2003. [3] Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004. [4] a) Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules; Oxford University Press: New York, 1989. b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. [5] a) Møller, C.; Plesset, M.S. Phys.Rev. 1934, 46, 618. b) Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; John Wiley: New York, 1986. [6] Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. [7] Pyykkö, P. Chem. Rev. 1997, 97, 597.
[8] Herschbach, D. R.; Laurie, V. W. J. Chem. Phys. 1961, 35, 458. [9] Andrae, D.; Häusserman, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123. [10] Pyykkö, P.; Runeberg, N.; Mendizabal, F. Chem. Eur. J. 1997, 3, 1451. [11] Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431. [12] Huzinaga, S. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, 1984; p16. [13] a) Igel-Mann, G.; Dolg, M.; Stoll, H.; Preuss, H. Mol. Phys. 1988, 65, 1321. b) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Mol. Phys. 1991, 80, 1431. c) Klinkhammer, K. W.; Pyykkö, P. Inorg. Chem. 1995, 34, 4134. [14] Huzinaga S. J. Chem. Phys. 1965, 42, 1293.
OPTIMIZED GEOMETRIES IN XYZ FORMAT Fragment [Au(C 6 F 5 ) 2 ] - (D 2h symmetry) Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 79 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 2.025276 3 6 0 0.000000 1.175076 2.775257 4 6 0 0.000000-1.175076 2.775257 5 6 0 0.000000 1.200856 4.168701 6 6 0 0.000000-1.200856 4.168701 7 6 0 0.000000 0.000000 4.869340 8 6 0 0.000000 0.000000-2.025276 9 6 0 0.000000 1.175076-2.775257 10 6 0 0.000000-1.175076-2.775257 11 6 0 0.000000 1.200856-4.168701 12 6 0 0.000000-1.200856-4.168701 13 6 0 0.000000 0.000000-4.869340 14 9 0 0.000000 2.374967-2.164792 15 9 0 0.000000 2.358597-4.851408 16 9 0 0.000000 0.000000-6.209871 17 9 0 0.000000-2.358597-4.851408 18 9 0 0.000000-2.374967-2.164792 19 9 0 0.000000-2.374967 2.164792 20 9 0 0.000000-2.358597 4.851408 21 9 0 0.000000 0.000000 6.209871 22 9 0 0.000000 2.358597 4.851408 23 9 0 0.000000 2.374967 2.164792 Fragment [Bi(CH 3 ) 2 (NH 3 ) 2 ] (C 2v symmetry) Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 83 0 0.000000 0.000000 0.281780 2 6 0 0.000000 1.632980-1.249424 3 1 0 0.000000 2.623093-0.773493 4 1 0 0.889791 1.537794-1.887103 5 1 0-0.889791 1.537794-1.887103 6 6 0 0.000000-1.632980-1.249424 7 1 0 0.889791-1.537794-1.887103 8 1 0 0.000000-2.623093-0.773493 9 1 0-0.889791-1.537794-1.887103 10 7 0-2.497860 0.000000 0.044392 11 1 0-2.944293-0.813526 0.482435 12 1 0-2.944293 0.813526 0.482435 13 7 0 2.497860 0.000000 0.044392 14 1 0 2.944293 0.813526 0.482435 15 1 0 2.944293-0.813526 0.482435 16 1 0 2.833428 0.000000-0.925217 17 1 0-2.833428 0.000000-0.925217
