3. HARMONIC. (P, S, Rayleigh & LOVE) WAVES

Σχετικά έγγραφα
3. Αρμονικά Κύματα Χώρου και Επιφανείας. P, S, Rayleigh και Love


Homework 8 Model Solution Section

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

ECON 381 SC ASSIGNMENT 2

Note: Please use the actual date you accessed this material in your citation.

6.4 Superposition of Linear Plane Progressive Waves

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Approximation of distance between locations on earth given by latitude and longitude

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solutions to Exercise Sheet 5

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Strain gauge and rosettes

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

the total number of electrons passing through the lamp.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ST5224: Advanced Statistical Theory II

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Matrices and Determinants

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

The Simply Typed Lambda Calculus

( y) Partial Differential Equations

Math221: HW# 1 solutions

4.4 Superposition of Linear Plane Progressive Waves

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

EE512: Error Control Coding

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

1 String with massive end-points

Inverse trigonometric functions & General Solution of Trigonometric Equations

Srednicki Chapter 55

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Chapter 7 Transformations of Stress and Strain

Finite Field Problems: Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Other Test Constructions: Likelihood Ratio & Bayes Tests

CONSULTING Engineering Calculation Sheet

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Section 9.2 Polar Equations and Graphs

Concrete Mathematics Exercises from 30 September 2016

Example 1: THE ELECTRIC DIPOLE

Every set of first-order formulas is equivalent to an independent set

( ) Sine wave travelling to the right side

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

C.S. 430 Assignment 6, Sample Solutions

Dr. D. Dinev, Department of Structural Mechanics, UACEG

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Reminders: linear functions

ADVANCED STRUCTURAL MECHANICS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Calculating the propagation delay of coaxial cable

What happens when two or more waves overlap in a certain region of space at the same time?

Second Order RLC Filters

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

CRASH COURSE IN PRECALCULUS

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistical Inference I Locally most powerful tests

Trigonometric Formula Sheet

If we restrict the domain of y = sin x to [ π 2, π 2

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

For a wave characterized by the electric field

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

derivation of the Laplacian from rectangular to spherical coordinates

Section 7.6 Double and Half Angle Formulas

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Fractional Colorings and Zykov Products of graphs

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Oscillatory Gap Damping

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Instruction Execution Times

( ) 2 and compare to M.

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Lecture 26: Circular domains

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Transcript:

3. HARMONI (P, S, Rayleigh & LOVE) WAVES George Bockovalas Professor of N.T.U.A. October, 00 Steven Kramer: Sggested Reading: hapter (for a general pdate on seismic waves, falts and other basic concepts of Engineering Seismology) & hapter 5 (yo may skip section 5.5) Γιώγος Γκαζέτας: Κεφάλαιο 4 Any other book on wave propagation theory and/or Engineering Seismology GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.

The Seismic motion is de to. Pressre (P), Shear (S), Rayleigh (R) and other wave types propagating throgh the grond (soil & bedrock)... GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.

3. ELASTI WAVES WAVES (P P & S) in UNIFORM MEDIA P- WAVE with planar front S (SH, SV) WAVE with planar front w direction of propagation w SH SV direction of propagation v v P-waves ompression - etension S-waves Wave length shearing Wave length GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.3

t d t d + + σ σ σ σ t D D D Ό σ και ε σ μως οπου D t t σ d d + σ σ, Wave eqation... General soltion... ( ) t f ± why; ( ) ( ) ( ) f ώ f t f t ± εν t παγματι αα άα πάγματι GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.4

Physical meaning... The problem variables are NOT two independent ones ( and t ) bt a combined one: X* ±t f(-t) If X*-t then, for X* -t o o +t If X*+t Then, for X* +t o o -t f(+t) t0 t t t0 f( o ) o o +t o -t o GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.5

HWK 3.: The free end of an infinite rod is displaced according to the following relationship: U0 for t<0 Ut (cm) for 0<t<0.s U0.-t for 0.s<t<0.s U0 for 0.s<t Find the displacement variation along the rod at t0.3s. Assme that the wave propagation velocity is 300m/s. (aπό «Σημειώσεις Εδαφοδυναμικής» Γ. Γκαζέτα) GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.6

