Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

Σχετικά έγγραφα
Electronic Supplementary Information (ESI)

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

IV. ANHANG 179. Anhang 178

Supporting Information

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supplementary Material

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supporting Information

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supplementary Material

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Electronic Supplementary Information (ESI)

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting information for

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Table of Contents 1 Supplementary Data MCD

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting Information

Supporting Information

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Supporting Information for

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supplementary information

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

Enhancing the Photochemical Stability of N,C-Chelate Polyboryl Compounds: C- C Bond Formation versus C=C Bond cis, trans-isomerization

Supporting Information

SUPPLEMENTARY MATERIAL

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Experimental. Crystal data

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information

metal-organic compounds

Supporting Information

Supporting Information

Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of. Arenediazonium Salts to gem-difluoromethylene Azo Compounds

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

The Free Internet Journal for Organic Chemistry

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting Information. for

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Chiral α-aminoxy Acid / Achiral Cyclopropane α-aminoxy Acid Unit as a Building Block for Constructing α N O Helix

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

Supporting Information

Supporting Information

Supporting information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Electronic Supplementary Information:

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 06 Synthesis and effects of oxadiazole derivatives on tyrosinase activity and human SK-MEL-8 malignant melanoma cells Mohd Fadhlizil Fasihi Mohd Aluwi a, Kamal Rullah a, b, Tan Huan Huan c, Chan Kok Meng c, Tan Si Jie a, Leong Sze Wei d, Ahmad Hasnan Mansor a, Bohari M Yamin e and Lam Kok Wai a, a Drugs and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 5000 Kuala Lumpur, Malaysia b Sekolah Tinggi Ilmu Farmasi Riau, Universitas Riau, Kampus Bina Widya Km.5, Simpang baru-pekanbaru, Indonesia c Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 5000 Kuala Lumpur. d Institute of Bioscience, Universiti Putra Malaysia, 00, Serdang, Selangor, Malaysia e School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 600 Bangi, Selangor, Malaysia Supplementary Data Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-8 malignant melanoma cells Corresponding author. Tel.: +60-98970; e-mail: david_lam@ukm.edu.my

. Chemistry.. General information All reagents were purchased from Aldrich and Merck and were used without further purification. All the solvents used in the syntheses were analysis and synthesis grade. The solvents used in spectroscopic measurements were spectroscopic grade. H and C MR spectra were recorded on a Bruker 500 MHz spectrometer. ESI-HRMS spectra were recorded on a Bruker microtof Mass Spectrometer. Single-crystal X-ray experiment was performed on a Bruker D-QUEST diffractometer (Bruker, AXS Inc., Madison, WI, USA). Melting points were determined on a STUART SMP0 melting point apparatus... H and C MR MR spectra of compound Compound. 5-(naphthalen--ylmethyl)-,,-oxadiazole--thiol. Brown solid. M.p 7-7 C. H MR (500 MHz, DMSO) δ 7.7 (d, J = 8. Hz, H), 7.6 (d, J = 8.7 Hz, H), 7.56 (d, J = 7.9 Hz, H), 7.6 7. (m, H),.5 (s, H). C MR (6 MHz, DMSO) δ 77.87, 6.06,.5,.9, 9.56, 8.75, 8.6, 8.6, 6.75, 6.9, 5.77,.7, 8.86. ESI-HRMS: (C H 0 OS) calc. [M+H].00, found.09..00 0.99.0.9.05 7.7 7.70 7.6 7.60 7.57 7.55 7. 7. 7.9 7.7 7.6 7. 7..5 O 6 5 SH 7 6 0 5 9 7 8 D (m) 7.8 B (d) 7.6 7.7 7.70 7.6 7.60 7.57 7.55 7. 7. 7.9 7.7 7.6 7. 7. A (d) 7.7 E (s).5 C (d) 7.56 C (d) 7.56 A (d) 7.7 B (d) 7.6 D (m) 7.8.00 0.99.0.9 7.8 7.7 7.6 7.5 7. 7. 7. 7. 8 7 6 5 0 9 8 7 6 5 0 -

-0 0 0 0 0 0 50 60 70 80 90 00 0 0 0 0 50 60 70 80 90 00 0 0 8.86.7 5.77 6.9 6.75 8.6 8.6 8.75 9.56.9.5 6.06 77.87 5 6 7 8 9 0.7 5.77 6.9 6.75 8.6 8.6 8.75 9.56.9.5 5 6 7 8 9 0 5 O 6 SH 7

