CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Σχετικά έγγραφα
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) 2 and compare to M.

Homework 3 Solutions

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Section 8.3 Trigonometric Equations

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

w o = R 1 p. (1) R = p =. = 1

Section 7.6 Double and Half Angle Formulas

Areas and Lengths in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Jordan Form of a Square Matrix

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Math 6 SL Probability Distributions Practice Test Mark Scheme

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CRASH COURSE IN PRECALCULUS

Tridiagonal matrices. Gérard MEURANT. October, 2008

Solutions to Exercise Sheet 5

Second Order RLC Filters

EE512: Error Control Coding

2 Composition. Invertible Mappings

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Example Sheet 3 Solutions

Srednicki Chapter 55

Math221: HW# 1 solutions

the total number of electrons passing through the lamp.

Concrete Mathematics Exercises from 30 September 2016

Strain gauge and rosettes

6.3 Forecasting ARMA processes

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

PARTIAL NOTES for 6.1 Trigonometric Identities

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Approximation of distance between locations on earth given by latitude and longitude

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Section 9.2 Polar Equations and Graphs

[1] P Q. Fig. 3.1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Numerical Analysis FMN011

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

The Jordan Form of Complex Tridiagonal Matrices

The Simply Typed Lambda Calculus

Other Test Constructions: Likelihood Ratio & Bayes Tests

If we restrict the domain of y = sin x to [ π 2, π 2

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

derivation of the Laplacian from rectangular to spherical coordinates

MathCity.org Merging man and maths

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Trigonometry 1.TRIGONOMETRIC RATIOS

TMA4115 Matematikk 3

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Lecture 2. Soundness and completeness of propositional logic

EE101: Resonance in RLC circuits

MATRICES

Notes on the Open Economy

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Trigonometric Formula Sheet

Quadratic Expressions

C.S. 430 Assignment 6, Sample Solutions

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

D Alembert s Solution to the Wave Equation

Lecture 6 Mohr s Circle for Plane Stress

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Inverse trigonometric functions & General Solution of Trigonometric Equations

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Reminders: linear functions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

Capacitors - Capacitance, Charge and Potential Difference

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Differentiation exercise show differential equation

Derivation of Optical-Bloch Equations

Derivations of Useful Trigonometric Identities

Uniform Convergence of Fourier Series Michael Taylor

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Transcript:

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3 7 3 Thus, x 1 5 4 0 1 8 y 7 3 7 7 1 4 3 x 4 and y 3. Use matrices to solve: p + 5q + 14.6 3.1p + 1.7 q +.06 p + 5q 14.6 3.1p + 1.7 q.06 Hence, 5 p 14.6 3.1 1.7 q.06 The inverse of 5 3.1 1.7 is: 1 1.7 5 1 1.7 5 3.4 15.5 3.1 1.1 3.1 Thus, p 1 1.7 5 14.6 1 14.5 q 1.1 3.1.06 1.1 41.14 1. 3.4 p 1. and q 3.4 816

3. Use matrices to solve: x + y + 3z 5 x 3y z 3 3x + 4y + 5z 3 Since x + y + 3z 5 x 3y z 3 3x + 4y + 5z 3, 1 3 x 5 3 1 y 3 3 4 5 z 3 Matrix of cofactors is: 11 7 1 14 10 7 7 7 and the transpose of cofactors is: 11 7 7 14 7 1 10 7 1 3 3 1 3 4 5 1( 11) (7) + 3( 1) 8 The inverse of 1 3 3 1 3 4 5 is: 11 7 1 7 14 7 8 1 10 7 Thus, x 11 7 5 8 1 1 1 y 7 14 7 3 8 1 8 8 z 1 10 7 3 56 x 1, y 1 and z 4. Use matrices to solve: 3a + 4b 3c a + b + c 15 7a 5b + 4c 6 Since 3a + 4b 3c a + b + c 15 7a 5b + 4c 6, 3 4 3 a b 15 7 5 4 c 6 817