P & S wave propagation velocities in soil & rock formations S- waves: P- waves: V V s p G, D, G D ( + ν ) E( ν ) ( + ν )( ν ) E ( ν ) G ν loose-recent SOIL deposits stiff SOILS soft ROKS Rocks V S (m/s) <400 400-800 >800 V P (m/s) dry satrated <000 500 800-600 500-000 >600 >000 Vibration velocity (at a point) V f( ± t ) V * * X X & * * t X t X t V ( ε )( ) ± σ m D ά V α GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.7

Vibration velocity (at a point) V f( ± t ) ATTENTION: The velocity of VIBRATION is different * * ( to 3 orders of magnitde lower!) X X V & than the velocity of PROPAGATION * * t X t X t V ( ε )( ) ± σ m D ά V α Special ase: Harmonic waves f a ( + t ) Ae ω i ( + t ) i ( ωt + k Ae ) f b ( t ) Ae ω i ( t ) i ( ωt k Ae ) where k ω/ π/λ wave nmber alternatively: i ( ωt ± k f ) a Ae, b GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.8

Grond VIBRATION at a given POINT (i.e. ο ) t ( ) e i ± ik i t fa b Ae o ω * ω, e o Harmonic vibration with freqency ωπ/τ f a,b *( o ) Ae +iko t f a,b *( o ) Ae +iko o Grond DISPLAEMENT at a given INSTANT OF TIME (i.e. tt ο ) ik ( t ) e iωt ik fa b Ae o ± * ±, e o o t o Τπ/ω Όπως As ποηγουμένως before, bt now αλλάthe τώα role τον of όλο της συχνότητας freqency τονis παίζει played ο by κυματικός the wave αιθμός nmber k k kλπ > kπ/λ ω/ π/λ > ( o,t) o λ π/ω T () tt o λ GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.9

EXAMPLE: Two rods in contact διεχ i( ωt+ k ) Γe ποσπ i ( ωt + k ) o e, ανακλ i ( ωt k Be ), ( + ) ( + ) ( ) i ωt k i ωt k i ωt k o Γe e + Be σ Mε M σ Mε M ( + ) ( + ) ( ) i ωt k i ωt k i ωt k o MΓke M ke + MBke EXAMPLE: Two rods in contact Bondary conditions: 0 σ σ πλήης συμβατότητα σ ( o) ( o) σ MΓke iωt M o ke iωt + MBke iωt o B k k M M Γ Γ where kω/, M and kμω GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.0

Special cases: Free end: 0 B o & Γ o Fiedend: B- o & Γ0 ( ) ( ) Γ Γ o o B B o o + o o B Γ + + EXAMPLE: Two rods in contact GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.

HWK 3.: Lab grond.0 Mgr/m 3 500 m/s Α Α To isolate a precision measrement laboratory (e.g. a geotech lab.) from traffic vibrations, it is proposed to constrct the trench ΑΑ. Which of the following two materials fill materials is preferable : (α) concrete, with.5 Mgr/m 3 & 000 m/s, or (β) pmice, with 0.8 Μgr/m 3 00 m/s? GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.

3. ELASTI WAVES IN non-uniform MEDIA (with interfaces) SNELL s LAW: sinθ p sinθ sinϑ sinϑ p s s > VIBRATION AMPLITUDE of reflected & transmitted- refracted waves In the already known, simple case of -D wave propagation: incident wave medim :, medim :, transmitted wave reflected wave Vibration amplitde : + refl. inc. + ανακλ transm. inc. π inc. GEORGE BOUKOVALAS, National Technical University of Athes, + Greece, 0 3.3

VIBRATION AMPLITUDE of reflected & transmitted- refracted waves The amplitde of vibration of the reflected and refracted waves in -D problems, is compted based on stress eqilibrim and strain compatibility (continity) at the interface. In this case, the amplitde is also a fnction of the angle of wave incidence. EXAMPLE: SH waves (Richter 958) SH inc θ δ θ π θ αν > refl. inc. refr. refl. inc. + cosθδ cosθπ cosθδ cosθ + inc. cosθδ + cosθ π π GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.4

