Supporting Information

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Divergent synthesis of various iminocyclitols from D-ribose

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Supporting Information

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information. Experimental section

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supplementary Information

Supplementary information

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information. Experimental section

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Supporting information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Experimental procedure

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Supporting Information

Supporting Information for

Supporting Information To: Synthesis of a xylo-puromycin Analogue

Supporting Information for

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Supporting Information for

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Aminofluorination of Fluorinated Alkenes

Supporting Information

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks

Chemoselective Reduction of α-keto Amides by Nickel Catalyst

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

The Free Internet Journal for Organic Chemistry

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Supporting Information

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information For

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supporting Information

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Fischer Indole Synthesis in Low Melting Mixtures

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Transcript:

Supporting Information Lewis Acid Mediated [2,3]-Sigmatropic Rearrangement of Allylic α-amino Amides. Jan Blid, Peter Brandt, Peter Somfai*, Department of Chemistry, rganic Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden, and Department of Structural Chemistry, Biovitrum AB, SE-112 76 Stockholm, Sweden somfai@kth.se Content S2: Synthesis of 2 S3-S9: Experimental data for 2, 7, 8, 12, 14b-e, 15b-e and 16b-e S10-S40: MR spectra for 2, 3, 7, 8, 9a, 9b, 10a, 10b, 11, 12, 14b-e, 15b-e and 16b-e S41: References * Corresponding author: Phone: (+46)-8-790 6960. Fax:(+46)-8-791 2333. Royal Institute of Technology Department of Structural Chemistry, Biovitrum AB S1

Synthesis of allyl amines 2 Scheme S1 a a Reagents and conditions: a) RBr, K 2 C 3, MeC, rt. 1 b) 12, pyrrolidine, MgBr 2, THF, rt. 2 Table S1 a Entry Substrate R 1 R 2 Yields [%] 14 15 16 2 1 b Me H 98 76 93 96 2 c Ph H Quant. 88 91 93 3 d H Me 88 71 Quant. 97 4 e Me Me 98 90 88 94 a Reagents and conditions: a) PPh 3, DIAD, THF, rt.; 3 b) mercaptoacetic acid, Et 3, CH 2 Cl 2, rt.; 3 c) methyl bromoacetate, K 2 C 3, MeC, rt.; 1 d) pyrrolidine, MgBr 2, THF, rt. 2 S2

General Methods. 1 H and 13 C MR spectra were recorded on a 400 MHz or 500 MHz spectrometer in CDCl 3, CD 2 Cl 2, DMS-d 6 or CD 3 C using the residual peak of CHCl 3 ( 1 H MR δ 7.26, 13 C MR δ 77.0), CH 2 Cl 2 ( 1 H MR δ 5.32, 13 C MR δ 53.8), DMS ( 1 H MR δ 2.50, 13 C MR δ 39.7), CH 3 C ( 1 H MR δ 1.93, 13 C MR δ 118.2, 1.3) or added TMS (δ 0.00) as internal standard. 11 B and 19 F MR spectra were recorded on a 500 MHz spectrometer using BF 3 Et 2 or trifluorotoluene, respectively, as external standard. Chemical shifts are reported in the δ-scale with multiplicity (b=broad, s=singlet, d=doublet, t=triplet, q=quartet, qn=quintet, m=multiplet), integration and coupling constants (Hz). Analytical thin layer chromatography was performed on silica gel 60 F 254 plates, the plates were visualized with UV light and phosphomolybdic acid/cerium sulfate staining reagent (ca 5 wt% in ethanol) or I 2 /MeH. Chromatography employed silica gel 60 (35-70 µm). Air and moisture sensitive reactions were carried out in flame-dried, septum-capped flasks under an atmospheric pressure of nitrogen. All liquid reagents were transferred via oven-dried syringes. THF, Et 2 and toluene were distilled from sodium-benzophenone ketyl before use and CH 2 Cl 2 and Et 3 from CaH 2. 1-[(-Allyl--benzylamino)acetyl]-pyrrolidine (2a). To a stirred solution of 12 (5.37 g, 24.5 mmol) and MgBr 2 (9.11 g, 49.4 mmol) in THF (100 ml) was added pyrrolidine (8.5 ml, 102 mmol). After stirring for 22 h at rt the reaction mixture was cooled to 0 C, sat. ahc 3 (20 ml) at 0 C was added and stirring was continued at rt for 30 min. The solvents were evaporated and the residue was diluted with H 2 (100 ml) and extracted with Et 2 (3 30 ml). The dried (K 2 C 3 ) organic solution was concentrated and chromatographed (Et 2 :MeC 1:0 0:1) to provide 2a (5.0 g, 84%) as a colorless oil. 1 H MR (CDCl 3, 400 MHz) δ H 7.35-7.22 (m, 5H), 5.90 (ddt, 1H, J=17.1, 10.2, 6.6), 5.21 (d, 1H, J=17.1), 5.16 (d, 1H, J=10.2), 3.74 (s, 2H), 3.43 (t, 2H, J=6.7), 3.36 (t, 2H, J=6.7), 3.24 (d, 2H, J=6.6), 3.22 (s, 2H), 1.88 (m, 2H), 1.80 (m, 2H); 13 C MR (CDCl 3, 100 MHz) S3