Matrix of cofactors is: 18 4 1 33 43 14 0 14 and the transpose of cofactors is: 18 1 14 33 0 4 43 14 3 4 3 7 5 4 3(18) 4( ) + 3( 4) 154 The inverse of 3 4 3 7 5 4 is: 18 1 14 1 33 0 154 4 43 14 Thus, a 18 1 14 385.5 1 1 b 33 0 15 539 3.5 154 154 c 4 43 14 610016.5 a.5, b 3.5 and c 6.5 5. Use matrices to solve: p + q + 3r + 7.8 p + 5q r 1.4 5p q + 7r 3.5 Since p + q + 3r 7.8 p + 5q r 1.4 5p q + 7r 3.5 1 3 p 7.8 5 1 q 1.4 5 1 7 r 3.5 Matrix of cofactors is: 34 19 7 17 8 11 17 7 1 and the transpose of cofactors is: 34 17 17 19 8 7 7 11 1 1 3 5 1 5 1 7 1(34) (19) + 3( 7) 85 The inverse of 1 3 5 1 5 1 7 is: 34 17 17 1 19 8 7 85 7 11 1 818

Thus, p 34 17 17 7.8 348.5 4.1 1 1 q 19 8 7 1.4 161.5 1.9 85 85 r 7 11 1 3.5 9.5.7 p 4.1, q 1.9 and r.7 6. In two closed loops of an electrical circuit, the currents flowing are given by the simultaneous equations I 1 + I + 4 5I 1 + 3I 1 Use matrices to solve for I 1 and I I 1 + I 4 5I 1 + 3I 1 Hence, 1 I1 4 5 3 I 1 The inverse of 1 5 3 is: 1 3 1 3 3 10 5 1 7 5 1 Thus, I1 1 3 4 1 14 I 7 5 1 1 7 1 3 I 1 and I 3 7. The relationship between the displacement s, velocity v and acceleration a of a piston is given by the equations s + v + a 4 3s v + 4a 5 3s + v a 4 Use matrices to determine the values of s, v and a. Since s + v + a 4 3s v + 4a 5 819

3s + v a 4 1 s 4 3 1 4 v 5 3 1 a 4 Matrix of cofactors is: 7 15 9 6 7 4 10 7 and the transpose of cofactors is: 7 6 10 15 7 9 4 7 1 3 1 4 3 1 1( 7) ( 15) + (9) 41 The inverse of 1 3 1 4 3 1 is: 7 6 10 1 15 7 41 9 4 7 Thus, s 7 6 10 4 8 1 1 v 15 7 5 13 3 41 41 a 9 4 7 4 164 4 s, v 3 and a 4 8. In a mechanical system, acceleration x, velocity x and distance x are related by the simultaneous equations: 3.4 x+ 7.0 x 13.x 11.39 6.0 x+ 4.0 x+ 3.5x 4.98.7 x+ 6.0 x+ 7.1x 15.91 Use matrices to find the values of x, x and x. Since 3.4 x+ 7.0 x 13.x 11.39 6.0 x+ 4.0 x+ 3.5x 4.98.7 x+ 6.0 x+ 7.1x 15.91, x 3.4 7.0 13. 11.39 6.0 4.0 3.5 x 4.98.7 6.0 7.1 x 15.91 80

Matrix of cofactors is: 7.4 5.05 46.8 18.9 59.78 1.5 77.3 67.3 55.6 and the transpose of cofactors is: 7.4 18.9 77.3 5.05 59.78 67.3 46.8 1.5 55.6 3.4 7.0 13. 6.0 4.0 3.5 3.4(7.4) 7.0 ( 5.05) + ( 13.)( 46.8) 1007.7.7 6.0 7.1 The inverse of 3.4 7.0 13. 6.0 4.0 3.5.7 6.0 7.1 is: 7.4 18.9 77. 1 5.05 59.78 67.3 1007.7 46.8 1.5 55.6 Thus, x 7.4 18.9 77.3 11.39 503.635 0.5 1 1 x 5.05 59.78 67.3 4.98 775.5979 0.77 1007.7 1007.7 x 46.8 1.5 55.6 15.91 1410.178 1.4 x.5, x.77 and x 1.4 81

