ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
|
|
- Δαμοκλής Παπάζογλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t + 3). x[n] = δ[n + ] + δ[n] δ[n ] + δ[n 3] 3. Memoryless Linear Causal Time-invariant System YES NO YES NO System NO YES NO YES 5. (a) y[n] = y(t) =, n = 0 4, n = 6, n =, 3, 4, 5 4, n = 6, n = 7 0, otherwise ( e t ) u(t) One way to express the answer is y(t) = ( ) e (t+) u(t + ) ( ) e (t 3) u(t 3) and another is y(t) = 0, t < e e t ), t < 3 (e6 e ) e t, t 3
2 Answers to problems on Midterm Examination #, Spring 009. (a) X(ω) = x(t)e jω t dt x(t) = π X(ω)ejω t dω. x(t) = + 6 k= sin ( π k) cos ( k πt) π k V (Ω) = 6 ω sin ( 3 ω) e j(9/)ω (a) x(t) = 3 cos ( 6t + π 4 5. (a) V (ω) = (jω+3)(jω+) v(t) = [ e 3t + e t ] u(t) )
3 Answers to problems on Midterm Examination #3, Spring 009. W (Ω) = ( e jωn ) e jω ( e jω ). 3. H(ω) is given by y(t) = 3 + cos (3t) H(ω) 3 ( sin π ) 3t ω 5. y[n] = 3 ( )n
4 Answers to problems on the Final Examination, Spring 009. x(t) = u(t + ) r(t + ) + r(t ) r(t 3) u(t 3) r(t 4) + r(t 5). 3. (a) X k = { 0, k = 0,, 4, 6, k =, 3, 5, 7 x[n] = ( π ) cos 4 n + ( ) 3π cos 4 n y(t) = 3 cos(t) 5. y(t) = (e t e t )u(t) + (e (t ) e (t ) )u(t ) 6. y(t) = (( t 3 ) e t + 7 ) e 3t u(t)
5 Answers to problems on Midterm Examination #, Fall 009. (a) x[n] = u[n] + 4 u[n ] 3 u[n 5] 3 u[n 6] x[n] = δ[n] + 6 (δ[n ] + δ[n ] + δ[n 3] + δ[n 4]) + 3 δ[n 5]. (a) IS MEMORYLESS HAS MEMORY (c) LINEAR (d) LINEAR (e) NONCAUSAL (f) CAUSAL (g) TIME-INVARIANT (h) TIME-VARYING 3. y(t) y[n] =, n = 3, n = 6, n = 3 4, n = 4 0, n = 5 6, n = 6 5, n = 7 3, n = 8 0, otherwise t 5. (a) y(t) = e t ( e t ) u(t) y(t) = e (t ) ( e (t )) u(t )
6 Answers to problems on Midterm Examination #, Fall 009. Sum / Sinusoids / Periodic / Finite. x(t) = π + k= 4 π( 4k ) cos(kt) 3. x(t) = 3 π cos ( 5t + 3π 4 ) x(t) = 3 e t u(t) 3 e t u( t) 5. α = /, =
7 Answers to problems on Midterm Examination #3, Fall 009. or v[n] = v[n] = ( ) n u[n] + ( ) n u[ n] ( ) n u[n] + n u[ n]. (a) X 0 = 4, X =, X = 0, X 3 = x[n] = + cos ( π n) 3. (a) X(Ω) = + e jωn + e j3ωn (c) or v[n] = x[n] + x[n 4] + x[n 8] + + x[n 76] 9 v[n] = x[n 4k] k=0 j38ω sin(40ω) V (Ω) = X(Ω)e sin(ω) ( y(t) = 8 4 cos 3t π ) + 4 cos(000t π) 5. Set H(ω) to be H(ω) 0 ω
8 Answers to problems on the Final Examination, Fall 009 n y[n] n y[n] n y[n] (a) y (t) y (t) Y (ω) = e j(ω+) X(ω + ) + e j(ω ) X(ω ) Y (ω) = e jω [X(ω + ) + X(ω )] (c) Both systems are linear. (d) Both systems are time-varying. 3. y[n] = cos(π n) 3 y(t) = [ e 5(t ) + e 3(t )] u(t ) 5. y(t) = + e t sin(t), t 0
9 Answers to problems on the Midterm Examination #, Spring 0. x(t) = r(t + ) + r(t ) + r(t ) r(t 4) + u(t 4) u(t 6). 3. (a) (c) (d) 5. y[n] = 0, n 0, n = 4, n = 3, n = 3, n = 4, n = 5 0, n = 6, n = 7, n = 8 0, n = 9 y(t) = e t u(t) y(t) = e (t ) u(t ) y(t) = ( e t ) u(t) ) y(t) = 3 ( e (t ) u(t ) y(t) = ( e 6(t 3)) u(t 3) ( e 6(t 6)) u(t 6) y[n] = ( ) n u[n] 3