δ C 169.3, 139.0, 135.7, 129.2, 128.2, 127.0, 117.9, 58.2, 57.4, 56.3, 46.2, 45.7, 26.2, 24.1; IR (neat) 2974, 2875, 1641 cm -1 ; HRMS (EI+) calcd for C 16 H 22 2 [M] + : 258.1732, found: 258.1732. 1-[((E)--Benzyl--2-butenylamino)acetyl]-pyrrolidine (2b). As described for 2a, starting from 16b (0.56 g, 2.4 mmol). Pale yellow oil (0.63 g, 96%). 1 H MR (CDCl 3, 400 MHz) δ H 7.32 (d, 2H, J=7.0), 7.29 (t, 2H, J=7.0), 7.23 (t, 1H, J=7.0), 5.62 (dq, 1H, J=15.2, 6.3), 5.52 (dt, 1H, J=15.2, 6.6), 3.71 (s, 2H), 3.42 (t, 2H, J=6.9), 3.37 (t, 2H, J=6.7), 3.20 (s, 2H), 3.15 (d, 2H, J=6.6), 1.87 (m, 2H), 1.79 (m, 2H), 1.69 (dd, 3H, J=6.3, 1.2); 13 C MR (CDCl 3, 100 MHz) δ C 169.4, 139.1, 129.14, 129.07, 128.12, 128.07, 126.9, 58.1, 56.5, 56.3, 46.1, 45.6, 26.2, 24.1, 17.8; IR (neat) 2968, 2875, 1643 cm -1 ; HRMS (EI+) calcd for C 17 H 25 2 [M+H] + : 273.1967, found: 273.1967. 1-[((E)--Benzyl--(3-phenyl-2-propenyl)amino)acetyl]-pyrrolidine (2c). As described for 2a, starting from 16c (0.34 g, 1.2 mmol). Pale yellow oil (0.36 g, 93%). 1 H MR (CDCl 3, 400 MHz) δ H 7.38-7.20 (m, 10H), 6.55 (d, 1H, J=15.8), 6.30 (dt, 1H, J=15.8, 6.8), 3.81 (s, 2H), 3.43 (t, 2H, J=6.9), 3.42 (d, 2H, J=6.8), 3.34 (t, 2H, J=6.7), 3.27 (s, 2H), 1.86 (m, 2H), 1.78 (m, 2H); 13 C MR (CDCl 3, 100 MHz) δ C 169.2, 138.9, 137.0, 132.9, 129.2, 128.5, 128.2, 127.41, 127.39, 127.0, 126.3, 58.5, 56.7, 56.1, 46.1, 45.7, 26.2, 24.0; IR (neat) 3082, 3057, 2972, 2951, 1641 cm -1 ; HRMS (EI+) calcd for C 22 H 27 2 [M+H] + : 335.2123, found: 335.2115. 1-[((Z)--Benzyl--2-butenylamino)acetyl]-pyrrolidine (2d). As described for 2a, starting from 16d (0.86 g, 3.7 mmol). Pale yellow oil (1.0 g, 97%). 1 H MR (CDCl 3, 400 MHz) δ H 7.34-7.21 (m, 5H), 5.65 (m, 1H), 5.54 (m, 1H), 3.72 (s, 2H), 3.42 (t, 2H, J=6.8), 3.39 (t, 2H, J=6.8), 3.24 (d, 2H, J=6.9), 3.22 (s, 2H), 1.87 (m, 2H), 1.79 (m, 2H), 1.61 (d, 3H, J=6.8); 13 C MR (CDCl 3, 100 MHz) δ C 169.4, 139.1, 129.2, 128.1, 127.6, 127.4, 126.9, 58.4, 56.7, 50.5, 46.2, 45.7, 26.2, 24.1, 13.1; IR (neat) 2972, 2873, 1643 cm -1 ; HRMS (CI+) calcd for C 17 H 25 2 [M+H] + : 273.1967, found: 273.1971. S4