EXERCISE 0 Page 548 1. Use determinants to solve the simultaneous equations: 3x 5y 17.6 7y x Since 3x 5y + 17.6 x x + 7y x y 1 5 17.6 3 17.6 3 5 7 7 x y 1 13. 30.8 11 13. 11 1. and y 30.8 11.8. Use determinants to solve the simultaneous equations:.3m 4.4n 6.84 8.5n 6.7m 1.3 Since.3m 4.4n 6.84 6.7m + 8.5n 1.3 m n 1 4.4 6.84.3 6.84.3 4.4 8.5 1.3 6.7 1.3 6.7 8.5 m 63.55 9.93 m n 1 63.55 48.657 9.93 6.4 and n 48.657 9.93 4.9 3. Use determinants to solve the simultaneous equations: 3x + 4y + z 10 x 3y + 5z + 9 x + y z 6 Since 3x + 4y + z 10 x 3y + 5z + 9 x + y z 6 8

x y z 1 4 1 10 3 1 10 3 4 10 3 4 1 3 5 9 5 9 3 9 3 5 1 6 1 1 6 1 6 1 1 x y z 1 4( 1) 1(0) 10( 7) 3( 1) 1( 1) 10( 7) 3(0) 4( 1) 10(7) 3( 7) 4( 7) + 1(7) x y z 1 14 8 14 14 Hence, x 14 14 8 1, y 14 and z 14 14 1 4. Use determinants to solve the simultaneous equations: 1.p.3q 3.1r + 10.1 4.7p + 3.8q 5.3r 1.5 3.7p 8.3q + 7.4r + 8.1 Since 1.p.3q 3.1r + 10.1 4.7p + 3.8q 5.3r 1.5 3.7p 8.3q + 7.4r + 8.1 p q r 1.3 3.1 10.1 1. 3.1 10.1 1..3 10.1 1..3 3.1 3.8 5.3 1.5 4.7 5.3 1.5 4.7 3.8 1.5 4.7 3.8 5.3 8.3 7.4 8.1 3.7 7.4 8.1 3.7 8.3 8.1 3.7 8.3 7.4 p q.3(10.17) + 3.1( 71.67) + 10.1( 15.87) 1.(10.17) + 3.1(11.6) + 10.1(54.39) r 1 1.( 71.67) +.3(11.6) + 10.1( 53.07) 1.( 15.87) +.3(54.39) 3.1( 53.07) p q r 1 405.855 117.565 135.85 70.57 Hence, p 405.855 70.57 1.5, q 117.565 70.57 4.5 and r 135.85 70.57.5 83

5. Use determinants to solve the simultaneous equations: x y z 1 + 3 5 0 x y z 19 + 4 3 40 x + y z 59 60 Since x y z 1 + + 3 5 0 (1) x y z 19 + 4 3 40 () x + y z 59 60 (3) Multiplying each term in (1) by 60 gives: 30x 0y + 4z + 3 Multiplying each term in () by 10 gives: 30x + 80y 60z 57 Multiplying each term in (3) by 60 gives: 60x + 60y 60z 59 x y z 1 0 4 3 30 4 3 30 0 3 30 0 4 80 60 57 30 60 57 30 80 57 30 80 60 60 60 59 60 60 59 60 60 59 60 60 60 x y 0(10) 4( 1300) + 3( 100) 30(10) 4(1650) + 3(1800) z 1 30( 1300) + 0(1650) + 3( 3000) 30( 100) + 0(1800) + 4( 3000) x y z 1 5 00 30 600 15 000 7 000 Hence, x 5 00 7 000 7 30 600, y 0 7 000 17 40 and z 15 000 7 000 5 4 6. In a system of forces, the relationship between two forces F 1 and F is given by 5F 1 + 3F + 6 3F 1 + 5F + 18 Use determinants to solve for F 1 and F 84

Since 5F 1 + 3F + 6 3F 1 + 5F + 18 F1 F 1 3 6 5 6 5 3 5 18 3 18 3 5 F1 F 1 4 7 16 F 1 4 16 1.5 and F 7 4.5 16 7. Applying mesh-current analysis to an a.c. circuit results in the following equations: (5 j4) I 1 ( j4) I 100 0 (4 + j3 j4) I ( j4) I 1 Solve the equations for I 1 and I (5 j4) I 1 ( j4) I 100 0 ( j4) I 1 + (4 + j3 j4) I + 0 (5 j4) I 1 + j4 I 100 j4 I 1 + (4 j) I + 0 Hence, I1 I 1 j4 100 (5 j4) 100 (5 j4) j4 (4 j) 0 j4 0 j4 (4 j) I1 I 1 100(4 j) j400 (5 j4)(4 j) j4 ( ) Thus, I 1 I1 I 1 400 j100 j400 3 j1 400 j100 41.31 14.04 3 j1 38.75 33.7 10.77 19.3 A and I j400 400 90 3 j1 38.75 33.7 10.45 56.73 A 85