HWK 3.3: Draw the SH wave propagation path throgh the soil profile shown below, and compte the horizontal acceleration applied to each soil layer. ±0m s300m/s.6mgr/m 3 s600m/s.8mgr/m 3-0m -40m s00m/s.mgr/m 3-60m s400m/s.4mgr/m 3 ( o.6cm, T0.40s) SH 50 o GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.5

HWK 3.3: Fill the reflected and refracted waves (type and propagation direction) in the special cases shown in the figre.. GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.6

Note that in the previos special cases, there are no : SV or SH waves refracted in the water P, SV & SH waves refracted throgh the free sarface (in the air) What does this epression ( there are no ) specifically mean? That the corresponding vibration amplitde is nll, or something else? Reminder.. rod :, rod :, Α Β Γ ob oγ + + oa oa ritical refraction angle: sinθ sinθ sinθ sinθ sinθ sinθ cr sin sinθ sinθ cr η θ θ > What happens for θ > θ cr? Εφαμογή: Μέθοδος επιφανειακής διάθλασης για την γεωφυσική διασκόπηση του εδάφους GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.7

3.3 SURFAE WAVES Wave length αδιατάαχτο μέσο P-wave + SV-wave + FREE SURFAE Rayleigh wave R 0.94 S / S Grond displacements de to R-waves w w ( z,, t ) ( z,, t ) ib 0. 55e B. 66e z λ z λ R R 5. 8z λ e 0. 9e R e 5. 8z λ i ωt π λr R e i ωt π λr λ R R /f (wave length) Β constant / o w/w o & / o λ R w/w o z/λ R w(0) (0).6 w GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.8

HWK 3.4: To get a feeling of the depth (from the free grond srface) which is affected by R-waves, ) ompte the normalized depth z/λ R where grond displacements are redced to 0% of the vale at the free grond srface. ) What is the vale of the above critical depth (range of variation) in the case of soft soil, stiff soil-soft rock and rock; (Aπό «Σημειώσεις Εδαφοδυναμικής» Γ. Γκαζέτα) GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.9

LOVE WAVES (in layered soil profile) They are SH waves trapped within the pper soft layer of a non-niform soil profile. S S ( ir kz ir kz iω ( t ) Ae + Be ) e / Γe ir kz e iω ( t / ) z H ( ελεύθεη επιϕάνεια): τ 0 z 0 ( διεπιϕάνεια): τ τ, 0 A + B Γ 0 Α, Β, Γ A( G r ) B ( G r ) ( Gr) 0 + Γ gives : irkh irkh Ae Be sbstitting for ωh tan S G G S «Dispersion» relationship S GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.0

Observe that, since tan(*) mst be a real nmber, the following condition mst be satisfied for the previos eqation to have a real soltion: S < LOVE < S In other words, LOVE waves are not possible nless the srface layer is softer than the nderlying medim (i.e. S < S ). ωh tan S G G S S «Dispersion» relationship Graphic variation of the ( LOVE ω) relationship s s Grond displacement variation with depth 0 ω GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.

Special ase: Soft soil layer pon BEDROK (i.e. S ) LOVE LOVE ωh s ωh π H S bedrock LOVE S π/ ωη/ S ritical freqency ω c (π/) S /H LOVE waves cannot eist for freqencies lower than the fndamental vibration freqency of the soft soil laye, i.e. when ω < ω (π/) s /H Dispersion: ode name for LOVE (and other) waves which ehibit a freqency dependent propagation velocity (even for a niform medim). Implications: The propagation velocity LOVE decreases with increasing freqency ω (decreasing period Τ). This means that the low-freqency components of the ecitation get separated from the high-freqency components, as they propagate faster. As a reslt: The dration of shaking increases with distance from the sorce The freqency content of the motion (e.g. the elastic response spectrm) changes with distance from the sorce GEORGE BOUKOVALAS, National Technical University of Athes, Greece, 0 3.