1-[(-Benzyl--(3-methyl-2-butenyl)amino)acetyl]-pyrrolidine (2e). As described for 2a, starting from 16e (0.26 g, 1.1 mmol). Pale yellow oil (0.28 g, 94%). 1 H MR (CDCl 3, 400 MHz) δ H 7.34-7.20 (m, 5H), 5.29 (t, 1H, J=7.0), 3.70 (s, 2H), 3.40 (t, 2H, J=6.9), 3.38 (t, 2H, J=6.7), 3.20 (s, 2H), 3.16 (d, 2H, J=6.9), 1.87 (m, 2H), 1.79 (m, 2H), 1.73 (s, 3H), 1.61 (s, 3H); 13 C MR (CDCl 3, 100 MHz) δ C 169.5, 139.3, 135.7, 129.2, 128.1, 126.9, 121.5, 58.4, 56.8, 51.8, 46.2, 45.7, 26.2, 25.9, 24.1, 18.0; IR (neat) 3084, 3060, 2970, 2927, 1641 cm -1 ; HRMS (EI+) calcd for C 18 H 27 2 [M+H] + : 287.2123, found: 287.2122. -Allyl-benzylglycine methyl ester (12). 1 To a suspension of -allyl benzylamine (1.10 g, 7.48 mmol) and K 2 C 3 (2.06 g, 14.9 mmol) in CH 3 C (20 ml) was added methyl bromoacetate (0.90 ml, 8.58 mmol) and the resultant solution stirred for 20 h. The reaction mixture was poured into sat. ahc 3 (30 ml) and extracted with CH 2 Cl 2. The combined organic phases were dried (MgS 4 ) and concentrated. Purification by chromatography (pentane:etac 6:1) provided 12 (1.45 g, 88%) as a colorless oil. 1 H MR (CDCl 3, 400 MHz) δ H 7.36-7.23 (m, 5H), 5.88 (ddt, 1H, J=17.1, 10.1, 6.5), 5.22 (dq, 1H, J=17.1, 1.9), 5.16 (ddt, 1H, J=10.1, 1.9, 1.2), 3.78 (s, 2H), 3.68 (s, 3H), 3.32 (s, 2H), 3.27 (dt, 2H, J=6.5, 1.2); 13 C MR (CDCl 3, 100 MHz) δ C 171.9, 138.6, 135.5, 129.0, 128.3, 127.1, 118.0, 57.8, 56.9, 53.5, 51.3. -Allyl-benzylglycine tert-butyl ester (7). As described for 12. Colorless oil (1.2 g, 71%). 1 H MR (CDCl 3, 400 MHz) δ H 7.37 (d, 2H, J=7.1), 7.31 (t, 2H, J=7.1), 7.25 (app. t, 1H, J=7.1), 5.89 (ddt, 1H, J=17.2, 10.2, 6.5), 5.23 (ddt, 1H, J=17.2, 2.0, 1.2), 5.15 (ddt, 1H, J=10.2, 2.0, 1.2), 3.79 (s, 2H), 3.28 (dt, 2H, J=6.5, 1.2), 3.22 (s, 2H), 1.47 (s, 9H); 13 C MR (CDCl 3, 100 MHz) δ C 170.7, 139.0, 135.8, 128.9, 128.2, 127.0, 117.7, 80.7, 57.6, 56.7, 54.5, 28.2; IR (neat) 3080, 3028, 2980, 2929, 1732 cm -1 ; HRMS (FAB+) calcd for C 16 H 24 2 [M+H] + : 262.1807, found: 262.1807. S5