8. Kirchhoff s laws are used to determine the current equations in an electrical network and show that i 1 + 8i + 3i 3 31 3i 1 i + i 3 5 i 1 3i + i 3 6 Use determinants to solve for i 1, i and i 3 Since i 1 + 8i + 3i 3 + 31 3i 1 i + i 3 + 5 i 1 3i + i 3 6 i i i 8 3 31 1 3 31 1 8 31 1 8 3 1 5 3 1 5 3 5 3 1 3 6 6 3 6 3 i1 i i3 1 8( 16) 3(7) + 31( 1) 1( 16) 3( 8) + 31(4) 1(7) 8( 8) + 31( 5) 1( 1) 8(4) + 3( 5) 1 3 1 i i i 40 19 96 48 1 3 1 Hence, i 1 40 48 5, i 19 48 4 and i 3 96 48 9. The forces in three members of a framework are F 1, F and F 3. They are related by the simultaneous equations shown below. 1.4 F 1 +.8 F +.8 F 3 5.6 4. F 1 1.4 F + 5.6 F 3 35.0 4. F 1 +.8 F 1.4 F 3 5.6 Find the values of F 1, F and F 3 using determinants. 1.4 F 1 +.8 F +.8 F 3 5.6 4. F 1 1.4 F + 5.6 F 3 35.0 4. F 1 +.8 F 1.4 F 3 + 5.6 86

Hence, F1 F F3 1.8.8 5.6 1.4.8 5.6 1.4.8 5.6 1.4.8.8 1.4 5.6 35.0 4. 5.6 35.0 4. 1.4 35.0 4. 1.4 5.6.8 1.4 5.6 4. 1.4 5.6 4..8 5.6 4..8 1.4 F1 F.8( 17.64).8(90.16) 5.6( 13.7) 1.4( 17.64).8(170.5) 5.6( 9.4) F3 1 1.4(90.16).8(170.5) 5.6(17.64) 1.4( 13.7).8( 9.4) +.8(17.64) F1 F F3 1 5.008 337.51 450.016 11.504 Thus, F 1 5.008 11.504 F 337.51 11.504 3 and F 3 450.016 11.504 4 10. Mesh-current analysis produces the following three equations: 0 0 (5 + 3 j4) I (3 j4) I 1 10 90 (3 j4 + ) I (3 j4) I I 1 3 15 0 10 90 (1 + ) I I 3 Solve the equations for the loop currents I 1, I and I 3 Rearranging gives: (8 j4) I 1 (3 j4) I + 0 I 3 0 Hence, (3 j4) I 1 + (5 j4) I I 3 j10 0 I 1 I + 14 I 3 + (15 + j10) I1 I I3 (3 j4) 0 0 (8 j4) 0 0 (8 j4) (3 j4) 0 (5 j4) j10 (3 j4) j10 (3 j4) (5 j4) j10 14 (15 + j10) 0 14 (15 + j10) 0 (15 + j10) 1 (8 j4) (3 j4) 0 (3 j4) (5 j4) 0 14 I1 I (3 j4) (15 + j10) + j140 0 14(5 j4) 4 (8 j4) (15 + j10) + j140 0 14(3 j4) [ ] [ ] [ ] [ ] 87

I3 (8 j4) (5 j4)(15 + j10) j0) + (3 j4) (3 j4)(15 + j10) 0 (3 j4) [ ] [ ] [ ] 1 (8 j4) 14(5 j4) 4 + (3 j4) 14(3 j4) [ ] [ ] I1 I (3 j4) 30 + j10 0 66 j56 (8 j4) 30 + j10 0 4 + j56) [ ] [ ] [ ] [ ] I3 (8 j4) 115 j30 + (3 j4) 85 + j30 40(3 j4) [ ] [ ] 1 (8 j4) 66 j56 + (3 j4) 4 + j56 [ ] [ ] I1 I ( 90 + j360 + j10 + 480) 130 + j110 40 + j960 + j10 + 480 + 840 j110 Hence, I 1 I3 90 j40 j460 10 55 + j430 + 10 10 + j160 1 58 j448 j64 4 16 + j168 + j168 + 4 I1 I I3 1 ( 1710 + j640) (1080 j40) (545 j110) (40 j376) ( 1710 + j640) 185.84 0.5 (40 j376) 550.44 43.09 3.317.57 A I I 3 (1080 j40) 1080.74.1 (40 j376) 550.44 43.09 1.963 40.97 A (545 j110) 555.99 11.41 555.99 191.41 (40 j376) 550.44 43.09 550.44 43.09 1.010 148.3 A 88