10 Answers to problems on the Midterm Examination #, Spring 0. x (t) = + ( ) ( ) ( ) k cos(kπt) (kπ) k= ( x (t) = ) ( ) k sin(kπt) kπ k=. (a) 3. sgn(t) = u(t) u( t) ( ) SGN(ω) = jω + πδ(ω) = jω t jπsgn( ω) ( ) jω + πδ( ω) Y (ω) = jaπδ(ω ω 0 ) + jaπδ(ω + ω 0 ) y(t) = A sin(ω 0 t) 5. X(4π) = X(Ω) = e jω ( e jω) 6. Even
11 Answers to problems on the Final Examination, Spring 0. (a) y(t) = (e t e t )u(t) y(t) = (e (t ) e (t ) )u(t ) (c) y(t) = (e t e t )u(t) e 4 (e (t ) e (t ) )u(t ). y[n] = + cos ( π n ) π 4 3. (a) y(t) = a 0 + ( a cos ( ) 4t π 4 + b sin ( )) 4t π 4 y(t) = cos ( ) 4t π π 4 Y (ω) = 5. y(t) = e t + e 4t for t 0 3e j4 (ω ) e j4 (ω + ) + 9
12 Answers to problems on the Midterm Examination #, Fall 0. (a) TRUE TRUE (c) TRUE (d) TRUE (e) TRUE (f) TRUE. x[n] n x(t) = r(t + 3) u(t + ) r(t + ) + u(t + ) + r(t ) r(t 3) u(t 4) y[n] = ( ( ) n ) u[n] 5. (a) y(t) = ( e t )u(t) ( e (t 3) )u(t 3) y(t) = 3( e (t ) )u(t ) (c) y(t) = ( e t )u(t)
13 Answers to problems on the Midterm Examination #, Fall 0. x(t) = k= ( cos(kπ )) sin(kπt) kπ. (a) X(ω) = /( + ω ) 3. y(t) = /( + t ) Y (ω) π - - π ω x(t) = π cos(ω 0t + θ) 5. (a) y(t + ) = x(t + ) cos(π(t + )) = x(t) cos(πt + 4π) = x(t) cos(πt) = y(t) d k = (c k + c k+ )
14 Answers to problems on the Midterm Examination #3, Fall 0. (a) y[n] = ( ) n cos ( π n) u[n]. (a) X 5 = Y (Ω) = e jω ( e jω) For k = 0,,..., 4 and for k = 6, 7,...,, X k = 0 3. (a) H(Ω) = 4 e jω 5. y[n] = cos ( π n) y[n] = ( 5 ( ) n 4 4 ( ) n ) u[n] 5 y(t) = (t 4 cos π ) 4
15 Answers to problems on the Final Examination, Fall 0. (a) H(Ω) = + cos(ω) y[n] =. Y (ω) = jω+3 3. y(t) = + 4 π cos(πt) (a) ω 0 = y(t) = 6 cos(t) 5. (a) y(t) = ( + e t e 3t ) u(t) y(t) = u(t)
16 Answers to problems on the Midterm Examination #, Fall 0. (a) TRUE TRUE (c) TRUE (d) TRUE (e) FALSE (f) TRUE. (a) x[n] n The plot for part is the same as for part (a). 3. x(t) = u(t + 3) r(t + 3) + 4r(t + ) u(t + ) r(t + ) + u(t ) u(t ) + 3r(t ) 3r(t 3) u(t 4) y[n] = 50 3 ((.06)n+ ) u[n] 5. (a) y(t) = (e t e t )u(t) y(t) = (e t e t )u(t) e 4 (e (t ) e (t ) )u(t )
17 Answers to problems on the Midterm Examination #, Fall 0. (a) x(t) = k= k 0 j ( cos kπ ( )) kπ e jkπt 3. (a) y(t) = k= ( ( ) ) kπ cos sin(kπt) kπ 3 e / e jω jω + (/4) e / π(jt (/4)) 3. (a) In this problem you derive that x(t) =. x(t) = 3 cos(6t + (π/4)) (a) v(t) = jtx(t) y(t) = jte jt x(t) 5. (a) We have Z(ω) = X L (ω) + X R (ω) + X L (ω ω ) + X L (ω + ω ) X R (ω ω ) X R (ω + ω ) where ω = 76000π. Z(ω) 3 30, 000π 30, 000π ω (c) y (t)
18 Answers to problems on the Midterm Examination #3, Fall 0. (a) Y (Ω) = X(Ω) + X( Ω)ejΩ Y (Ω) is even and purely real. Y (Ω) = 3/4 (5/4) cos(ω). (a) x[n] is periodic with period N = 4c (c) X = 4c and X 3 = 4c ( ) n u[n] y A (t) = 5 ( cos t + π ) 4 y B (t) = cos(3t π) 6 y(t) = cos(6t) cos(0t) + 35 cos(4t)