-Allyl--benzyl-3-(trimethylsilyl)-2-propyn-1-amine (8). As described for 12. Purified by chromatography (heptane:et 2 1:0 16:1) to afford 8 (0.61 g, 80%) as a colorless oil. 1 H MR (CDCl 3, 400 MHz) δ H 7.33 (m, 4H), 7.25 (m, 1H), 5.88 (ddt, 1H, J=17.1, 10.2, 6.5), 5.27 (ddt, 1H, J=17.1, 1.9, 1.2), 5.17 (ddt, 1H, J=10.2, 1.9, 1.2), 3.63 (s, 2H), 3.30 (s, 2H), 3.16 (dt, 2H, J=6.5, 1.2), 0.21 (s, 9H); 13 C MR (CDCl 3, 125 MHz) δ C 138.6, 135.6, 129.2, 128.2, 127.1, 118.0, 100.9, 90.2, 57.2, 56.7, 42.3, 0.2; IR (neat) 3081, 3066, 2960, 2920, 2164, 1250, 844 cm -1 ; HRMS (FAB+) calcd for C 16 H 24 Si [M+H] + : 258.1678, found: 258.1666. (E)--Benzyl--2-butenyl-2,4-dinitro-benzenesulfonamide (14b). To a solution of Ph 3 P (5.8 g, 22.1 mmol) in THF (100 ml) at 0 C was added DIAD (4.3 ml, 21.8 mmol). After stirring for 30 min at 0 C a mixture of 13 (5.22 g, 15.5 mmol) and (E)-crotylalcohol (1.35 g, 18.7 mmol) in THF (20 ml) was added and the resultant mixture was stirred at rt for 1 h. Removal of the solvents and chromatography (pentane:etac 9:1 2:1) gave 14b (5.95 g, 98%) as a yellow oil, which was used in the subsequent step. A sample of the oil was crystallized (EtAc:hexane) to provide a yellow solid for characterization purposes. Mp 63.4-63.9 C. 1 H MR (CDCl 3, 400 MHz) δ H 8.47 (d, 1H, J=2.5), 8.37 (dd, 1H, J=8.7, 2.5), 8.12 (d, 1H, J=8.7), 7.31-7.21 (m, 5H), 5.55 (dq, 1H, J=15.2, 6.5), 5.25 (dtq, 1H, J=15.2, 6.7, 1.5), 4.52 (s, 2H), (d, 2H, J=6.7), 1.63 (dd, 3H, J=6.5, 1.5); 13 C MR (CDCl 3, 125 MHz) δ C 149.4, 147.8, 139.8, 135.0, 132.7, 132.3, 128.7, 128.4, 128.1, 125.8, 124.0, 119.7, 50.6, 49.5, 17.7; IR (neat) 3102, 3079, 3036, 2940, 1552, 1536, 1370, 1348, 1160, 729 cm -1 ; HRMS (FAB+) calcd for C 17 H 18 3 6 S [M+H]: 392.0916, found: 392.0914. (E)--Benzyl-2,4-dinitro--(3-phenyl-2-propenyl)-benzenesulfonamide (14c). As described for 14b, starting from (E)-cinnamylalcohol (0.36 g, 2.7 mmol, 1.2 equiv.). Pale yellow semi-solid (1.02 g, quant.). 1 H MR (CDCl 3, 400 MHz) δ H 8.46 (d, 1H, J=2.2), 8.33 (dd, 1H, J=8.7, 2.2), 8.15 (d, 1H, J=8.7), 7.33-7.22 (m, 10H), 6.37 (d, 1H, J=15.7), 5.95 (dt, 1H, J=15.7, 6.8), 4.58 (s, 2H), 4.07 (d, 2H, J=6.8); 13 C MR (CDCl 3, 125 MHz) δ C 149.4, 147.8, 139.7, 135.6, 135.5, 134.8, 132.8, S6

128.8, 128.7, 128.4( 2), 128.3, 126.4, 125.9, 122.2, 119.7, 51.2, 49.8; IR (neat) 3102, 3033, 2927, 1553, 1538, 1365, 1350, 1164, 749 cm -1 ; HRMS (FAB+) calcd for C 22 H 19 3 6 S [M] + : 453.0995, found: 453.0995. (Z)--Benzyl--2-butenyl-2,4-dinitro-benzenesulfonamide (14d). As described for 14b, starting from (Z)-crotylalcohol (0.77 g, 10.7 mmol, 1.2 equiv.). Recrystallization (toluene:hexane) provided 14d as a pale yellow solid (3.0 g, 88%). Mp 96.4-96.7 C. 1 H MR (CDCl 3, 400 MHz) δ H 8.48 (s, 1H), 8.40 (d, 1H, J=8.7 Hz), 8.17 (d, 1H, J=8.7 Hz), 7.33-7.23 (m, 5H), 5.64 (dq, 1H, J=10.7, 7.0 Hz), 5.20 (dt, 1H, J=10.7, 7.1 Hz), 4.52 (s, 2H), 3.95 (d, 2H, J=7.1 Hz), 1.44 (d, 2H, J=7.0 Hz); 13 C MR (CDCl 3, 100 MHz) δ C 149.5, 147.9, 139.7, 134.9, 132.7, 130.3, 128.8, 128.4, 128.2, 125.9, 123.3, 119.7, 50.9, 43.7, 12.8; IR (neat) 3102, 3027, 2937, 1550, 1535, 1368, 1349, 1158, 700 cm -1 ; HRMS (FAB+) calcd for C 17 H 18 3 6 S [M+H] + : 392.0916, found: 392.0905. -Benzyl--(3-methyl-2-butenyl)-2,4-dinitro-benzenesulfonamide (14e). As described for 14b, starting from prenylalcohol (0.23 g, 2.7 mmol, 1.2 equiv.). Pale yellow semi-solid (0.87 g, 98%). 1 H MR (CDCl 3, 400 MHz) δ H 8.48 (d, 1H, J=2.2), 8.39 (dd, 1H, J=8.7, 2.2), 8.15 (d, 1H, J=8.7), 7.33-7.22 (m, 5H), 4.96 (t, 1H, J=7.2), 4.51 (s, 2H), 3.89 (d, 2H, J=7.2), 1.63 (s, 3H), 1.42 (s, 3H); 13 C MR (CDCl 3, 125 MHz) δ C 149.4, 147.9, 139.9, 138.8, 135.1, 132.7, 128.7, 128.3, 128.1, 125.8, 119.7, 117.6, 50.9, 45.2, 25.7, 17.7; IR (neat) 3100, 3078, 2968, 2934, 1552, 1536, 1368, 1348, 1158, 732 cm -1 ; HRMS (FAB+) calcd for C 18 H 20 3 6 S [M+H] + : 406.1073, found: 406.1077. (E)--Benzyl-2-buten-1-amine (15b). 1 To a stirred solution of 14b (12.3 mg, 0.031 mmol) and Et 3 (9 µl) in CH 2 Cl 2 (1 ml) was added mercaptoacetic acid (4 mg, 0.043 mmol). The resultant solution was stirred for 1 h and then diluted with Et 2 (5 ml). The organic phase was washed with sat. ahc 3 (3 5 ml) and the aqueous phase was extracted with Et 2 (5 ml). The combined organic phases were dried (K 2 C 3 ) and the concentrated residue was chromatographed S7

