Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Σχετικά έγγραφα
Supporting Information

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Electronic Supplementary Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Electronic Supplementary Information

Supporting Information

Supporting Information. Experimental section

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information. Experimental section

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting information

Supporting Information for

Supporting Information

Supporting Information for

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Electronic Supplementary Information (ESI)

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Experimental procedure

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supplementary Material

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

gem-dichloroalkenes for the Construction of 3-Arylchromones

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Aerobic cross-dehydrogenative coupling of terminal alkynes and tertiary amines by a combined catalyst of Zn 2+ and OMS- 2

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Electronic Supplementary Information

The Free Internet Journal for Organic Chemistry

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Supporting Information

Selective mono reduction of bisphosphine

multicomponent synthesis of 5-amino-4-

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Supporting information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supplementary information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting information

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Jing-Yu Guo, Rui-Han Dai, Wen-Cong Xu, Ruo-Xin Wu and Shi-Kai Tian*

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Supporting Information for

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supplementary material

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Supporting Information

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Jinwu Zhao,* Jingxiu Xu, Jiaxi Chen, Xiaoqin Wang and Minghua He School of Pharmacy, Guangdong Medical College, Dongguan 523808, China Table of Contents 1. General information... s2 2. Experimental procedure for the coupling of amines and sodium sulfinates... s2 3. Characterization data for products... s2 4. References... s6 5. Copies of product NMR spectra... s7 s1

1. General information 1 H and 13 C NMR spectra were recorded on a Bruker DRX-400 spectrometer; CDCl 3 was used as solvent and TMS as an internal standard. Mass spectra were recorded on a Finnigan Trace DSQ GC/MS spectrometer at an ionization voltage of 70 ev and equipped with a DB-WAX capillary column (internal diameter = 0.25 mm, length = 30 m). High resolution mass spectra were recorded with a Thermo MAT95XP (EI) mass spectrometer. 2. Experimental procedure for the coupling of amines and sodium sulfinates A 20 ml round-bottomed flask was charged with a magnetic stir-bar, sodium sulfinate 1 (1 mmol) and 0.5 ml water. After the solid dissolved completely, TBAI (20 mol%), TBHP (3.0 equiv), amine 2 (1.5 mmol) and 1.5 ml acetonitrile were added. The reaction mixture was stirred magnetically at 50 o C for 8h. When the reaction was finished, the solvent was removed in vacuo, and the residue was purified by flash column (petroleum ether/ethyl acetate) 3. Characterization data for products 4-tosylmorpholine (3aa) 1 1 H NMR (400 MHz, CDCl 3) δ 7.64 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 3.85 3.58 (m, 2H), 3.16 2.91 (m, 2H), 2.45 (s, 2H). 13 C NMR (101 MHz, CDCl 3) δ 143.9, 132.1, 129.7, 127.9, 66.1, 46.0, 21.5. MS (EI, 70 ev) m/z (%): 241(M + ), 198, 155, 106, 91, 77. N,4-dimethylbenzenesulfonamide (3ab) 1 1 H NMR (400 MHz, CDCl 3) δ 7.75 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.81 (d, J = 5.6 Hz, 1H), 2.62 (d, J = 5.3 Hz, 3H), 2.42 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.4, 135.73, 129.7, 127.2, 29.2, 21.5. MS (EI, 70 ev) m/z (%): 185(M + ), 155, 121, 91, 77. N-butyl-4-methylbenzenesulfonamide (3ac) 1. 1 H NMR (400 MHz, CDCl 3) δ 7.76 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 4.77 (s, 1H), 2.93 (dd, J = 6.8, 2.1 Hz, 2H), 2.43 (s, 3H), 1.50 1.36 (m, 2H), 1.34 1.23 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.3, 137.1, 129.7, 127.1, 42.9, 31.6, 21.5, 19.7, 13.5. MS (EI, 70 ev) m/z (%): 227(M + ), 184, 155, 91, 77. N-sec-butyl-4-methylbenzenesulfonamide (3ad) 1 1 H NMR (400 MHz, CDCl 3) δ 7.71 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 4.66 (d, J = 8.0 Hz, 1H), 3.22 3.10 (m, 1H), 2.35 (s, 3H), 1.38 1.26 (m, 2H), 0.94 (d, J = 6.6 Hz, 3H), 0.72 (t, J = 7.5 Hz, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.1, 138.4, 129.6, 127.1, 51.4, 30.3, 21.5, 21.1, 9.9. MS (EI, 70 ev) m/z (%): 227 (M + ), 198, 155, 91, 77. s2