EXERCISE 03 Page 550 1. Repeat Problems 3, 4, 5, 7 and 8 of Exercise 01 on page 545, using Cramer s rule.. Repeat Problems 3, 4, 8 and 9 of Exercise 0 on page 548, using Cramer s rule. Just a sample of these questions are detailed below. The remainder are left to the reader. 1. Q(3), Exercise 01 Use Cramers rule to solve: x + y + 3z 5 x 3y z 3 3x + 4y + 5z 3 x 5 3 3 3 1 3 4 5 5( 11) (18) + 3(1) 8 1 3 1( 11) (7) + 3( 1) 8 3 1 3 4 5 1 y z 1 5 3 3 1 3 3 5 1(18) 5(7) + 3(15) 8 1 8 8 8 1 5 3 3 3 4 3 1( 1) (15) + 5( 1) 56 8 8 8 1. Q(7), Exercise 01 Use Cramer s rule to solve: s + v + a 4 3s v + 4a 5 3s + v a 4 89

s 4 5 1 4 4 1 4( 7) ( 9) + (46) 8 1 1( 7) ( 15) + (9) 41 3 1 4 3 1 v a 1 4 3 5 4 3 4 1 1( 9) 4( 15) + ( 87) 13 3 41 41 41 1 4 3 1 5 3 4 1( 46) ( 87) + 4(9) 164 4 41 41 41. Q(8), Exercise 0 Use Cramer s rule to solve: i1+ 8i + 3i3 31 3i1 i + i3 5 i 3i + i 6 1 3 i 1 31 8 3 5 1 6 3 31( 1) 8( 16) + 3(7) 40 1 8 3 1( 1) 8(4) + 3( 5) 48 3 1 3 5 i i 3 1 31 3 3 5 1 6 1( 16) + 31(4) + 3(8) 19 4 48 48 48 1 8 31 3 5 3 6 1( 7) 8(8) 31( 5) 96 48 48 48 830

EXERCISE 04 Page 551 1. In a mass-spring-damper system, the acceleration x m/s, velocity x m/s and displacement x m are related by the following simultaneous equations: 6. x+ 7.9 x + 1.6 x 18.0 7.5 x+ 4.8 x + 4.8 x 6.39 13.0 x+ 3.5 x 13.0 x 17.4 By using Gaussian elimination, determine the acceleration, velocity and displacement for the system, correct to decimal places. 6. x+ 7.9 x+ 1.6x 18.0 7.5 x+ 4.8 x+ 4.8x 6.39 (1) () 13.0 x+ 3.5 x 13.0x 17.4 () 7.5 6. (1) gives: 0 4.7565 x 10.44 x 15.384 ( ) (3) 13.0 6. (1) gives: 0 13.065 x 39.419 x 55.14 (3 ) 13.065 (3 ) ( ) gives: 0 + 0 10.737 x 1.886 4.7565 1.886 x 1.0 10.737 From (3 ), 13.065 x 39.419(1.) 55.14 (3) 13.065 x 55.14 + 39.419(1.) and x 55.14 + 39.419(1.) 13.065.60 From (1), 6. x+ 7.9(0.60) + 1.6(1.) 18.0 and x 6. x 18.0 4.74 15. 1.86 1.86 6. 0.30 831

. The tensions, T1, T and T 3 in a simple framework are given by the equations: 5T + 5T + 5T 7.0 1 3 T + T + 4T.4 1 3 4T + T 4.0 1 Determine T 1, T and T 3 using Gaussian elimination. 5T + 5T + 5T 7.0 (1) 1 3 T + T + 4T.4 () 1 3 4T + T + 0T 4.0 (3) 1 3 () 1 5 (1) gives: 0 + T + 3T3 1.0 ( ) (3) 4 5 (1) gives: 0 T 4T3 1.6 (3 ) (3 ) 1 ( ) gives: T 3.4 T 3. In (3 ) T 4(0.) 1.6 and T.4 In (1) 5T 1 + 5(0.4) + 5(0.) 7.0 T 1.6 + 0.8 0.8 5T 1 7.0.0 1.0 4.0 and T 1.8 3. Repeat Problems 3, 4, 5, 7 and 8 of Exercise 01 on page 545, using the Gaussian elimination method. These problems are left to the reader using the same method as in the above examples. 4. Repeat Problems 3, 4, 8 and 9 of Exercise 0 on page 548, using the Gaussian elimination method. These problems are left to the reader using the same method as in the above examples. 83