(EtAc:MeH 0:1 1:0 + 1% H 3 ) to provide 15b (4 mg, 76%) as a pale yellow oil. 1 H MR (CDCl 3, 400 MHz) δ H 7.34-7.22 (m, 5H), 5.66-5.53 (m, 2H), 3.76 (s, 2H), 3.20 (d, 2H, J=4.8 Hz), 1.69 (d, 3H, J=5.8 Hz), 1.28 (bs, 1H); 13 C MR (CDCl 3, 100 MHz) δ C 140.9, 129.9, 128.8, 128.6, 127.8, 127.3, 53.8, 51.6, 18.2. (E)--Benzyl-3-phenyl-2-propen-1-amine (15c). As described for 15b, starting from 14c (1.0 mg, 2.2 mmol). Pale yellow oil (0.44 g, 88%). 1 H MR (CDCl 3, 500 MHz) δ H 7.37-7.19 (m, 10H), 6.53 (d, 1H, J=15.9), 6.31 (dt, 1H, J=15.9, 6.0), 3.83 (s, 2H), 3.43 (d, 2H, J=6.0 Hz), 1.66 (bs, 1H); 13 C MR (CDCl 3, 125 MHz) δ C 140.1, 137.1, 131.4, 128.5, 128.4, 128.3, 128.2, 127.3, 126.9, 126.2, 53.2, 51.1; IR (neat) 3312, 3081, 3060, 3026, 2914, 2815 cm -1 ; HRMS (EI+) calcd for C 16 H 17 [M] + : 223.1361, found: 223.1361. (Z)--Benzyl-2-buten-1-amine (15d). As described for 15b, starting from 14d (23 mg, 0.059 mmol). Pale yellow oil (7 mg, 71%). 1 H MR (CDCl 3, 400 MHz) δ H 7.33-7.22 (m, 5H), 5.49-6.63 (m, 2H), 3.80 (s, 2H), 3.30 (d, 2H, J=6.3 Hz), 2.00 (bs, 1H), 1.62 (d, 3H, J=6.2 Hz); 13 C MR (CDCl 3, 100 MHz) δ C 139.7, 128.4, 128.3, 128.2, 127.1, 126.8, 53.2, 45.2, 13.1; IR (neat) 3309, 3063, 3023, 2917, 2826 cm -1 ; HRMS (EI+) calcd for C 11 H 15 [M] + : 161.1204, found: 161.1193. -Benzyl-3-methyl-2-buten-1-amine (15e). As described for 15b, starting from 14e (0.86 g, 2.1 mmol). Yellow oil (0.33 g, 90%). 1 H MR (CDCl 3, 400 MHz) δ H 7.33-7.23 (m, 5H), 5.29 (m, 1H), 3.80 (s, 2H), 3.24 (d, 2H, J=6.8 Hz), 1.73 (s, 3H), 1.70 (bs, 1H), 1.62 (s, 3H); 13 C MR (CDCl 3, 100 MHz) δ C 140.0, 134.8, 128.4, 128.2, 127.0, 122.5, 53.3, 46.5, 25.8, 17.9; IR (neat) 3310, 3062, 3027, 2914, 2855 cm -1 ; HRMS (EI+) calcd for C 12 H 17 [M] + : 175.1361, found: 175.1353. (E)--Benzyl-2-butenylglycine methyl ester (16b). 1 As described for 12, starting from 15b (0.42 g, 2.6 mmol). Colorless oil (0.58 g, 93%). 1 H MR (CDCl 3, 400 MHz) δ H 7.36-7.22 (m, 5H), 5.62 S8