N-tert-butyl-4-methylbenzenesulfonamide (3ae) 1 1 H NMR (400 MHz, CDCl 3) δ 7.79 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 7.5 Hz, 2H), 4.84 (s, 1H), 2.42 (s, 3H), 1.22 (s, 9H). 13 C NMR (101 MHz, CDCl 3) δ 142.8, 140.6, 129.5, 127.0, 54.6, 30.2, 21.5. MS (EI, 70 ev) m/z (%): 227 (M + ), 212, 155, 91, 77. N-benzyl-4-methylbenzenesulfonamide(3af) 1 1 H NMR (400 MHz, CDCl 3) δ 7.76 (d, J = 8.0 Hz, 2H), 7.37 7.12 (m, 8H), 5.09 (s, 1H), 4.12 (d, J = 5.6 Hz, 2H), 2.44 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.5, 137.0, 136.4, 129.8, 128.7, 127.9, 127.8, 127.2, 47.3, 21.6. MS (EI, 70 ev) m/z (%): 261 (M + ), 209, 176, 155, 106, 79. N-allyl-4-methylbenzenesulfonamide (3ag) 1 1 H NMR (400 MHz, CDCl 3) δ 7.76 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.7 Hz, 2H), 5.73 (ddt, J = 16.3, 10.9, 5.7 Hz, 1H), 5.13 (dd, J = 28.2, 13.6 Hz, 2H), 4.62 (s, 1H), 3.59 (s, 2H), 2.43 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.6, 137.1, 133.1, 129.8, 127.2, 117.8, 45.8, 21.6. MS (EI, 70 ev) m/z (%): 211(M + ), 184, 155, 91, 77. N,N,4-trimethylbenzenesulfonamide(3ah) 1 1 H NMR (400 MHz, CDCl 3) δ 7.67 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 2.69 (s, 6H), 2.44 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.5, 132.5, 129.6, 127.8, 38.0, 21.5. MS (EI, 70 ev) m/z (%): 199(M + ), 184, 155, 91, 77. N,N-diethyl-4-methylbenzenesulfonamide (3ai) 1 1 H NMR (400 MHz, CDCl 3) δ 7.69 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 2.4 Hz, 2H), 3.22 (q, J = 7.1 Hz, 4H), 2.41 (s, 3H), 1.12 (t, J = 7.1 Hz, 6H). 13 C NMR (101 MHz, CDCl 3) δ 142.8, 137.4, 129.5, 127.0, 42.0, 21.4, 14.1. MS (EI, 70 ev) m/z (%): 227(M + ), 184, 155, 91, 77. N,N-diisobutyl-4-methylbenzenesulfonamide(3aj) 1. 1 H NMR (400 MHz, CDCl 3) δ 7.68 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.85 (d, J = 7.5 Hz, 4H), 2.42 (s, 3H), 1.97 1.81 (m, 2H), 0.90 (s, 7H), 0.88 (s, 7H). 13 C NMR (101 MHz, CDCl 3) δ 142.8, 136.7, 129.407, 127.3, 57.2, 27.3, 21.4, 20.2. MS (EI, 70 ev) m/z (%): 283(M + ), 240, 184, 155, 91, 77. s3