MR spectra of compound Compound. 5-(naphthalen--ylmethyl)-,,-oxadiazole--thiol. Pale yellow solid. M.p 8-9 C. H MR (500 MHz, DMSO) δ 7.6, 7.60, 7.59, 7.59, 7.57, 7.55, 7., 7., 7., 7.0, 7.9, 7.5, 7.,.99. C MR (6 MHz, DMSO) δ 78.05, 6.,.09,.7,.8, 8.5, 7.85, 7.7, 7.69, 7.0, 6.6, 6.,.7. ESI-HRMS: (C H 0 OS) calc. [M+H].00, found.0..07.00.00.0.8 7.6 7.60 7.59 7.59 7.57 7.55 7. 7. 7. 7.0 7.9 7.5 7..99 6 5 0 9 8 7 O 6 5 SH 7 7.6 7.60 7.59 7.59 7.57 7.55 7. 7. 7. 7.0 7.9 7.5 7. B (s) 7.55 D (d) 7. A (m) 7.59 E (s).99 A (m) 7.59 B (s) 7.55 C (p) 7. D (d) 7. C (p) 7..07.00.00.0 7.7 7.6 7.5 7. 7. 7. 7. 8 7 6 5 0 9 8 7 6 5 0 -

-0 0 0 0 0 0 50 60 70 80 90 00 0 0 0 0 50 60 70 80 90 00 0 0.7 6. 6.6 7.0 7.69 7.7 7.85 8.5.8.7.09 6. 78.05 6 7 8 9 0 6. 6.6 7.0 7.69 7.7 7.85 8.5.8.7.09 5 6 7 8 9 0 5 O 6 SH 7

MR spectra of compound Compound. 5-(naphthalen--ylmethyl)--(piperidin--ylmethyl)-,,-oxadiazole-(H)-thione. colorless rod crystals. M.p 98-99 C. H MR (500 MHz, dmso) δ 7.85 (dd, J =., 0.9 Hz, H), 7.80 (s, H), 7.5 7. (m, H), 7.0 (d, J = 8.9 Hz, H),.8 (s, H),.5 (s, H),.57 (s, H),.58.8 (m, H). C MR (6 MHz, DMSO) δ 78.8, 6.9,.6,.5, 8.77, 8.00, 7.9, 7.0, 6.90, 6.55, 7.00, 5.,.6, 5.77,.68. ESI-HRMS: (C 9 H OS) calc. [M+H] 0.650, found 0.6..96 0.86.00.60.95.80 6.7 7.88 7.85 7.85 7.8 7.80 7.9 7.7 7.7 7.6 7.6 7. 7. 7.9.8.5.57.9.8..5.6 0.97 6 5 0 7 9 8 O 6 S 5 7 8 9 0 7.88 7.85 7.85 7.8 7.80 7.9 7.7 7.7 7.6 7.6 7. 7. 7.9 D (d) 7.0 B (s) 7.80 F (s).5 B (s) 7.80 A (dd) 7.85 E (s).8 G (s).57 H (m).0 A (dd) 7.85 C (m) 7.7 D (d) 7.0 C (m) 7.7.96 0.86.00 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.5 7.0 7.5 8 7 6 5 0 9 8 7 6 5 0 -

-0 0 0 0 0 0 50 60 70 80 90 00 0 0 0 0 50 60 70 80 90 00 0 0.68 5.77.6 5. 7.00 6.55 6.90 7.0 7.9 8.00 8.77.5.6 6.9 78.8 5 6 7 8 9 0 5 O 6 S 7 8 9 0 7 8 9 0 6.55 6.90 7.0 7.9 8.00 8.77.5.6