(dtq, 1H, J=15.2, 6.3, 1.1 Hz), 5.51 (dqt, 1H, J=15.2, 6.6, 1.5 Hz), 3.75 (s, 2H), 3.68 (s, 3H), 3.30 (s, 2H), 3.19 (dt, 2H, J=6.6, 1.1 Hz), 1.69 (dq, 3H, J=6.3, 1.5 Hz); 13 C MR (CDCl 3, 100 MHz) δ C 172.0, 138.7, 129.3, 129.0, 128.2, 128.0, 127.0, 57.9, 56.1, 53.6, 51.3, 17.8. (E)--Benzyl-3-phenyl-2-propenylglycine methyl ester (16c). As described for 12, starting from 15c (0.37 g, 1.7 mmol). Pale yellow oil (0.44 g, 91%). 1 H MR (CDCl 3, 400 MHz) δ H 7.42-7.24 (m, 10H), 6.59 (d, 1H, J=15.9), 6.31 (dt, 1H, J=15.9, 6.7), 3.87 (s, 2H), 3.71 (s, 3H), 3.47 (d, 2H, J=6.7), 3.41 (s, 2H); 13 C MR (CDCl 3, 100 MHz) δ C 171.9, 138.5, 136.9, 133.0, 129.0, 128.5, 128.3, 127.5, 127.16, 127.14, 126.3, 58.1, 56.4, 53.7, 51.4; IR (neat) 3060, 3027, 2950, 2920, 1739 cm -1 ; HRMS (EI+) calcd for C 19 H 21 2 [M+H] + : 296.1651, found: 296.1648. (Z)--Benzyl-2-butenylglycine methyl ester (16d). As described for 12, starting from 15d (0.6 g, 3.7 mmol). Pale yellow oil (0.87 g, quant.). 1 H MR (CDCl 3, 400 MHz) δ H 7.36-7.22 (m, 5H), 5.66 (dq, 1H, J=11.0, 6.8 Hz), 5.52 (m, 1H), 3.78 (s, 2H), 3.68 (s, 3H), 3.31 (s, 2H), 3.29 (d, 2H, J=7.0 Hz), 1.62 (d, 3H, J=6.8 Hz); 13 C MR (CDCl 3, 100 MHz) δ C 172.0, 138.8, 129.1, 128.3, 127.9, 127.2, 127.1, 58.0, 53.7, 51.3, 50.0, 13.1; IR (neat) 3062, 3025, 2951, 2918, 1739 cm -1 ; HRMS (FAB+) calcd for C 14 H 18 2 [M-H] + : 232.1338, found: 232.1331. -Benzyl-3-methyl-2-butenylglycine methyl ester (16e). As described for 12, starting from 15e (0.29 g, 1.7 mmol). Yellow oil (0.36 g, 88%). 1 H MR (CDCl 3, 400 MHz) δ H 7.35-7.22 (m, 5H), 5.27 (t, 1H, J=7.1), 3.75 (s, 2H), 3.68 (s, 3H), 3.29 (s, 2H), 3.22 (d, 2H, J=7.1), 1.73 (s, 3H), 1.62 (s, 3H); 13 C MR (CDCl 3, 100 MHz) δ C 172.1, 138.9, 136.0, 129.0, 128.2, 127.0, 121.3, 58.1, 53.6, 51.32, 51.28, 25.9, 17.9; IR (neat) 3062, 3028, 2969, 2950, 1739 cm -1 ; HRMS (FAB+) calcd for C 15 H 21 2 [M+H] + : 248.1651, found: 248.1645. S9

Bn 2a 1 H MR 13 C MR 169.277 138.964 135.764 135.729 129.155 128.152 126.972 117.929 77.353 77.237 77.035 76.717 58.196 57.328 56.256 46.139 45.670 26.216 24.073-0.000 220 200 180 160 140 120 100 80 60 40 20 0 ppm S10

