Partial Trace and Partial Transpose

Σχετικά έγγραφα
derivation of the Laplacian from rectangular to spherical coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Math221: HW# 1 solutions

C.S. 430 Assignment 6, Sample Solutions

Approximation of distance between locations on earth given by latitude and longitude

Fractional Colorings and Zykov Products of graphs

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Srednicki Chapter 55

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homework 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

TMA4115 Matematikk 3

Second Order Partial Differential Equations

Congruence Classes of Invertible Matrices of Order 3 over F 2

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

Every set of first-order formulas is equivalent to an independent set

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ST5224: Advanced Statistical Theory II

The Simply Typed Lambda Calculus

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Numerical Analysis FMN011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Concrete Mathematics Exercises from 30 September 2016

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Assalamu `alaikum wr. wb.

1 String with massive end-points

Finite Field Problems: Solutions

Orbital angular momentum and the spherical harmonics

Other Test Constructions: Likelihood Ratio & Bayes Tests

Example Sheet 3 Solutions

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Section 8.3 Trigonometric Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Space-Time Symmetries

Strain gauge and rosettes

Capacitors - Capacitance, Charge and Potential Difference

Instruction Execution Times

Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Matrices and Determinants

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Section 7.6 Double and Half Angle Formulas

Section 9.2 Polar Equations and Graphs

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Galatia SIL Keyboard Information

Reminders: linear functions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.3 Forecasting ARMA processes

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Tridiagonal matrices. Gérard MEURANT. October, 2008

Notes on the Open Economy

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

On a four-dimensional hyperbolic manifold with finite volume

Second Order RLC Filters

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Homework 8 Model Solution Section

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Higher Derivative Gravity Theories

Differential equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

w o = R 1 p. (1) R = p =. = 1

CRASH COURSE IN PRECALCULUS

Exercises to Statistics of Material Fatigue No. 5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 133: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Inverse trigonometric functions & General Solution of Trigonometric Equations

MathCity.org Merging man and maths

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Durbin-Levinson recursive method

Finite difference method for 2-D heat equation

the total number of electrons passing through the lamp.

Case 1: Original version of a bill available in only one language.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version ΗΜΙΤΕΛΗΣ!!!!

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Variational Wavefunction for the Helium Atom

Bounding Nonsplitting Enumeration Degrees

Transcript:

Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This is a tutorial on the use of Quantum Mathematica add-on to calculate partial traces and partial transposes of operators in Dirac Notation Load the Package First load the Quantum`Notation` package. Write: Needs["Quantum`Notation`"] then press at the same time the keys -Û to evaluate. Mathematica will load the package: Needs@"Quantum`Notation`"D Quantum`Notation` Version 2.2.0. HJuly 2010L A Mathematica package for Quantum calculations in Dirac bra ket notation by José Luis Gómez Muñoz Execute SetQuantumAliases@D in order to use the keyboard to enter quantum objects in Dirac's notation SetQuantumAliases@D must be executed again in each new notebook that is created, only one time per notebook. In order to use the keyboard to enter quantum objects write: SetQuantumAliases[ ]; then press at the same time the keys -Û to evaluate. The semicolon prevents Mathematica from printing the help message. Remember that SetQuantumAliases[ ] must be evaluated again in each new notebook: SetQuantumAliases@D; Partial Traces Here we define a ket as a linear combination of eigenkets of two base operators. The base operators are named 1ˆ and 2ˆ. ψ\ = α 0 1ˆ, 0 2ˆ]+β 0 1ˆ, 1 2ˆ]+γ 1 1ˆ, 0 2ˆ]+δ 1 1ˆ, 1 2ˆ] α 0 1ˆ, 0 2ˆ]+β 0 1ˆ, 1 2ˆ]+γ 1 1ˆ, 0 2ˆ]+δ 1 1ˆ, 1 2ˆ] An operator can be obtained from the external product of the ket with its corresponding dual:

2 v7tracetranspose.nb mydensityop = Expand@ ψ\ Xψ D α α 0 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +β α 0 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + γ α 1 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +δ α 1 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + α β 0 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ +β β 0 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +γ β 1 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ + δ β 1 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +α γ 0 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +β γ 0 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ + γ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +δ γ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ +α δ 0 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ + β δ 0 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ +γ δ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ +δ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ Here is the partial trace of the operator, with respect to the base operator 1ˆ mypartialtrace1 = QuantumPartialTraceBmydensityop, 1ˆF α α 0 2ˆ] Y0 2ˆ +γ γ 0 2ˆ] Y0 2ˆ +β α 1 2ˆ] Y0 2ˆ +δ γ 1 2ˆ] Y0 2ˆ + α β 0 2ˆ] Y1 2ˆ +γ δ 0 2ˆ] Y1 2ˆ +β β 1 2ˆ] Y1 2ˆ +δ δ 1 2ˆ] Y1 2ˆ Here is the partial trace of the operator, with respect to the base operator 2ˆ mypartialtrace2 = QuantumPartialTraceBmydensityop, 2ˆF α α 0 1ˆ] Y0 1ˆ +β β 0 1ˆ] Y0 1ˆ +γ α 1 1ˆ] Y0 1ˆ +δ β 1 1ˆ] Y0 1ˆ + α γ 0 1ˆ] Y1 1ˆ +β δ 0 1ˆ] Y1 1ˆ +γ γ 1 1ˆ] Y1 1ˆ +δ δ 1 1ˆ] Y1 1ˆ Here is the trace of the operator. It is stored in the variable mytrace, in order to use it later in this document: mytrace = QuantumPartialTraceBmydensityop, :1ˆ, 2ˆ>F α α +β β +γ γ +δ δ Partial Transposes Here is the partial transpose of the operator defined above, with respect to the base operator 1ˆ. Partial Transpose is used as a witness of entanglement in Quantum Computing. mypartialtranspose1 = QuantumPartialTransposeBmydensityop, 1ˆF α α 0 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +β α 0 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + α γ 1 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +β γ 1 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + α β 0 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ +β β 0 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +α δ 1 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ + β δ 1 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +γ α 0 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +δ α 0 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ + γ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +δ γ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ +γ β 0 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ + δ β 0 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ +γ δ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ +δ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ

v7tracetranspose.nb 3 Here is the partial transpose of the operator, with respect to the base operator 2ˆ. Partial Transpose is used as a witness of entanglement in Quantum Computing. mypartialtranspose2 = QuantumPartialTransposeBmydensityop, 2ˆF γ α 1 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +γ β 1 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + β α 0 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ +β β 0 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +δ α 1 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ + δ β 1 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +α γ 0 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +α δ 0 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ + γ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +γ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ +β γ 0 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ + β δ 0 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ +δ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ +δ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ Here is the transpose of the operator. Notice that it is stored in the variable "mytranspose", so that we can use it later in this document: mytranspose = QuantumPartialTransposeBmydensityop, :1ˆ, 2ˆ>F α γ 1 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +α δ 1 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + β α 0 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ +β β 0 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +β γ 1 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ + β δ 1 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +γ α 0 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +γ β 0 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ + γ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +γ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ +δ α 0 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ + δ β 0 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ +δ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ +δ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ Verifying traces and transposes with Matrix Notation We can transform the operator, which was defined above, from Dirac Notation to standard Mathematica Matrix Notation (list of lists). Therefore, we can take advantage of the built-in Mathematica commands for matrices: mymatrix = DiracToMatrixAmydensityop, 990 1ˆ, 1 1ˆ=, 90 2ˆ, 1 2ˆ==E 88α α, α β, α γ, α δ <, 8β α, β β, β γ, β δ <, 8γ α, γ β, γ γ, γ δ <, 8δ α, δ β, δ γ, δ δ << Here we can visualizar the Matrix in a textbook-like format: MatrixForm@mymatrixD α α α β α γ α δ β α β β β γ β δ γ α γ β γ γ γ δ δ α δ β δ γ δ δ This is the trace of the matrix. We store the result in the variable matrixtrace

4 v7tracetranspose.nb matrixtrace = Tr@mymatrixD α α +β β +γ γ +δ δ The trace "matrixtrace" was obtained by transforming the original Dirac expression to a Matrix, then calculating the trace of the matrix. On the other hand, the trace "mytrace" was obtained by direct application of the command QuantumPartialTrace to the original Dirac expression. As expected, both "matrixtrace" and "mytrace" are the same (notice the use of two equal symbols == in order to make the comparison): matrixtrace mytrace True This is the transpose of the matrix: matrixtranspose = Transpose@mymatrixD 88α α, β α, γ α, δ α <, 8α β, β β, γ β, δ β <, 8α γ, β γ, γ γ, δ γ <, 8α δ, β δ, γ δ, δ δ << The transpose is transformed to Dirac notation secondtranspose = MatrixToDirac@matrixtranspose, 82, 2<D α γ 1 1ˆ, 0 2ˆ] Y0 1ˆ, 0 2ˆ +α δ 1 1ˆ, 1 2ˆ] Y0 1ˆ, 0 2ˆ + β α 0 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ +β β 0 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +β γ 1 1ˆ, 0 2ˆ] Y0 1ˆ, 1 2ˆ + β δ 1 1ˆ, 1 2ˆ] Y0 1ˆ, 1 2ˆ +γ α 0 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +γ β 0 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ + γ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 0 2ˆ +γ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 0 2ˆ +δ α 0 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ + δ β 0 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ +δ γ 1 1ˆ, 0 2ˆ] Y1 1ˆ, 1 2ˆ +δ δ 1 1ˆ, 1 2ˆ] Y1 1ˆ, 1 2ˆ The operator "secondtranspose" was obtained by transforming the original Dirac expression to a Matrix, then calculating the transpose of the matrix, and finally transforming back to Dirac notation. On the other hand, the operartor "mytranspose" was obtained by direct application of the command QuantumPartialTranspose to the original Dirac expression. As expected, both "secondtranspose" and "mytranspose" are the same (notice the use of two equal symbols == in order to make the comparison): secondtranspose mytranspose True

by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx v7tracetranspose.nb 5