1-tosylpyrrolidine (3ak) 1 1 H NMR (400 MHz, CDCl 3) δ 7.72 (dd, J = 8.2, 2.4 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 3.24 (t, J = 6.7 Hz, 4H), 2.43 (s, 3H), 1.75 (t, J = 6.8 Hz, 4H). 13 C NMR (101 MHz, CDCl 3) δ 143.3, 134.0, 129.6, 127.6, 47.9, 25.2, 21.5. MS (EI, 70 ev) m/z (%): 225(M + ), 155, 91, 77. N-benzyl-N,4-dimethylbenzenesulfonamide (3al) 1 1 H NMR (400 MHz, CDCl 3) δ 7.72 (d, J = 8.2 Hz, 2H), 7.39 7.26 (m, 7H), 4.12 (s, 2H), 2.58 (s, 3H), 2.45 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.4, 135.7, 134.4, 129.7, 128.6, 128.3, 127.8, 127.5, 54.1, 34.3, 21.5. 4-methyl-N-phenylbenzenesulfonamide(3am) 1 1 H NMR (400 MHz, CDCl 3) δ 7.91 7.54 (m, 3H), 7.42 6.85 (m, 7H), 2.31 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.8, 136.7, 136.0, 129.6, 129.2, 127.3, 125.1, 121.3, 21.5. MS (EI, 70 ev) m/z (%): 247(M + ), 182, 155, 91, 77. N,4-dimethyl-N-phenylbenzenesulfonamide(3an) 1 1 H NMR (400 MHz, CDCl 3) δ 7.42 (d, J = 8.4 Hz, 2H), 7.33 7.16 (m, 6H), 7.14 7.04 (m, 2H), 3.16 (s, 3H), 2.41 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.5, 141.6, 133.6, 129.3, 128.8, 127.9, 127.2, 126.6, 38.0, 21.5. MS (EI, 70 ev) m/z (%): 261(M + ), 197, 155, 106, 91, 77. 1-tosylindoline (3ao) 1 1 H NMR (400 MHz, CDCl 3) δ 7.72 (dd, J = 8.2, 2.4 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 3.24 (t, J = 6.7 Hz, 4H), 2.43 (s, 3H), 1.75 (t, J = 6.8 Hz, 4H). 13 C NMR (101 MHz, CDCl 3) δ 143.3, 134.0, 129.6, 127.6, 47.9, 25.2, 21.5. MS (EI, 70 ev) m/z (%): 273(M + ), 226, 118, 91, 77. N-(2-hydroxypropyl)-4-methylbenzenesulfonamide (3ap) 1 1 H NMR (400 MHz, CDCl 3) δ 7.75 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.27 (s, 1H), 3.95 3.85 (m, 1H), 3.03 2.95 (m, 1H), 2.84 2.67 (m, 1H), 2.43 (s, 3H), 2.29 (s, 1H), 1.15 (d, J = 6.3 Hz, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.6, 136.8, 129.8, 127.1, 66.6, 50.1, 21.6, 20.6. MS (EI, 70 ev) m/z (%): 229(M + ), 198, 155, 91, 77. s4

N-(2-hydroxyethyl)-N,4-dimethylbenzenesulfonamide(3aq) 1 1 H NMR (400 MHz, CDCl 3) δ 7.73 7.65 (m, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.77 (t, J = 5.3 Hz, 2H), 3.16 (t, J = 5.3 Hz, 2H), 2.83 (s, 3H), 2.44 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.7, 134.3, 129.8, 127.5, 60.4, 52.6, 36.2, 21.6. MS (EI, 70 ev) m/z (%): 229(M + ), 198, 155, 91, 77. N-ethyl-N-(4-hydroxybutyl)-4-methylbenzenesulfonamide (3ar) 1 H NMR (400 MHz, CDCl 3) δ 7.69 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 3.66 (t, J = 6.1 Hz, 2H), 3.36 2.92 (m, 4H), 2.42 (s, 3H), 1.85 (s, 1H), 1.70 1.49 (m, 4H), 1.10 (t, J = 7.2 Hz, 3H). 13 C NMR (101 MHz, CDCl 3) δ 143.0, 137.1, 129.6, 127.0, 62.3, 47.3, 42.7, 29.6, 25.2, 21.5, 14.0. M S (EI, 70 ev) m/z (%): 271(M + ), 240, 155, 91, 77. HRMS (EI) m/z: calcd for: C 13H 21NO 3S (M) + 271.1242, Found: 271.1238. 4-(naphthalen-2-ylsulfonyl)morpholine (3ba) 2 1 H NMR (400 MHz, CDCl 3) δ 8.34 (s, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.61 (p, J = 7.1 Hz, 2H), 3.71 (t, J = 4.7 Hz, 4H), 3.05 (t, J = 4.6 Hz, 4H). 13 C NMR (101 MHz, CDCl 3) δ 134.9, 132.3, 132.2, 129.3, 129.2, 129.0, 128.0, 127.7, 123.0, 66.1, 46.1. M S (EI, 70 ev) m/z (%): 277(M + ), 191, 127, 86, 56. 4-((4-chlorophenyl)sulfonyl)morpholine (3ca) 3 1 H NMR (400 MHz, CDCl 3) δ 7.62 (dd, J = 66.7, 8.3 Hz, 1H), 3.72 (t, J = 4.6 Hz, 1H), 2.99 (t, J = 4.5 Hz, 1H). 13 C NMR (101 MHz, CDCl 3) δ 139.5, 133.7, 129.5, 129.2, 66.0, 45.9. M S (EI, 70 ev) m/z (%): 261(M + ), 218, 175, 111, 86, 75, 56. 4-((4-methoxyphenyl)sulfonyl)morpholine (3da) 4 1 H NMR (400 MHz, CDCl 3) δ 7.76 7.60 (m, 2H), 7.11 6.91 (m, 21H), 3.88 (s, 1H), 3.73 (t, J = 4.8 Hz, 4H), 2.97 (t, J = 4.7 Hz, 4H). 13 C NMR (101 MHz, CDCl 3) δ 163.2, 130.0, 126.6, 114.3, 66.1, 55.7, 46.0. M S (EI, 70 ev) m/z (%): 257(M + ), 171, 122, 107, 86, 77, 56. 4-((4-(trifluoromethyl)phenyl)sulfonyl)morpholine (3ea) 1 H NMR (400 MHz, CDCl 3) δ 7.90 (d, J = 8.2 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 3.75 (t, J = 4.7 Hz, 4H), 3.04 (t, J = 4.7 Hz, 4H). 13 C NMR s5

(101 MHz, CDCl 3) δ 139.0, 135.2, 134.9, 134.5, 134.2, 128.3, 126.4, 126.3, 126.3, 126.3, 124.5, 121.8, 119.1, 66.0, 45.9. M S (EI, 70 ev) m/z (%): 295(M + ), 252, 209, 145, 86, 56. HRMS (EI) m/z: calcd for: C 11H 12F 3NO 3S(M) + 295.0490, Found: 295.0492. 4-(methylsulfonyl)morpholine (3fa) 1 1 H NMR (400 MHz, CDCl 3) δ 3.87 3.69 (m, 4H), 3.34 3.13 (m, 4H), 2.79 (s, 3H). 13 C NMR (101 MHz, CDCl 3) δ 66.3, 45.8, 34.0. MS (EI, 70 ev) m/z (%): 165(M + ), 122, 107, 86. 4-(ethylsulfonyl)morpholine (3ga) 1 1 H NMR (400 MHz, CDCl 3) δ 3.90 3.57 (m, 4H), 3.54 3.16 (m, 4H), 2.97 (q, J = 7.4 Hz, 2H), 1.39 (t, J = 7.4 Hz, 3H). 13 C NMR (101 MHz, CDCl 3) δ 66.6, 45.9, 43.5, 7.7. MS (EI, 70 ev) m/z (%): 179(M + ), 148, 136, 86. 4-(cyclopropylsulfonyl)morpholine (3ha) 1 1 H NMR (400 MHz, CDCl 3) δ 3.93 3.63 (m, 4H), 3.50 3.14 (m, 4H), 2.27 (ddd, J = 12.8, 8.1, 4.8 Hz, 1H), 1.22 1.11 (m, 2H), 1.06 0.94 (m, 2H). 13 C NMR (101 MHz, CDCl 3) δ 66.4, 46.2, 25.0, 4.2. MS (EI, 70 ev) m/z (%): 191(M + ), 160, 148, 105, 86. 4. References (1) X. Tang, L. Huang, C. Qi, X. Wu, W. Wu and H. Jiang, Chem. Commun., 2013, 49, 6102. (2) R. R. Naredla and D. A. Klumpp, Tetrahedron Lett., 2013, 54, 5945 (3) X. Huang, J. Wang, Z. Ni, S. Wang and Y. Pan, Chem. Commun., 2014, 35, 4582 (4) J. R. DeBergh, N. Niljianskul, and S. L. Buchwald, J. Am. Chem. Soc., 2013, 135, 10638. s6

5. Copies of product NMR spectra s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

s30

s31