Bn 2b 1 H MR 13 C MR 169.425 139.169 129.150 129.072 128.172 128.093 126.874 77.256 77.206 77.002 76.748 58.138 56.469 56.385 46.156 45.656 26.230 24.075 17.840-0.023 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S11

Ph Bn 2c 1 H MR 13 C MR 169.243 138.958 137.027 132.878 129.169 128.523 128.179 127.410 127.003 126.274 77.322 77.207 77.005 76.687 58.480 56.684 56.057 46.087 45.659 26.190 24.037 220 200 180 160 140 120 100 80 60 40 20 0 ppm S12

Bn 2d 1 H MR 13 C MR 169.384 139.122 129.176 128.103 127.621 127.399 126.915 119.036 117.762 115.723 77.318 77.207 77.000 76.683 58.420 56.732 50.480 46.198 45.662 26.222 24.076 13.100-0.026 220 200 180 160 140 120 100 80 60 40 20 0 ppm S13

Bn 2e 1 H MR 13 C MR 169.497 139.262 135.662 131.323 129.158 128.061 126.852 121.531 77.320 77.207 77.002 76.686 58.410 56.784 51.844 46.192 45.649 26.225 25.905 24.075 17.979 220 200 180 160 140 120 100 80 60 40 20 0 ppm S14

Bn H 3a 1 H MR 13 C MR 172.736 140.085 134.482 128.324 128.309 126.971 117.388 77.359 77.041 76.723 58.635 51.855 46.094 45.687 37.981 26.083 24.177 220 200 180 160 140 120 100 80 60 40 20 0 ppm S15

Bn H syn-3b 1 H MR 13 C MR 172.783 140.752 140.346 128.219 128.187 126.846 117.566 114.681 77.315 77.202 76.998 76.680 63.081 52.051 46.190 45.471 41.367 26.010 24.142 15.869-0.027 220 200 180 160 140 120 100 80 60 40 20 0 ppm S16

Bn H anti-3b 1 H MR 13 C MR 172.578 140.697 140.263 128.213 128.171 126.861 114.913 77.253 77.204 76.999 76.745 62.999 51.898 46.239 45.607 40.912 26.087 24.124 16.688-0.018 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S17

Ph Bn H syn-3c 1 H MR 13 C MR 171.438 141.015 139.830 136.924 128.355 128.261 128.173 126.887 126.697 117.408 77.320 77.002 76.684 62.236 53.977 51.292 45.961 45.475 25.876 24.002 220 200 180 160 140 120 100 80 60 40 20 0 ppm S18

Ph Bn H anti-3c 1 H MR 13 C MR 172.030 141.160 140.041 138.384 128.410 128.242 128.201 128.094 126.926 126.719 117.023 77.256 77.002 76.748 63.365 53.189 51.827 45.688 45.237 25.697 23.807 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S19

Bn H 3e 1 H MR 13 C MR 172.538 145.111 140.355 128.162 128.149 126.854 112.188 77.317 76.999 76.681 65.149 52.139 46.802 45.360 40.505 26.038 24.387 24.140 23.125 220 200 180 160 140 120 100 80 60 40 20 0 ppm S20

Bn 7 t-bu 1 H MR 13 C MR 170.709 138.989 135.829 128.944 128.194 126.970 117.652 80.650 77.320 77.003 76.686 57.618 56.703 54.519 28.165 220 200 180 160 140 120 100 80 60 40 20 0 ppm S21

Bn TMS 8 1 H MR 13 C MR 138.577 135.574 129.197 128.252 127.084 117.978 100.916 90.248 77.319 77.205 77.001 76.684 57.211 56.665 42.327 0.162 220 200 180 160 140 120 100 80 60 40 20 0 ppm S22

F F Bn B BF 4-9a 1 H MR 11 B MR 4.905-0.719 3 0 2 5 2 0 1 5 1 0 5 0-5 - 1 0-1 5-2 0-2 5-3 0-3 5 p p m 19 F MR B! 10 BF 4 - singlet peak also visible! -81-82 -83-84 -85-86 -87-88 -89-90 -91-92 -93-94 ppm S23

Br Br Bn B X - 9b; X=Br or BBr 4 1 H MR B! Contains hexanes from BBr 3 in hexanes solution. 11 B MR 5.702 70 60 50 40 30 20 10 0-10 -20-30 -40-50 -60-70 ppm S24

Bn 10a 1 H MR 13 C MR 170.415 138.696 129.343 128.019 126.865 77.251 76.998 76.745 66.474 57.480 52.761 46.085 45.431 35.324 32.315 26.269 24.024 16.305 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S25