19 Answers to problems on the Final Examination, Fall 0. (a) y(t) = y 0 (t) y 0 (t ) = u(t) u(t ) u(t 4) + u(t 5) x (t) = x 0 (t+) x 0 (t ) so that y(t) = u(t+) u(t ) u(t 3)+u(t 5). y[n] = 4A cos ( π n) if x[n] = x [n], and y[n] = 0 if x[n] = x [n], so that we differentiate between the two possibilities based on whether or not y[n] = 0 or a multiple of cos ( π n). 3. y(t) = π cos(πt) y(t) = 4 ( e t e 4t) u(t) 4e ( e (t 3) e 4(t 3)) u(t 3) 5. y(t) = ( 5 e 3t + 3 e 5t ) u(t)
20 Answers to problems on Midterm Examination #, Spring 03. x(t) = r(t + ) + r(t) r(t ) + r(t ) + u(t ) r(t 3) + r(t 4) + u(t 4) u(t 6). x[n] n 3. (a) Causal, time-invariant Noncausal, time-invariant (c) Causal, time-invariant (d) Causal, time-varying 5. (a) 6. (a) y[n] = 9, n = 3, n = 7, n = 3 3, n = 4, n = 5 0, otherwise y(t) = 6 ( e t e 3t) u(t) y(t) = ( e (t ) e 3(t )) u(t ) ( e (t ) e 3(t )) u(t ) t, 0 t < y(t) = 4 t, t < 4 0, t < 0 or t 4 x(t) = p(t ) p(t 4) p(t 7)
21 Answers to problems on Midterm Examination #, Spring (a) TRUE x(t) = 6 + x e (t) = 3 + x o (t) = k= l= k= k 0 8 kπ sin ( 3kπ 4 ) e j kπ 4 t 4 cos ((l )πt) (l ) π ( ) k kπ sin(kπt) Y (ω) = ω (9 + ω ) The sketches for (a) and are as follows. (The curved portion of the plot in has formula + cos(πω/4).) 5. The sketch of Y (ω) is as follows.
22 Y (ω) 4π ω
23 Answers to problems on Midterm Examination #3, Spring 03. Y (Ω) =. (a) {X 0, X, X, X 3 } = {4, j, 0, j} c 0 =, c = j/, c = 0, c 3 = j/ (c) x[n] = sin(πn/) /8 ( + 4 e jω) ( y(t) = 8 4 cos 0.5t π ) ( ) sin t π 3 y(t) = 4 cos(5t) + cos(0t) cos(5t) y[n] = 3 4 ( )n
24 Answers to problems on the Final Examination, Spring 03. (a) y(t) = e t u(t) y(t) = e (t ) u(t ) e (t 4) u(t 4). y(t) = 3 cos(t) 3. X(ω) is purely real and with phase equal to 0 for all ω. The magnitude X(ω) is the same as X(ω), shown in the plot below. The output that results when p[n] is the input is shown below. 4 6y[n] n 8 Therefore, the smallest n0 with no overlap of pulse responses is (a) X(0) = 4, X(π/) =, X(π) = 0, X(3π/) = X0 = 4, X =, X = 0, X3 =
25 Answers to problems on Midterm Examination #, Fall 04. x(t) = r(t + ) r(t) u(t ) + r(t 4) r(t 5). 4 x(t) t 3. (a) y(t) = r(t) 4r(t ) + r(t 4) 4 y(t) 3 5 t 5. (a) { 4 ( ( y(t) = π + sin π t)), < t < 3 0, otherwise Ĥ(ω) = + jω y(t) = 3 ( + cos t 3π 4 ) 6. y(t) = u(t ) u(t 4)
26 Answers to problems on Midterm Examination #, Fall 04. (a) y(t) = 3 3t 3 5t 4t u(t) e 3e + e y(t) = 3 3(t ) 3 5(t ) 4(t ) u(t ) e 3e + e. y(t) = e t + e 4t, 3. t t y(t) = 3t + e u(t) 4 4 A sketch of the block diagram is as follows. 5. (a) No. There is a pole at s = 0. y(t) = tu(t)
27 Answers to problems on Midterm Examination #3, Fall 04.. (a) 3. x(t) = n= ( ( nπ cos nπ 3 X(ω) = ω y(t) = t )) sin(nπt) 4(ω + 3) ( (ω + 3) ), ω + 3 Y (ω) = 4(ω 3) ( (ω 3) ), ω 3 0, otherwise y(t) = (t 4 cos π ) 4
28 Answers to problems on the Final Examination, Fall 04. y(t) = ( e t )u(t) + ( e (t ) )u(t ) ( e (t ) )u(t ) ( e (t 3) )u(t 3). y(t) = ( 7 e t 3 ) e t u(t) 3. (a) 0 Ĥ(ω) = h(t)e jωt dt = e jωt dt = [ e j0ω ] 0 jω = jω ( e j0ω ) = jω (ej5ω e j5ω )e j5ω = j sin(5ω) jω e j5ω = sin(5ω) e j5ω ω y(t) = 0 ln() y[n] = 3 cos ( π 5 n )