EXERCISE 05 Page 556 1. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 4 1 1 (a) The eigenvalue is determined by solving the characteristic equation A λi 4 1 0 λ 1 1 0 1 4 λ 0 1 1 0 λ λ 4 1 1 λ (Given a square matrix, we can get used to going straight to this characteristic equation) Hence, ( λ)( 1 λ) ( 4)( 1) λ + λ + λ 4 and λ λ 6 (λ 3)(λ + ) λ 3 λ 3 or λ + λ (Instead of factorizing, the quadratic formula could be used; even electronic calculators can solve quadratic equations) Hence, the eigenvalues of the matrix 4 1 1 are 3 and (b) From (a) the eigenvalues of 4 1 1 are λ 1 3 and λ Using the equation (A λi)x for λ 1 3 3 4 x1 1 1 3 x 0 1 4 x1 1 4 x 0 833

x 4x 1 x1 4x Hence, whatever value x is, the value of x 1 will be 4 times greater. Hence the simplest 4 eigenvector is: x1 1 Using the equation (A λi)x for λ and 4 x 0 1 1 x 0 1 4 4 x1 1 1 x 0 4x 4x 1 x + 1 x 0 From either of these two equations, x1 x or x x1 Hence, whatever value x 1 is, the value of x will be the same. Hence the simplest eigenvector 1 is: x 1 4 Summarizing, x1 1 is an eigenvector corresponding to λ 1 3 1 and x 1 is an eigenvector corresponding to λ. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 3 6 1 4 (a) The eigenvalue is determined by solving the characteristic equation A λi 3 λ 6 1 4 λ Hence, (3 λ)(4 λ) (6)(1) 834

1 3λ 4λ + λ 6 and λ 7λ + 6 (λ 1)(λ 6) λ 1 λ 1 or λ 6 λ 6 Hence, the eigenvalues of the matrix 3 6 1 4 are 1 and 6 (b) From (a) the eigenvalues of 3 6 1 4 are λ 1 1 and λ 6 Using the equation (A λi)x for λ 1 1 3 1 6 x1 1 4 1 x 0 6 x1 1 3 x 0 x + 6x 1 and x1+ 3x x1 3x Hence, whatever value x is, the value of x 1 will be 3 times greater. Hence the simplest 3 eigenvector is: x1 1 Using the equation (A λi)x for λ 6 and 3 6 6 x1 1 4 6 x 0 3 6 x1 1 x 0 3x + 6x 1 x x 1 835

From either of these two equations, x1 x Hence, whatever value x is, the value of x 1 will be two times greater. Hence the simplest eigenvector is: x 1 3 Summarizing, x1 1 and x 1 is an eigenvector corresponding to λ 1 1 is an eigenvector corresponding to λ 6 3. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 3 1 0 (a) The eigenvalue is determined by solving the characteristic equation A λi 3 λ 1 0 λ Hence, (3 λ)( λ) (1)( ) 3λ + λ + and λ 3λ + (λ 1)(λ ) λ 1 λ 1 or λ λ Hence, the eigenvalues of the matrix 3 1 0 are 1 and (b) From (a) the eigenvalues of 3 1 0 are λ 1 1 and λ Using the equation (A λi)x for λ 1 1 3 1 1 x1 0 1 x 0 836

1 x1 1 x 0 x + x 1 and x1 x x x1 Hence, whatever value x 1 is, the value of x will be times greater. Hence the simplest 1 eigenvector is: x1 Using the equation (A λi)x for λ and 3 1 x1 0 x 0 1 1 x1 x 0 x + 1 x 0 x x 1 From either of these two equations, x1 x or x x1 Hence, whatever value x 1 is, the value of x will be 1 times greater. Hence the simplest 1 eigenvector is: x 1 1 Summarizing, x1 1 and x 1 is an eigenvector corresponding to λ 1 1 is an eigenvector corresponding to λ 4. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 1 1 1 4 4 1 1 5 837

(a) The eigenvalue is determined by solving the characteristic equation A λi 1 λ 1 1 4 λ 4 1 1 5 λ Hence, using the top row: ( 1 λ)[ ( λ)(5 λ) (4)(1) ] 1[ 4(5 λ) (4)( 1) ] + 1[ ( 4)(1) ( 1)( λ) ( 1 λ)[ 10 λ 5λ + λ 4 ] + 1[ 0 + 4λ + 4] + 1[ 4 + λ ] ( 1 λ)[ λ 7λ + 6 ] 16 + 4λ λ and λ + 7λ 6 λ 3 + 7 λ 6λ 16 + 4λ λ λ 3 + 6 λ Using the factor theorem or an electronic calculator, λ, λ 6 or λ + 4λ 4 Hence, the eigenvalues of the matrix 1 1 1 4 4 1 1 5 are, 6 and 1 1 1 (b) From (a), the eigenvalues of 4 4 1 1 5 Using the equation (A λi)x for λ 1 From the second equation, 1 1 1 x1 4 4 x 1 1 5 x 3 1 1 x 0 4 0 4 x 1 1 1 3 x 3x1 x + x3 4x1+ 4x3 x + x + 3x 1 3 x x 1 3 are λ 1, λ 6 and λ 3 838

Substituting in the first equation, 3x x + x x x 1 1 1 Hence,when x 1, x and x 1 1 3 1 Hence the simplest eigenvector corresponding to λ 1 is: x1 1 Using the equation (A λi)x for λ 6 1 6 1 1 x1 4 6 4 x 0 1 1 5 6 x 7 1 1 x1 4 4 4 x 1 1 1 x 7x1 x + x3 4x1 4x + 4x3 x1+ x x3 From the third equation, x1 x x3 Substituting in the first equation, 7( x x ) x + x 8x + 8x x x Hence, x1 x x3 Hence, if x 1, x3 1 and x1 3 3 3 3 0 Hence the simplest eigenvector corresponding to λ 6 is: x 1 1 Using the equation (A λi)x for λ 3 1 1 1 x1 4 4 x 1 1 5 x 1 1 1 x1 4 4 4 x 1 1 7 x 839

From the second equation, Substituting in the first equation, x1 x + x3 4x1+ 4x + 4x3 x + x + 7x 1 3 x1 x + x3 ( x + x ) x + x x and x x 3 3 3 1 Hence, if x1 1, x 1 and x3 1 Hence the simplest eigenvector corresponding to λ is: x3 1 0 5. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 1 1 0 1 1 0 1 1 (a) The eigenvalue is determined by solving the characteristic equation A λi 1 λ 1 0 1 λ 1 0 1 1 λ Hence, using the top row: (1 λ)[ ( λ)(1 λ) ( 1)( 1) ] 1[ 1(1 λ) ( 1)(0) ] + 0 (1 λ)[ λ λ + λ 1 ] + 1[ 1 + λ ] (1 λ)[ λ 3λ + 1 ] 1 + λ and λ 3λ + 1 λ 3 + 3 λ λ 1 + λ λ 3 + 4 λ 3λ λ 3 4 λ + 3λ λ( λ 4λ + 3) and λ(λ 1)(λ 3) Hence, λ, λ 1 or λ 3 840

Hence, the eigenvalues of the matrix 1 1 0 1 1 0 1 1 are 0, 1 and 3 1 1 0 (b) From (a), the eigenvalues of 1 1 0 1 1 Using the equation (A λi)x for λ 1 From the first equation, From the third equation, 1 0 1 0 x1 1 0 1 x 0 1 1 0 x 1 1 0 x1 1 1 x 0 1 1 x x1 x x1+ x x3 x + x 3 0 x x x 1 x 3 are λ 1, λ 1 and λ 3 3 Hence,when x1 1, x 1 and x3 1 1 Hence the simplest eigenvector corresponding to λ 1 is: x1 1 1 Using the equation (A λi)x for λ 1 1 1 1 0 x1 1 1 1 x 0 1 1 1 x 0 1 0 x1 1 1 1 x 0 1 0 x x x + x x 1 3 0 841

From the second equation, x x x since x 1 3 Hence, if x1 1, x3 1 and x 1 Hence the simplest eigenvector corresponding to λ 1 is: x 1 Using the equation (A λi)x for λ 3 From the first equation, 1 3 1 0 x1 1 3 1 x 0 1 1 3 x 1 0 x1 1 1 1 x 0 1 x x1 x x1 x x3 x x 3 Substituting in the second equation, x x 1 x ( x ) x x x 1 1 3 1 3 Hence, if x1 1, x and x3 1 1 Hence the simplest eigenvector corresponding to λ 3 3 is: x3 1 6. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 1 3 1 1 (a) The eigenvalue is determined by solving the characteristic equation A λi λ 1 3 λ 1 1 λ 84