. X-ray Structural Characterization of Compound Table. Crystal data and structure refinement for compound. Identification code boly_0m Empirical formula C9 H O S Formula weight 9.5 Temperature 0() K Wavelength 0.707 Å Crystal system Triclinic Space group P - Unit cell dimensions a = 7.09() Å α = 85.7 (). b = 8.095(5) Å β = 89.568 (). c = 5.6(8) Å γ = 80.6 (). Volume 866.6(9) Å Z Density (calculated).0 Mg/m Absorption coefficient 0.97 mm - F(000) 60 Crystal size 0.0 x 0.0 x 0.0 mm Theta range for data collection. to 8.7. Index ranges -9<=h<=9, -0<=k<=0, -0<=l<=0 Reflections collected 59 Independent reflections [R(int) = 0.0609] Completeness to theta = 5. 99.8 % Refinement method Full-matrix least-squares on F Data / restraints / parameters / 0 / 7 Goodness-of-fit on F.09 Final R indices [I>sigma(I)] R = 0.0575, wr = 0.09 R indices (all data) R = 0.090, wr = 0.0 Extinction coefficient n/a Largest diff. peak and hole 0.97 and -0.86 e.å -

Table. Atomic coordinates (x 0 ) and equivalent isotropic displacement parameters (Å x 0 ) for compound. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) S() 79() 90() 0() 8() O() 5() 68() -66() 7() () 67() 68() 699() 5() () 7() 8056() 8() 8() () 77() 67() 89() 7() C() 78() 987() -69() 8() C() 6() 9795() -6() 50() C() 5866() 9() -08() () C() 76() 8996() -776() 60() C(5) 695() 88() -59() 70() C(6) 58() 77() -657() 7() C(7) 85() 789() -08() 6() C(8) 0() 859() -9() () C(9) 77() 860() -58() () C(0) 08() 988() -80() 0() C() 565() 98() -0() 9() C() 0() 7987() -() 6() C() 55() 59() 7() () C() 8() 590() 59() 0() C(5) 0() 57() 098() 5() C(6) -0() 586() 708() 55() C(7) -70() 566() 67() 65() C(8) 97() 665() 77() 7() C(9) 50() 68() 07() 5()

Table. Bond lengths [Å] and angles [ ] for compound. S()-C().69(8) O()-C().6() O()-C().68() ()-C().7() ()-().89() ()-C().5() ()-C().7() ()-C().() ()-C(9).6() ()-C(5).6() C()-C().5() C()-C(0).07() C()-H() 0.900 C()-C().07() C()-H() 0.900 C()-C(8).0() C()-C().9() C()-C(5).58() C()-H() 0.900 C(5)-C(6).9() C(5)-H(5) 0.900 C(6)-C(7).5() C(6)-H(6) 0.900 C(7)-C(8).() C(7)-H(7) 0.900 C(8)-C(9).() C(9)-C(0).6() C(9)-H(9) 0.900 C(0)-C().5() C()-C().8() C()-H(A) 0.9700 C()-H(B) 0.9700 C()-H(A) 0.9700 C()-H(B) 0.9700 C(5)-C(6).506() C(5)-H(5A) 0.9700 C(5)-H(5B) 0.9700 C(6)-C(7).56() C(6)-H(6A) 0.9700 C(6)-H(6B) 0.9700 C(7)-C(8).5() C(7)-H(7A) 0.9700 C(7)-H(7B) 0.9700 C(8)-C(9).50() C(8)-H(8A) 0.9700 C(8)-H(8B) 0.9700 C(9)-H(9A) 0.9700 C(9)-H(9B) 0.9700 C()-O()-C() 06.5() C()-()-().95() C()-()-C() 7.7(5) ()-()-C() 0.0() C()-()-() 0.5() C()-()-C(9) 09.0() C()-()-C(5).()