29 Answers to problems on Midterm Examination #, Fall 05. x(t) = r(t + ) + r(t) + u(t ) r(t 4) + r(t 5). x(t) t 3. (a) Linear, time-invariant, causal, has memory Linear, time-invarient, non-causal, has memory y[n] n y(t) = 0, t < 0 t, 0 t < t + t, t <, t < 4 5 t, 4 t < 5 0, 5 t 0, t < ( y(t) = ) e (t ), t < 6 ( e 8 ), 6 t y(t) = [ e (t ) u(t ) e (t 3) u(t 3) ]
30 Answers to problems on Midterm Examination #, Fall 05. (a) T = (c) Even symmetry. (a) 3. x(t) = + X(ω) = y(t) = k= ( ) kπ kπ sin cos(kπt) ( + jω) e ( +jω) jω ω ( jt) e ( jt) 37 4 jt t ( x(t) = 8 cos 4t + π ) 6 (a) v(t) = x(t ) y(t) = x(t) (e t u(t)) 5. X(Ω) = 3/4 (5/4) cos(ω)
31 Answers to problems on Midterm Examination #, Fall 06. (a) TRUE FALSE (c) TRUE (d) TRUE (e) TRUE (f) TRUE. (a) x[n] n x[n] n 3. x(t) = u(t + 3) r(t + ) + 4r(t ) 3r(t 3) u(t 4) (a) 5. (a) y[n] = ( y[n] = ( ( ) n ) u[n ] ( ) n ) ( u[n ] y(t) = ( e t e 3t) u(t) y(t) = ( e t e 3t) u(t) ( ) ) n u[n 3]
32 Answers to problems on the Final Examination, Fall y(t) = + 9 ( 4 cos 4t π ) y(t) = 3 ( π cos n π ) 6 y(t) = π cos ( π t ) y(t) = 6(e t e t )u(t) 6(e (t 3) e (t 3) )u(t 3) y(t) = ( e t + e 4t) u(t)
33 Answers to problems on Midterm Examination #, Fall 06. (a) (c) c k is given by where ω 0 = π/t (d) x(t) is given by where ω 0 = π/t.. 3. (a) v(t) = t x(t) x(t) = 3 sin(5t) 5. (a) X(ω) = x(t)e jωt dt x(t) = X(ω)e jωt dω π c k = T x(t) = x(t) = k= T 0 x(t)e jkω 0t dt k= c k e jkω 0t ( ) ( ) 8 kπ kπ kπ sin cos 3 3 t V (ω) = j ω cos ( ) ( ω sin ω ) ω Y (ω) = 6 (jω + 4)(jω + ) y(t) = (e t e 4t )u(t)
34 Answers to problems on Midterm Examination #3, Fall Y (Ω) = e j4ω ( 3 e jω) x[n] = 3 4 cos ( π n ) ( y(t) = 6 + cos t 7π ) ( ) 3 6 sin t π y(t) = cos(πt) y[n] = ( π cos n 5π ) 6
35 Answers to problems on the Final Examination, Fall 06. (a) (c). 3. y(t) = 3 ( e 3t )u(t) y(t) = ( e 3(t ) )u(t ) ( e 3(t ) )u(t ) ( e 3(t 6) )u(t 6) y(t) = 3 y(t) = π sin(πt) (a) X(0) = 6, X(π/) = 0, X(π) =, X(3π/) = 0 X 0 = 6, X = 0, X =, X 3 = 0
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye
ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Tables in Signals and Systems
ables in Signals and Systems Magnus Lundberg Revised October 999 Contents I Continuous-time Fourier series I-A Properties of Fourier series........................... I-B Fourier series table................................
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
y[n] ay[n 1] = x[n] + βx[n 1] (6)
Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n
Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ : Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 5: Μετασχηματισμοί Fourier σε διακριτά σήματα!"#!"#! "#$% Σημειώσεις
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε
Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials
Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne