using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Σχετικά έγγραφα
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information. Experimental section

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting information

Supporting Information. Experimental section

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting information

Supporting Information

Supporting Information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supplementary Information

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

The Free Internet Journal for Organic Chemistry

Supporting Information for

Divergent synthesis of various iminocyclitols from D-ribose

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Electronic Supplementary information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

SUPPORTING INFORMATION

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information for

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supplementary Material

Electronic Supplementary Information (ESI)

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

SUPPLEMENTARY MATERIAL

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supplementary material

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supplementary information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

gem-dichloroalkenes for the Construction of 3-Arylchromones

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Supporting Information

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Electronic Supplementary Information. Content

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information for. Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting information

Supporting Information

Synthesis of unsymmetrical imidazolium salts by direct quaternization of N-substituted imidazoles using arylboronic acids

Supporting Information

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Materials and Methods S2. 1. General procedure for the preparation of 2-methylaminobenzonitriles S3

Supporting Information for

Supporting Information

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Synthesis of imidazo[1,5-a]pyridines via oxidative amination of C(sp 3 )-H bond under air using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. guyen, Oanh T. K. guyen, Thanh Truong *, am T. S. Phan * Department of Chemical Engineering, HCMC University of Technology, VU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Viet am * Email: tvthanh@hcmut.edu.vn, ptsnam@hcmut.edu.vn Ph: (+84 8) 38647256 ext. 5681 Fx: (+84 8) 38637504 Supporting Information 1000 800 Relative intensity 600 400 200 0 5 10 15 20 25 30 2-Theta scale Fig. S1. X-ray powder diffractograms of the Cu-MOF-74. 1

Fig. S2. SEM micrograph of the Cu-MOF-74. 2

Fig. S3. TEM micrograph of the Cu-MOF-74. 3

0.1 0.08 dv/dw(cm3/g. Å) 0.06 0.04 0.02 0 8 18 28 38 48 Pore width(å) Fig. S4. Pore size distribution of the Cu-MOF-74. 4

250 Quantity absorbed(cm3/g STP) 200 150 100 50 0 0 0.2 0.4 0.6 0.8 1 Relative presure(p/po) Fig. S5. itrogen adsorption/desorption isotherm of the Cu-MOF-74. Adsorption data are shown as closed circles and desorption data as open circles. 5

Weight (%) 100 0.45 Weight loss (%) 0.4 80 DTG 0.35 0.3 60 0.25 0.2 0.15 40 0.1 0.05 20 0-0.05 0-0.1 0 50 100 150 200 250 300 350 400 450 500 550 600 Temperature ( C) DTG( D%Weigt loss/ o C) Fig. S6. TGA analysis of the Cu-MOF-74. 6

a) Transmittance (%) b) 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) Fig. S7. FT-IR spectra of terephthalic acid (a), and the Cu-MOF-74 (b). a) b) Fig. S8. Particles size distribution of non-grinded (a) and grinded (b) Cu MOF-74 7

Fig. S9. 1 H-MR spectra of 1,3-diphenylimidazo[1,5-a]pyridine. 8

Fig. S10. 13 C-MR spectra of 1,3-diphenylimidazo[1,5-a]pyridine. Characterization data for 1,3-diphenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:8): yellow solid, 70% yield. This compound is known [1]. 1 H-MR (500 MHz, CDCl 3 ) δ 8.22 (d, J=7.5 Hz, 1H), 7.95 (s, 1H), 7.93 (s, 1H), 7.84-7.82 (m, 3H), 7.54-7.42 (m, 5H), 7.31-7.26 (m, 1H), 6.79-6.75 (m, 1H), 6.55 (t, J=6.8 Hz, 1H); 13 C-MR (125 MHz, CDCl 3 ) δ 138.07, 134.96, 131.96, 130.16, 130.0, 128.96, 128.76, 128.66, 128.27, 127.64, 126.75, 126.47, 121.72, 119.10, 113.17. 9

Cl Fig. S11. 1 H-MR spectra of 3-(2-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine. 10

Cl Fig. S12. 13 C-MR spectra of 3-(2-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(2-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:4): yellow oil, 53% yield. 1H-MR (500 MHz, CDCl3) δ 7.95 (d, J= 7.5 Hz, 2H), 7.89 (d, J= 9 Hz, 1H), 7.68 (m, 1H), 7.6 (d, J= 7.5, 1H), 7.56 (m, 1H), 7.48-7.42 (m, 4H), 7.31-7.26 (m, 1H), 6.87-6.84 (m, 1H), 6.61 (t, J= 6.8Hz, 1H); 13C-MR (125 MHz, CDCl3) δ 135.72, 134.93, 134.42, 133.42, 131.8, 130.86, 129.97, 129.37, 128.72, 127.27, 126.76, 126.53, 122.63, 119.92, 118.91, 112.85. 11

Cl Fig. S13. 1 H-MR spectra of 3-(3-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine. 12

Cl Fig. S14. 13 C-MR spectra of 3-(3-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(3-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:2): yellow oil, 54% yield. This compound is known [1]. 1 H-MR (500 MHz, CDCl 3 ) δ 8.21 (d, J= 7.5 Hz, 1H), 7.92 (s, 1H), 7.9 (s, 1H), 7.85-7.82 (m, 2H), 7.72-7.7 (m, 1H), 7.48-7.39 (m, 4H), 7.32-7.25 (m, 1H), 6.81-6.78 (m, 1H), 6.61 (m, 1H); 13 C-MR (125 MHz, CDCl 3 ) δ 136.6, 135.05, 134.70, 132.45, 131.89, 130.27, 128.81, 128.79, 128.28, 128.03, 126.86, 126.77, 126.13, 121.57, 120.03, 119.27, 113.75. 13

Cl Fig. S15. 1 H-MR spectra of 3-(4-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine. 14

Cl Fig. S16. 13 C-MR spectra of 3-(4-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(4-chlorophenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:8): yellow solid, 53% yield. This compound is known [2] 1 H-MR (500 MHz, CDCl 3 ) δ 8.20 (d, J= 7 Hz, 1H), 7.93 (s, 1H), 7.92 (s, 1H), 7.86 (d, J= 9.5 Hz, 1H), 7.81 7.79 (m, 2H), 7.53-7.45 (m, 4H), 7.33-7.26 (m, 1H), 6.84-6.81 (m, 1H), 6.62 (t, J= 6.5 Hz, 1H); 13 C-MR (125 MHz, CDCl 3 ) δ 136.86, 134.77, 129.54, 129.32, 128.79, 127.87, 126.88, 126.79, 121.55, 119.94, 119.33, 113.72. 15

OCH 3 Fig. S17. 1 H-MR spectra of 3-(2-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine. 16

OCH 3 Fig. S18. 13 C-MR spectra of 3-(2-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(2-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:14): yellow oil, 61% yield. This compound is known [3]. 1 H-MR (500 MHz, CDCl 3 ) δ 7.96 (s, 1H), 7.94 (s, 1H), 7.80 (d, J= 9.5 Hz, 1H), 7.67 7.65 (m, 1H), 7.53 (d, J= 8 Hz, 1H), 7.44-7.40 (m, 3H), 7.26 7.22 (m, 1H), 7.10-7.07 (m, 1H), 6.99 (d, J= 8.5 Hz, 1H), 6.75 6.72 (m, 1H), 6.48 6.45 (m, J= 7 Hz, 1H), 3.74 (s, 3H); 13 C-MR (125 MHz, CDCl 3 ) δ 157.46, 136.26, 135.35, 132.84, 131.49, 130.91, 128.68, 127.49, 126.77, 126.28, 123.58, 121.27, 119.61, 119.19, 118.59, 112.06, 111.25, 55.57. 17

OCH 3 Fig. S19. 1 H-MR spectra of 3-(3-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine. 18

OCH 3 Fig. S20. 13 C-MR spectra of 3-(3-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(3-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:2): yellow oil, 70% yield. This compound is known [3]. 1 H-MR (500 MHz, CDCl 3 ) δ 8.26 (d, J= 7 Hz, 1H), 7.94 (s, 1H), 7.93 (s, 1H), 7.84 (d, J= 9.5 Hz, 1H), 7.48-7.38 (m, 5H), 7.31-7.26 (m, 1H), 7.01-6.98 (m, 1H), 6.81-6.78 (m, 1H), 6.60-6.57 (m, J= 7.3 Hz, 1H), 3.89 (s, 3H); 13 C-MR (125 MHz, CDCl 3 ) δ 160.14, 137.98, 134.92, 131.98, 131.37, 130.01, 128.73, 127.75, 126.85, 126.58, 121.95, 120.41, 119.75, 119.16, 114.94, 113.79, 113.26, 55.48. 19

OCH 3 Fig. S21. 1 H-MR spectra of 3-(4-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine. 20

OCH 3 Fig. S22. 13 C-MR spectra of 3-(4-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(4-methoxyphenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:1): yellow solid, 73% yield. This compound is known [4]. 1 H-MR (500 MHz, CDCl 3 ) δ 8.16 (d, J= 7.5 Hz, 1H), 7.94 7.92 (m, 2H), 7.82 (d, J= 9.5 Hz, 1H), 7.77-7.74 (m, 2H), 7.48-7.44 (m, 2H), 7.31-7.26 (m, 1H), 7.07 7.05 (m, 2H), 6.78-6.75 (m, 1H), 6.56-6.53 (m, 1H), 3.88 (s, 3H); 13 C-MR (125 MHz, CDCl 3 ) δ 160.09, 138.13, 135.01, 131.63, 129.83, 128.70, 127.35, 126.80, 126.46, 122.60, 121.76, 119.44, 119.15, 114.48, 113.05, 55.42. 21

H 2 Fig. S23. 1 H-MR spectra of 3-(4-aminophenyl)-1-phenylimidazo[1,5-a]pyridine. 22

H 2 Fig. S24. 13 C-MR spectra of 3-(4-aminophenyl)-1-phenylimidazo[1,5-a]pyridine. 23

Fig. S25. HRMS (EIS+) of 3-(4-aminophenyl)-1-phenylimidazo[1,5-a]pyridine. Characterization Data for 3-(4-aminophenyl)-1-phenylimidazo[1,5-a]pyridine Prepared as shown in the general experimental procedure and purified on silica gel (ethyl acetate/hexane = 1:1): light orange solid, 67% yield. 1 H-MR (500 MHz, CDCl 3 ) δ 8.13 (d, J = 7 Hz, 1H), 7.92 (d, J = 7 Hz, 2H), 7.79 (d, J = 9.5 Hz, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 8.5 Hz, 2H), 6.72 (dd, J = 9, 6.5 Hz, 1H), 6.50 (t, J = 6.8 Hz, 1H), 3.88 (s, 2H). 13 C-MR (125 MHz, CDCl 3 ) δ 147.18, 138.76, 135.18, 131.37, 129.69, 128.69, 127.19, 126.77, 126.35, 121.94, 120.09, 119.26, 119.07, 115.22, 112.79. HRMS (EIS+): Calculated for C 19 H 15 3 [M+H] + 286.1344, Found 286.1336. 24

Table S1. Optimization of reaction conditions. Entry Temperature Catalyst Reactant molar Solvent Yield (%) ( o C) concentration ratio (mol%) 1 RT 10 1:3 DMF 0 2 100 10 1:3 DMF 24 3 110 10 1:3 DMF 49 4 120 10 1:3 DMF 71 5 130 10 1:3 DMF 63 6 120 0 1:3 DMF 14 7 120 2.5 1:3 DMF 39 8 120 5 1:3 DMF 40 9 120 7.5 1:3 DMF 56 10 120 10 1:3 DMF 71 11 120 12.5 1:3 DMF 72 12 120 15 1:3 DMF 71 13 120 10 1:1 DMF 21 14 120 10 1:2 DMF 51 15 120 10 1:3 DMF 71 16 120 10 1:4 DMF 50 17 120 10 1:3 MA 68 18 120 10 1:3 MP 63 19 120 10 1:3 toluene 58 25

20 120 10 1:3 chlorobenzene 45 21 120 10 1:3 DMF 71 22 120 10 1:3 DMSO 60 23 120 10 1:3 n-butanol 61 24 120 10 1:3 p-xylene 37 25 120 10 1:3 benzonitrile 69 26 120 10 1:3 tert-butanol 44 Table S2. Different catalysts for the condensation-cyclization reaction a. Entry Homogeneous catalyst Heterogeneous catalyst Yield (%) 1 Cu(O 3 ) 2 40 2 CuCl 2 27 3 CuSO 4 16 4 Cu(OAc) 2 78 5 Cu(acac) 2 48 6 CuBr 2 30 7 CuBr 29 8 CuI 28 9 CuCl 36 10 Co(OAc) 2 22 11 Zn(OAc) 2 15 12 Mn(OAc) 2 13 26

13 i(oac) 2 19 14 AgOAc 9 15 2,5-dihydroxyterephthalic acid 17 16 Cu(BDC) 37 17 Cu 2 (BDC) 2 (DABCO) 33 18 Cu 3 (BTC) 2 22 19 Cu 2 (BPDC) 2 (BPY) 33 20 Cu(OBA) 48 21 Cu 2 (OBA) 2 (BPY) 46 22 Cu(IA) 2 56 23 Cu-MOF-74 71 a : The reaction was then carried out in DMF under air at 120 o C for 8 h, using 3 equivalents of benzylamine, in the presence of 10 mol% catalyst, at 2-benzoyl pyridine concentration of 0.2 M. References 1. M. Li, Y. Xie, Y. Ye, Y. Zou, H. Jiang, W. Zeng, Org. Lett. 16 (2014) 6232-6235. 2. H. Wang, W. Xu, Z. Wang, L. Yu, K. Xu, J. Org. Chem. 80 (2015) 2431-2435 3. A. Joshi, D. C. Mohan, S. Adimurthy, Org. Lett., 18 (2016), 464 467. 4. J.M. Crawforth, M. Paoletti, Tetrahedron Lett. 50 (2009) 4916-4918. 27