C(9)-()-C(5) 0.66() C()-C()-C(0).0(8) C()-C()-H() 9.5 C(0)-C()-H() 9.5 C()-C()-C().0(9) C()-C()-H() 9.5 C()-C()-H() 9.5 C()-C()-C(8) 8.97(8) C()-C()-C().85(9) C(8)-C()-C() 8.8(9) C(5)-C()-C().0() C(5)-C()-H() 9.5 C()-C()-H() 9.5 C()-C(5)-C(6) 0.() C()-C(5)-H(5) 9.9 C(6)-C(5)-H(5) 9.9 C(7)-C(6)-C(5) 0.7() C(7)-C(6)-H(6) 9.7 C(5)-C(6)-H(6) 9.7 C(6)-C(7)-C(8) 0.6() C(6)-C(7)-H(7) 9.7 C(8)-C(7)-H(7) 9.7 C()-C(8)-C(7) 9.(9) C()-C(8)-C(9) 8.5(7) C(7)-C(8)-C(9).(9) C(0)-C(9)-C(8).9(8) C(0)-C(9)-H(9) 9. C(8)-C(9)-H(9) 9. C(9)-C(0)-C() 9.5(8) C(9)-C(0)-C().7(8) C()-C(0)-C() 9.7(7) C()-C()-C(0).9(5) C()-C()-H(A) 09. C(0)-C()-H(A) 09. C()-C()-H(B) 09. C(0)-C()-H(B) 09. H(A)-C()-H(B) 07.9 ()-C()-O().7(5) ()-C()-C() 8.97(7) O()-C()-C() 7.76(5) ()-C()-O() 0.9() ()-C()-S().5() O()-C()-S().9() ()-C()-().7() ()-C()-H(A) 09. ()-C()-H(A) 09. ()-C()-H(B) 09. ()-C()-H(B) 09. H(A)-C()-H(B) 08.0 ()-C(5)-C(6).6(6) ()-C(5)-H(5A) 09. C(6)-C(5)-H(5A) 09. ()-C(5)-H(5B) 09. C(6)-C(5)-H(5B) 09. H(5A)-C(5)-H(5B) 08.0 C(5)-C(6)-C(7) 0.(8) C(5)-C(6)-H(6A) 09.6

C(7)-C(6)-H(6A) 09.6 C(5)-C(6)-H(6B) 09.6 C(7)-C(6)-H(6B) 09.6 H(6A)-C(6)-H(6B) 08. C(8)-C(7)-C(6) 09.60(8) C(8)-C(7)-H(7A) 09.7 C(6)-C(7)-H(7A) 09.7 C(8)-C(7)-H(7B) 09.7 C(6)-C(7)-H(7B) 09.7 H(7A)-C(7)-H(7B) 08. C(9)-C(8)-C(7).00(8) C(9)-C(8)-H(8A) 09. C(7)-C(8)-H(8A) 09. C(9)-C(8)-H(8B) 09. C(7)-C(8)-H(8B) 09. H(8A)-C(8)-H(8B) 08.0 ()-C(9)-C(8) 0.7(8) ()-C(9)-H(9A) 09.5 C(8)-C(9)-H(9A) 09.5 ()-C(9)-H(9B) 09.5 C(8)-C(9)-H(9B) 09.5 H(9A)-C(9)-H(9B) 08. Symmetry transformations used to generate equivalent atoms:

Table. Anisotropic displacement parameters (Å x 0 ) for compound. The anisotropic displacement factor exponent takes the form: -π [ h a* U +... + h k a* b* U ] U U U U U U S() () 0() 6() -0() 6() -7() O() 5() () () -0() () -7() () () () () -7() () -7() () 6() 0() 9() -8() () -() () 6() 6() () -5() 0() -() C() 56() () 6() -() -9() -8() C() 7() 6() 60() -() -9() -() C() 8() 6() 7() () -() -6() C() 56() 5() 67() 6() 8() -9() C(5) 8() 68() 5() -() () -5() C(6) 9() 77() () -() 6() -() C(7) 7() 65() 7() -9() -() -9() C(8) 5() 8() () 0() -() -8() C(9) 5() () 5() -() -5() -0() C(0) 5() () 0() () -() 0() C() 9() 5() 7() -() 0() 8() C() 0() 9() 0() -9() 5() -() C() () () 7() -9() 6() -6() C() () 5() 6() -() -() -8() C(5) 0() 57() () -8() 0() -7() C(6) () 57() 68() -() () -() C(7) 7() 7() 5() -() 6() -7() C(8) 96() 95() () -5() 9() -6() C(9) 58() 66() 5() -() -() -7()

Table 5. Hydrogen coordinates ( x 0 ) and isotropic displacement parameters (Å x 0 ) for compound. x y z U(eq) H() 500 06-7 57 H() 778 000-60 H() 8 989-698 7 H(5) 7876 850-960 8 H(6) 506 757-57 85 H(7) 7 79-7 H(9) 57 85-665 5 H(A) 99 0-8 58 H(B) 09 95-6 58 H(A) 70 78 66 8 H(B) 5 68 7 8 H(5A) 7 9 8 5 H(5B) -68 55 506 5 H(6A) -0 560 66 66 H(6B) -07 70 565 66 H(7A) -7 6068 0 77 H(7B) -50 86 80 77 H(8A) 78 66 88 H(8B) 5 657 0 88 H(9A) 50 686 6 H(9B) 067 980 0 6