Hence, using the top row: ( λ)[ (3 λ)( λ) (1)() ] [ 1( λ) (1)(1) ] + [ (1)() 1(3 λ) ] ( λ)[ 6 3λ λ + λ ] [ λ 1 ] [ 3 + λ] ( λ)[ λ 5λ + 4 ] + λ + λ and λ 10λ + 8 λ 3 + 5 λ 4λ λ 3 + 7 λ 14λ + 8 λ 3 7 λ + 14λ 8 Hence, by calculator, λ 1, λ or λ 4 Hence, the eigenvalues of the matrix 1 3 1 1 are 1, and 4 (b) From (a), the eigenvalues of 1 3 1 1 Using the equation (A λi)x for λ 1 1 1 x1 1 3 1 1 x 1 1 x 1 x1 1 1 x 1 1 x x1+ x x3 x + x + x 1 3 Subtracting one equation from the other gives: and from the first equation, x 3 x x 1 are λ 1 1, λ and λ 3 4 Hence,when x 1, x and x 1 3 Hence the simplest eigenvector corresponding to λ 1 1 is: x1 1 0 843

Using the equation (A λi)x for λ From the first equation, x1 1 3 1 x 1 x 0 x1 1 1 1 x 1 0 x x x3 x1+ x + x3 x + x 1 x x 3 From the third equation, x x ie.. x x 1 1 3 Hence, if x 1, x3 1 and x1 Hence the simplest eigenvector corresponding to λ is: x 1 1 Using the equation (A λi)x for λ 4 4 x1 1 3 4 1 x 1 4 x x1 1 1 1 x 1 x x1+ x x3 x1 x + x3 x + x x 1 3 Subtracting the third equation from the first equation gives: From the second equation, x 1 x x since x 1 3 844

Hence, if x 1, x3 1 and x1 0 Hence the simplest eigenvector corresponding to λ 3 4 is: x3 1 1 7. Determine the (a) eigenvalues (b) eigenvectors for the matrix: 1 1 0 1 1 3 (a) The eigenvalue is determined by solving the characteristic equation A λi 1 λ 1 0 λ 1 1 3 λ Hence, using the top row: (1 λ)[ ( λ)(3 λ) (1)() ] 1[ 0 ( 1)() ] + [ 0 ( 1)( λ) (1 λ)[ 6 λ 3λ + λ ] + [ λ ] (1 λ)[ λ 5λ + 4 ] + 4 λ and λ 5λ + 4 λ 3 + 5 λ 4λ + λ λ 3 + 6 λ 11λ + 6 λ 3 6 λ + 11λ 6 Hence, using a calculator, λ 1, λ or λ 3 Hence, the eigenvalues of the matrix 1 1 0 1 1 3 are 1, and 3 1 1 (b) From (a), the eigenvalues of 0 1 1 3 Using the equation (A λi)x for λ 1 1 are λ 1 1, λ and λ 3 3 1 1 1 x1 0 1 x 1 1 3 1 x 845

From the first equation, From the third equation, 0 1 x1 0 1 x 1 1 x x + x3 x + x + x 1 3 x x 3 x + ( x ) + x x 1 3 3 1 Hence,when x 1, x and x 3 3 1 0 Hence the simplest eigenvector corresponding to λ 1 1 is: x1 1 Using the equation (A λi)x for λ 1 1 x1 0 x 1 1 3 x 1 1 x1 0 0 x 1 1 1 x x1+ x + x3 x 3 x1+ x + x3 From the second equation, x 3 From the first equation, x x 1 Hence, if x1 1, x 1 and x3 1 Hence the simplest eigenvector corresponding to λ is: x 1 0 Using the equation (A λi)x for λ 3 3 846

From the third equation, From the second equation, 1 3 1 x1 0 3 x 1 1 3 3 x 1 x1 0 1 x 1 1 0 x x1+ x + x3 x + x3 x + x x x 1 0 x 1 x 3 Hence, if x1 1, x 1 and x3.5 or if x1, x and x3 1 Hence the simplest eigenvector corresponding to λ 3 3 is: x3 1 847