Frangment [Bi(CH 3 ) 2 (NMe 2 H) 2 ] (C 2 symmetry) Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 83 0 0.000000 0.000000 0.125879 2 6 0-1.517322 0.607274-1.410210 3 1 0-2.439168 0.973297-0.937191 4 1 0-1.101012 1.399892-2.048282 5 1 0-1.758534-0.252361-2.051724 6 6 0 1.517322-0.607274-1.410210 7 1 0 1.758534 0.252361-2.051724 8 1 0 2.439168-0.973297-0.937191 9 1 0 1.101012-1.399892-2.048282 10 7 0-0.916421-2.287735-0.089898 11 7 0 0.916421 2.287735-0.089898 12 1 0 1.001966 2.502832-1.090648 13 1 0-1.001966-2.502832-1.090648 14 6 0 2.266714 2.374871 0.502528 15 1 0 2.204796 2.098667 1.563475 16 1 0 2.937954 1.677185-0.013204 17 1 0 2.672630 3.394225 0.425196 18 6 0 0.000000 3.282469 0.503871 19 1 0-0.967872 3.240899-0.010740 20 1 0-0.144564 3.039537 1.564914 21 1 0 0.409567 4.300348 0.426354 22 6 0-2.266714-2.374871 0.502528 23 1 0-2.204796-2.098667 1.563475 24 1 0-2.937954-1.677185-0.013204 25 1 0-2.672630-3.394225 0.425196 26 6 0 0.000000-3.282469 0.503871 27 1 0 0.967872-3.240899-0.010740 28 1 0 0.144564-3.039537 1.564914 29 1 0-0.409567-4.300348 0.426354 Model A: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 9 0-6.092403-2.833580 0.426719 2 9 0-1.909449-2.107114 2.437285 3 6 0-4.175470-2.617184-0.945279 4 9 0-4.930259-2.760559-2.042760 5 6 0-1.961916-2.250412 0.063434 6 7 0-0.264676 1.780617 2.730281 7 1 0 1.431615 1.106092 3.844165 8 1 0 0.818148-0.019842 2.620767 9 9 0-2.286839-2.364765-2.289212 10 6 0 1.028110 1.044029 2.817016 11 79 0 0.096464-2.031203-0.106801 12 1 0-2.060004 4.243131 1.437067 13 9 0 2.451376-1.697116 2.081460 14 1 0-2.137906 0.027056-2.377980 15 83 0-0.590107 1.452454 0.172928 16 6 0-1.878603 4.474209 0.384356 17 1 0-2.823040 6.411561 0.558127 18 1 0-2.708742 1.721748-2.196574
19 6 0-1.979034 1.066219-2.690992 20 6 0-2.321172 5.704582-0.108532 21 6 0 2.025538 1.569228 1.810391 22 6 0-1.229121 3.550887-0.443503 23 6 0 2.988042-1.758062 0.838344 24 6 0 2.157251-1.889147-0.270734 25 1 0 3.692205 1.496971 3.182451 26 1 0-2.125472 1.132568-3.783363 27 6 0 1.599962 1.868502 0.500479 28 6 0 3.368343 1.734053 2.164670 29 1 0 0.175102-0.458026-2.697610 30 7 0-0.598186 1.483643-2.336037 31 6 0-2.132528 6.020323-1.453005 32 9 0 5.116252-1.504962 1.873248 33 6 0 4.373424-1.656139 0.767544 34 6 0-1.060786 3.871478-1.804049 35 6 0 2.828767-1.924011-1.490016 36 1 0-2.481804 6.977268-1.849736 37 6 0 0.372105 0.577901-2.998501 38 9 0 2.130885-2.039005-2.645108 39 6 0-1.514830 5.099600-2.298921 40 6 0-0.365872 2.897970-2.729416 41 1 0 0.282893 0.659842-4.096254 42 6 0 2.541183 2.336467-0.421862 43 1 0 1.393901 0.840511-2.699496 44 6 0 4.299378 2.182281 1.227871 45 1 0-0.688141 3.047864-3.776053 46 6 0 4.992112-1.689854-0.477209 47 1 0 5.348385 2.295957 1.512910 48 1 0 2.246856 2.592875-1.441243 49 6 0 4.211270-1.826125-1.619718 50 1 0 0.720911 3.068259-2.706848 51 6 0 3.884157 2.488558-0.066761 52 9 0 6.320811-1.577326-0.575438 53 1 0 4.604329 2.850028-0.805865 54 9 0 4.799190-1.847018-2.824235 55 6 0-2.800498-2.417839-1.035281 56 6 0-2.615158-2.287332 1.291956 57 6 0-4.773813-2.652232 0.310239 58 6 0-3.984712-2.481869 1.443365 59 9 0-4.555359-2.495426 2.655887 60 6 0-0.108100 3.156787 3.239464 61 1 0-1.073383 3.677430 3.203132 62 1 0 0.240757 3.142203 4.289235 63 1 0 0.619709 3.704793 2.627858 64 6 0-1.320079 1.069829 3.483032 65 1 0-1.070168 1.018950 4.558549 66 1 0-2.274139 1.604132 3.369925 67 1 0-1.432515 0.046862 3.100158 68 1 0-1.386788 5.338992-3.359708