Table 6. Torsion angles [ ] for compound. C()-()-()-C() 0.7(8) C()-()-()-C() 7.6() C(0)-C()-C()-C() -0.7() C()-C()-C()-C(8) 0.6() C()-C()-C()-C() -79.(9) C()-C()-C()-C(5) 79.6() C(8)-C()-C()-C(5) -0.5() C()-C()-C(5)-C(6) 0.() C()-C(5)-C(6)-C(7) 0.() C(5)-C(6)-C(7)-C(8) -0.() C()-C()-C(8)-C(7) -79.(9) C()-C()-C(8)-C(7) 0.7() C()-C()-C(8)-C(9) -0.() C()-C()-C(8)-C(9) 79.88(7) C(6)-C(7)-C(8)-C() -0.() C(6)-C(7)-C(8)-C(9) -79.5() C()-C(8)-C(9)-C(0) -0.() C(7)-C(8)-C(9)-C(0) 79.05(9) C(8)-C(9)-C(0)-C() 0.() C(8)-C(9)-C(0)-C() -78.9(6) C()-C()-C(0)-C(9) 0.() C()-C()-C(0)-C() 79.9(7) C(9)-C(0)-C()-C() 98.9() C()-C(0)-C()-C() -80.0() ()-()-C()-O() -0.69(8) ()-()-C()-C() 78.9(7) C()-O()-C()-() 0.95(8) C()-O()-C()-C() -78.70(5) C(0)-C()-C()-() 0.() C(0)-C()-C()-O() -60.() ()-()-C()-O() 0.9(7) C()-()-C()-O() -7.5() ()-()-C()-S() -79.() C()-()-C()-S() 7.8() C()-O()-C()-() -0.76(6) C()-O()-C()-S() 79.00() C(9)-()-C()-() -70.5(5) C(5)-()-C()-() 67.() C()-()-C()-() -5.(8) ()-()-C()-() 7.9(9) C()-()-C(5)-C(6) -78.89(6) C(9)-()-C(5)-C(6) 59.6() ()-C(5)-C(6)-C(7) -57.6() C(5)-C(6)-C(7)-C(8) 5.7() C(6)-C(7)-C(8)-C(9) -5.9() C()-()-C(9)-C(8) 78.60(7) C(5)-()-C(9)-C(8) -58.8() C(7)-C(8)-C(9)-() 57.() Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound [Å and ]. D-H...A d(d-h) d(h...a) d(d...a) <(DHA)

. Biology. Lineweaver-Burk plots for Kojic Acid and Rhodanine Figure Lineweaver-Burk plots for inhibition of kojic acid on the oxidation of L-DOPA by mushroom tyrosinase. Concentrations of kojic acid for curves 0- were 0, 5, 0, 5, and 0 μm, respectively. The inset represents the secondary plot of slope or Y-intercept versus the kojic acid concentration for determining the K I and K IS. The line was drawn using linear least square fit. 0.0 Slope 0.5 0.0 K i =.98 M 0.5 Y-intercept 0.05 0.00 0 5 0 5 0 0.0 0.5 0.0 0.05 K i ' = 0.97 M [I] ( M) 0.00 0 5 0 5 0 [I] ( M) /v ( M/min) - 0. 0. 0. 0. 0 - - 0 /[S] (mm) -

Figure Lineweaver-Burk plots for inhibition of rhodanine on the oxidation of L-DOPA by mushroom tyrosinase. Concentrations of rhodanine for curves 0- were 0, 0, 0, 0, and 80 μm, respectively. The inset represents the secondary plot of slope or Y-intercept versus the rhodanine concentration for determining the K I and K IS. The line was drawn using linear least square fit. 0.0 0.5 K i =.0 M Slope 0.0 0.05 0.5 Y-intercept 0.00 0 0 0 60 80 0.0 0.5 0.0 0.05 K i ' =.8 M [I] ( M) 0.00 0 0 0 60 80 [I] ( M) /v ( M/min) - 0. 0. 0. 0. 0 - - 0 /[S] (mm) -

. Computational studies. Molecular docking and dynamics simulation Fig.. RMSD plots of tyrosinase backbone in complex with compound (black line) and compound (red line) as a function of simulation time. Fig.. RMSF plot of selected tyrosinase residues in complex with compound during the final 5 ns of simulation.