( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Σχετικά έγγραφα
Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

Finite Field Problems: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

Second Order RLC Filters

Homework 3 Solutions

2 Composition. Invertible Mappings

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions to Exercise Sheet 5

Notes on the Open Economy

Areas and Lengths in Polar Coordinates

Solution to Review Problems for Midterm III

ST5224: Advanced Statistical Theory II

Example Sheet 3 Solutions

Numerical Analysis FMN011

Math221: HW# 1 solutions

EE512: Error Control Coding

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

w o = R 1 p. (1) R = p =. = 1

Other Test Constructions: Likelihood Ratio & Bayes Tests

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

F19MC2 Solutions 9 Complex Analysis

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Second Order Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 13 - Root Space Decomposition II

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SOLVING CUBICS AND QUARTICS BY RADICALS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

PARTIAL NOTES for 6.1 Trigonometric Identities

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Modbus basic setup notes for IO-Link AL1xxx Master Block

derivation of the Laplacian from rectangular to spherical coordinates

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

= 0.927rad, t = 1.16ms

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Answer sheet: Third Midterm for Math 2339

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The challenges of non-stable predicates

Trigonometry 1.TRIGONOMETRIC RATIOS

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

12. Radon-Nikodym Theorem

Fractional Colorings and Zykov Products of graphs

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

( y) Partial Differential Equations

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

C.S. 430 Assignment 6, Sample Solutions

ECON 381 SC ASSIGNMENT 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

( ) 2 and compare to M.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Reminders: linear functions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Section 7.6 Double and Half Angle Formulas

New bounds for spherical two-distance sets and equiangular lines

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

6.3 Forecasting ARMA processes

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

The Simply Typed Lambda Calculus

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Part III - Pricing A Down-And-Out Call Option

Concrete Mathematics Exercises from 30 September 2016

A Note on Intuitionistic Fuzzy. Equivalence Relation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Quadratic Expressions

Durbin-Levinson recursive method

Every set of first-order formulas is equivalent to an independent set

SCOPE OF ACCREDITATION TO ISO 17025:2005

Test Data Management in Practice

Inverse trigonometric functions & General Solution of Trigonometric Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lecture 15 - Root System Axiomatics

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

MathCity.org Merging man and maths

Χρειάζεται να φέρω μαζί μου τα πρωτότυπα έγγραφα ή τα αντίγραφα; Asking if you need to provide the original documents or copies Ποια είναι τα κριτήρια

Solution Series 9. i=1 x i and i=1 x i.

Transcript:

hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065 + 8.88.47 mw X5.4 +.8 or 4.6 μ A 35 β ( 80)( 4.65) 0.369 ma 5 0.369 which yields 8.3 kω X5.5 (a) on 5.9 μ A 0 00 5.9 A 0.59 ma + ma 0 0.59 4 or 7.64 β ( μ ) ( β ) 0.597 6.5 (b) 6.4 μ A 0 Transistor is biased in saturation mode, so ( sat) 0. ( sat) 0 0. or.45 ma 4 +.45 + 0.064.48 ma X5.6 For 0 <, Q n is cutoff, O 9 ( 00)( )( 4) When Q n is biased in saturation, we have 0. 9 5. 00 So, for 5., O 0. X5.7

8 ( β ) 30 ( 76)(.) on or 60. μ A + + + β ( μ ) ( β ) 4.58 75 60.3 A 4.5 ma + ma 4.57 0.4 4.577. or 4.70 X5.8 For 4 and Q.5 ma, + 0 4 4 kω.5 Q + β 0 (.5 ).55 ma β 00 also on 0 Then 6.4 kω.55 X5.9 3 Q 0.5 9. kω 75 Q ( 0.5) 0.467 ma 76 + + 3 0 Q Q 3+ 6.89 kω 0.467 X5.0 5 + on + 80 (a) 5 + + 0.9859 ma 4 0.96 ma 80 (b) 6.3 +.75 ma 6.5 ma 80 (c) 6.3 +.6657 ma 0.64 ma 80 (d) 6.3 +.97365 ma 5.94 ma X5.