Bn 10b 1 H MR 13 C MR 171.815 138.904 128.979 128.045 126.893 83.935 77.253 76.999 76.745 73.265 58.346 52.885 46.246 46.052 37.930 32.176 29.692 26.317 23.810 20.052 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S26

H Bn 11 Ph 1 H MR 13 C MR 169.376 137.290 129.161 128.845 128.201 128.129 127.330 126.995 77.251 76.996 76.742 76.178 67.349 60.181 56.937 56.249 45.511 45.061 29.690 25.733 23.654 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S27

Bn 12 Me 1 H MR 13 C MR 171.807 138.578 135.486 128.987 128.264 127.120 118.001 77.321 77.003 76.686 57.830 56.883 53.522 51.298 220 200 180 160 140 120 100 80 60 40 20 0 ppm S28

2 2 S 14b Ph 1 H MR 9 13 C MR 149.417 147.841 139.824 134.952 132.669 132.321 128.728 128.375 128.103 125.846 124.044 119.635 77.255 77.206 77.001 76.747 50.571 49.483 17.662-0.024 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S29

2 2 S 14c Ph Ph 1 H MR 9 13 C MR 149.379 147.776 139.737 135.571 135.487 134.772 132.827 128.836 128.683 128.404 128.250 126.420 125.929 122.179 119.664 77.255 77.001 76.747 51.204 49.825 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S30

2 2 S 14d Ph 1 H MR 9 13 C MR 149.517 147.889 139.731 134.915 132.686 130.281 128.758 128.374 128.161 125.929 123.278 119.704 77.331 77.014 76.696 50.920 43.726 12.826 220 200 180 160 140 120 100 80 60 40 20 0 ppm S31

2 2 S 14e Ph 1 H MR 9 13 C MR 149.840 148.301 140.327 139.248 135.557 133.091 129.124 128.683 128.476 126.218 120.079 118.037 77.669 77.415 77.162 51.281 45.638 26.171 18.171 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S32

Ph H 15b 1 H MR 13 C MR 140.434 129.466 128.352 128.160 127.405 126.854 77.319 77.001 76.684 53.310 51.135 17.775 220 200 180 160 140 120 100 80 60 40 20 0 ppm S33

Ph H Ph 15c 1 H MR 13 C MR 140.103 137.055 131.390 128.477 128.381 128.287 128.153 127.300 126.946 126.207 77.255 77.000 76.747 53.245 51.119 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S34

Ph H 15d 1 H MR 13 C MR 139.760 128.424 128.307 127.057 126.755 77.320 77.003 76.685 53.170 45.156 13.075 220 200 180 160 140 120 100 80 60 40 20 0 ppm S35

Ph H 15e 1 H MR 13 C MR 139.973 134.840 128.372 128.228 126.959 122.518 77.317 77.204 77.000 76.682 53.285 46.531 25.742 17.922 220 200 180 160 140 120 100 80 60 40 20 0 ppm S36

Bn Me 16b 1 H MR 13 C MR 171.979 138.742 129.287 129.017 128.227 128.021 127.041 77.317 76.999 76.681 57.879 56.139 53.565 51.290 17.787 220 200 180 160 140 120 100 80 60 40 20 0 ppm S37

Ph Bn Me 16c 1 H MR 13 C MR 171.862 138.533 136.914 133.018 129.039 128.525 128.310 127.471 127.169 127.145 126.327 77.320 77.206 77.002 76.685 58.123 56.384 53.728 51.366 220 200 180 160 140 120 100 80 60 40 20 0 ppm S38

Bn Me 16d 1 H MR 13 C MR 171.972 138.742 129.040 128.240 127.867 127.129 127.077 77.315 77.200 76.998 76.680 57.998 53.614 51.292 49.920 13.064 220 200 180 160 140 120 100 80 60 40 20 0 ppm S39

Bn Me 16e 1 H MR 13 C MR 172.069 138.861 135.990 129.025 128.208 127.017 121.293 77.317 77.202 76.999 76.681 58.049 53.605 51.316 51.274 25.889 17.928 220 200 180 160 140 120 100 80 60 40 20 0 ppm S40

References (1) Coldham, I.; Middleton, M. L.; Taylor, P. L. J. Chem. Soc. Perkin Trans. 1 1998, 2817. (2) Guo, Z.; Dowdy, E. D.; Li, W.; Polniaszek, R.; Delaney, E. Tetrahedron Lett. 2001, 42, 1843. (3) Fukuyama, T.; Cheung, M.; Jow, C. K.; Hidai, Y.; Kan, T. Tetrahedron Lett. 1997, 38, 5831. S41