on 4.0 or 3.3 kω α ( 0.99) 0.99 ma.0 0.99 or 8 μ A ( 0.99) 5 or 4.0 X5. + γ + ( sat).5+ 0. 5 or 0 Ω 5 ma 5 v 4.3 kω P + + 5 0. 3.7 mw () X5.3 (a) For 0, All currents are zero and O 5. (b) For 5, 0; 0, 4.53 ma 0.95 0. 8 ma 0.6 O 0. (c) For 5, 4.53 ma; 8 ma, / 4 ma, O 0. X5.4 vo i βi Δ vo βδi +Δv i Δv Δ i ΔvO β Then Δv Let β 00, 5 kω, 00 kω Δ v ( 00)( 5 o ) So 5 Δv 00 vo Q pt.5 5 00 Q 5 Then Q 0.005 ma, Q 0.005 00 so. Also, β 00 0.005 0.5 ma Want Q-point to be X5.5 Q Q

.5 5 Q Q.5 or 0 kω 0.5 Q 0.5 Q 0.00083 ma β 0 Then.06 MΩ 0.00083 X5.6 (a) 9.5.8 kω.5 ( 5) + 9+.5 or.0 (b) Q + + β.8 + 5 0. or Q 9.375 μ A Q βq ( 50)( 9.375 μa) or Q.4 ma Q ( + β ) Q Q.4 ma Q 5 Q Q 5 (.4) (.4)( 0.) or 3.3 Q (c) For β 75 Q 7.6 μ A.8 + ( 76)( 0.) Q βq ( 75)( 7.6 μa) or Q.3 ma Q + β Q 76 7.6 μa or Q.34 ma Q 5 (.3) (.34)( 0.) or 3.4 Q X5.7 Q Q ( + ) or.5 5 Q ( + 0.) which yields Q.08 ma, Q.08 Q 0.039 ma β 50 0. + β 0. 5 0. or 3.0 kω Now so ( 3.0)( 5) + We can write + + ( + β ) on Q Q

3.0 5 0.039 3.0 5 0.039 0. or + + We obtain 3 kω and then 3.93 kω X5.8 β 50, Q Q Q 0 5 ma Q 5 0.0333 ma β 50 ( 5) + ( + β ) ( β ) on Set 0. + We have 0 5 + + Then 0.0333 Q (.)( 5)( 0.) which yields 0.806 + ( 0) kω so 0.806 3.0 kω Now 0. 5 0. 3.0 + We obtain 6.7 kω and 3.69 kω X5.9 + Q ( 5) 5 Q + 4.5 + 0.5 so ma, and Q Q Q 0.00833 ma β 0 ( 0.)( β ) ( 0.)( )( 0.5) + or 6.05 kω We can write + + + + We have Q Q 0 5 and if we let Q Q ma, 5 0.5 + + 0.00833 6.05 + 6.05 0 5 then we have () which yields 6.9 kω and 48.6 kω X5.0 Q + ( 0.5) + 0.65 ma β 40 or 6.38 kω 0 on 0 5 0.65

For 3, then.3 O β 40 O Q ( 0.5) 0.439 ma + β 4 O + O.3.07 kω 0.439 O X5. 50 00 33.3 kω 50 ( 0) 5.67 50 + 00.67 5. μ A 33.3 + 0. ma,.3 ma 5.3 5.74 3.5 0.5 Now 0.5+...90 ma 8.8 μ A.88 ma. 0.088.0 ma 0.5 4.08 kω.0.5..5.9.9 5.97 kω.88 X5. We find 40 kω + + 0.05 Then 0.5 +.7 3.7 3 34 kω 0.05 Also 0.5 + 4 + 5.7 Δ 5.7.7 4 4 so 80 kω 0.05 and 40 80 34 6 kω + 4+ 4 9 + 9 Then 6 kω 0.5 Q Test Your Understanding xercises TYU5. β α + β 75 For β 75, α 0.9868 76

5 For β 5, α 0.99 6 TYU5. + β 80 so + β 8.5 then β 80.3 0.00960 Now β 80.5 α 0.9877 + β 8.5 α 0.9877 8 70 ma TYU5.3 α 0.990 β 99 α 0.990.5 Now.5 μ A + β 00 and α 0.990.5.3 ma TYU5.4 A 50 ro For 0. ma ro.5 M Ω For.0 ma ro 50 kω For 0 ma r 5 kω o TYU5.5 O + A At, ma (a) For A 75, O + O 0.9868 ma 75 Then, at 0 0 ( 0.9868) +. ma 75 (b) For A 50, O + O 0.9934 ma 50 0 At 0, ( 0.9934) +.06 ma 50 TYU5.6 O O so O n β 3 00 30 39 TYU5.7 (a) For 0. < 0, O 5 and P 0 (b) For 3.6, transistor is driven into saturation, so 3.6 + ( sat) 0. 4.53 ma and 0.9 ma 0.64 0.440

0.9 Note that.4 < β which shows that the transistor is indeed driven into saturation. Now, 4.53 P + ( sat) 4.53 + 0.9 0. 5.35 mw TYU5.8 For 0 O 9.77 Then 9.77 ma and 0.95 ma 0.44 β 50 Now + ( 0.95)( 0.64) + or 0.85 Also P + 0.95 + 9.77 6.98 mw TYU5.9 + 0 6.34 0.95 ma 4 ( 0) And or 0.930 0 0.95 α 0.9839 Now α 0.9839 and β 6 0.930 α 0.9839 Also 0.930 0.95 5 μ A 6.34 7.04 and TYU5.0 0.6 ma 8.65.8 μa 5 ( 50)(.8 μa).4 ma + 0 (.65)( 8) 0 (.397)( 4) 0 5.44 ( 5.44) 6.4 TYU5. + + or + + ( + β ) Then + ( + β ) 0+ ( 76) or 5. μ A Also ( 75)( 5. μ A).3 ma and ( 76)( 5. μ A).5 ma Now + 8 +.3.5.5 6.03 TYU5. 5. 5. + on + We have

5 0 7 5 on.. so 0 or 08. ma Then ( 0)( 0. 8) 8. ma 5. And 0. 38 kω 38 Ω 8. 8 TYU5.3 + on +.. ma 0.043 ma 5 β 50 and (.).6 ma + β 5 Then (.) + + ( 0.043)( 50) or 5.06..8 Now TYU5.4 (a) For v 0, i i 0, vo, P 0 v (b) For v, i 47. ma 0.4 ( sat) 0. i.38 A 5 vo 0. and P i + i ( sat) 0.047 +.38 0. 0.7 W TYU5.5.5 (a) For Q.5, Q.5 ma Q.5 Q Q.5 μ A β 00 Then 344 kω 0.05 (b) Q is independent of β. For Q, ma β β 60 0.05 4 For Q 4, 0.5 ma 0.5 β β 40 0.05 So 40 β 60 TYU5.6 Q 0.005375 ma 800

For β 75, β ( 75)( 0.005375) Q Q Or Q 0.403 ma For β 50, Q ( 50)( 0.005375) Or Q 0.806 ma Largest Q Smallest Q For β 50, 4.96 kω 0.806 4 For β 75,.48 kω 0.403.5 For a nominal Q 0.604 ma and Q.5, 4.4 kω 0.604 Now for Q 0.403 ma, Q 5 ( 0.403)( 4.4) 3.33 For Q 0.806 ma, Q 5 ( 0.806)( 4.4).66 So, for 4.4 kω,.66 3.33 Q TYU5.7 (a) β 00 Q Q () 0.99 ma + β 0 Q Q 9.90 μ A + β 0 ( 0.0099)( 50) Q or 0.495 3 Q 0.99 0 T ln ( 0.06) ln 4 S 3 0 or 0.630 Then 0.495 0.630.3 0 ( 0.99)( 5) 5.05 Then Q 5.05 (.3) 6.8 (b) Q Q ma, Q 0.096 ma + β 5 ( 0.096)( 50) 0.98 β 50 Q Q () 0.98 ma + β 5 3 0.98 0 ( 0.06) ln 0.69 4 3 0 0.98 0.69.6 0 0.98 5 5. 5..6 6.7 Q TYU5.8 Q Q + β and

Q ( 0) Q( 0.65) Q( 0.65) + β 0 ( 0.99) + β Q 5 ( 0.99) Q( 4) 5 3.97Q 5 Q Q( 0.65) + Q( 3.97) 5 3.805 + 5.7 Q Q Q Q Then 3 5.7 3.805 Q which yields 0 Q Q ma